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ABSTRACT Recent strides in integrating artificial intelligence (AI) with production systems align with
the trend towards highly automated manufacturing, demanding smarter machinery. This dovetails with the
overarching vision of Industry 4.0, moving beyond conventional models towards employing AI for real-time
modeling of production processes, enabling adaptable and learning-enabled models. This study focuses on
leveraging cutting-edge deep learning techniques to monitor and classify tool wear using authentic image
data frommachining processes. Various deep learning algorithms, including CNN, AlexNet, EfficientNetB0,
MobileNetV2, CoAtNet-0, and ResNet18, are explored for monitoring and measuring wear through images
of machining chips. The collected images of machining chips are categorized as ‘Accepted’, ‘Unaccepted’,
and ‘Optimal’. Due to imbalanced datasets, the study investigates two distinct strategies: upsampling
and downsampling. The study also aimes to enhance sensitivity for a specific minority class to meet
industrial requirements. The study showed that upsampling enhanced accuracy and almost fulfilled the
stated requirements, whereas downsampling did not achieve the desired outcomes. The study evaluates
and compares the effectiveness of recently introduced deep learning algorithms with other CNN-based
architectures in classifying tool wear states in real-world scenarios. It sheds light on the challenges faced
by the machining industry, particularly the prevalent issue of class imbalance in real-world machining data.
The observed results indicate that ResNet18 and AlexNet outperform other algorithms, achieving a weighted
average accuracy of 96% for bothmulticlass and binary classification problemswhen considering upsampled
datasets. Consequently, the study concludes that both ResNet18 and AlexNet demonstrate adaptability to
class imbalances, generalization to real-world machining scenarios, and competitive accuracy.

INDEX TERMS Deep learning, industry 4.0, machining, neural networks, predictivemaintenance, tool wear.

I. INTRODUCTION
In the world of machining, tools gradually wear out over
time until they reach a critical point and fail [1], [2]. This
gradual increase in tool wear determines how long a tool will
last before needing to be replaced [3]. As wear increases,
it creates more friction and force [4], leading to vibrations
and power increases [5], [6]. If tools are not replaced on time,
it can harm the machine [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu Liu .

To prevent sudden tool failures, it’s crucial to monitor
wear from the start [8]. Additionally, increased wear affects
the quality of the finished product, like surface smoothness
and accuracy [9]. Understanding how wear works is vital
during machining, as it greatly impacts the final result [7].
It also affects other factors, like chip production and surface
hardness [2].

Therefore, a reliable system is needed to detect tool
wear early on to avoid unexpected downtime or working
with a worn-out tool that is not able to produce the
desired results [10]. Online monitoring systems that sense
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increasing wear can help make the most of a tool’s
lifespan [11].

Tool wear monitoring systems fall into two groups: direct
and indirect methods. Direct methods measure wear using
techniques like electric resistance, optics, or imaging, but they
have limitations in certain situation [12]. These limitations
include material dependency, limited applicability to certain
materials, surface finish and contaminants, sensitivity to
environmental conditions, and complexity in multi-tool envi-
ronments, among others. Indirect methods gather data during
cutting operations that give clues about tool wear. While
they don’t directly measure wear, they can provide valuable
information [12]. For example, they might use temperature,
cutting force, vibration, surface roughness, or other sensing
measurements [13], [14]. However, implementing these
methods can be complex and costly due to the installation
of extra equipment.

Recently, there’s been a growing interest in using artificial
intelligence (AI) alongside production systems [15]. This
aligns with a trend towards highly automated production,
which requires more intelligent machines [16]. These
advancements are driving us towards the development of
Industry 4.0 [17]. Unlike traditional models, which can be
quite simplified and evaluative [18], there’s a shift towards
using AI for real-time modeling of production processes [19].
This allows for models that can adapt and learn as they are
used.

Among the recent develpments on AI algorithms, a notable
work is done by Dai et al [20]. In their study on CoAtNet,
they delve into the fusion of convolution and attention in
machine learning, examining it from two fundamental angles:
generalization and model capacity. They find that convo-
lutional layers exhibit superior generalization, converging
swiftly due to their robust prior inductive bias. On the
other hand, attention layers boast higher model capacity,
especially benefiting from larger datasets. By combining both
convolutional and attention layers, a synergistic enhance-
ment in both generalization and capacity is achieved. Yet,
a critical challenge they faced was effectively combining
convolutional and attention layers to strike a balance
between accuracy and efficiency. In response, they made two
significant observations. Firstly, they noted that the widely
used depthwise convolution can be seamlessly integrated
into attention layers through a straightforward relative
attention mechanism. Secondly, by appropriately stacking
convolutional and attention layers, remarkable gains in both
generalization and capacity were achieved. Building upon
these insights, they put forth a straightforward yet highly
effective network architecture called CoAtNet, harnessing the
strengths of both Convolutional Neural Networks (ConvNets)
and Transformers.

The dataset used for this work is hugely imbalanced and
categorized with three classes: ‘Accepted’, ‘Unaccepted’, and
‘Optimal’ and it has the highest instances of the ‘Accepted’
class, following by ‘Unaccepted’, and ‘Optimal’ classes.
This work focuses on advanced deep learning techniques

to monitor and classify tool wear using authentic image
data from machining processes. Specifically, it explores the
performance of various deep learning algorithms, including
CNN, AlexNet, EfficientNetB0, MobileNetV2, CoAtNet-0,
andResNet18, in classifying tool wear states with imbalanced
data and opting for result that is sensitive to a minor
class. The overall goal is to find a technique that provides
good accuracy and precise response, especially with the
‘Unaccepted’ labelled class. The study also addresses the
challenges of class imbalance in real-world machining data
by investigating upsampling and downsampling strategies.

The main contributions of this research are:
1) Evaluation of the effectiveness of state-of-the-art deep

learning algorithms in classifying tool wear.
2) Comparison of different deep learning models in

handling class imbalance in real-world machining data.
3) Demonstration of the adaptability and generalization

capabilities of ResNet18 and AlexNet, achieving high
accuracy in both multiclass and binary classification
problems.

The rest of the article is organised as follows: Literature
review (Section II), Methodology (Section III), Experimental
Setup(Section IV), Performance evaluation (Section V), and
Conclusions (Section VI).

II. LITERATURE REVIEW
A. TOOL WEAR MONITORING USING AI
The integration of Artificial Intelligence (AI) techniques with
precision cutting force measurements has become a focal
point in current research. This combination enhances the
processing and analysis of acquired force signals through
various AI methodologies. Among these, neural networks
are prominently featured in studies related to tool wear
monitoring. For instance, Wang and Cui [21] employed an
auto-associative neural network approach, while Freyer et al.
[22] utilized two distinct strategies based on orthogonal
and unidirectional force components, both incorporating
time-delay neural networks. Results indicate comparable
accuracy in monitoring tool conditions during the turning
process. Additionally, Kuram andOzcelik [23]applied regres-
sion analysis and fuzzy logic to estimate flank wear, surface
roughness, and cutting forces during micromilling, showing
successful application for reliable process output estimation.
Wang et al. [24] introduced a complex learning system using
hidden Markov models, radius basis functions, and support
vector machines, achieving an accuracy rate above 99% for
real-time monitoring during titanium alloy milling. Another
widely adopted approach for tool condition monitoring
involves Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
utilizing the Takagi Sugeno fuzzy inference model. Xu et al.
[25] developed an intelligent ANFIS model, incorporat-
ing an improved particle swarm optimization method for
tool wear assessment during milling. Experimental results
demonstrated superior prediction accuracy compared to other
intelligent approaches. McParland et al. [26] applied cutting
force data from turning medical-grade CoCrMo alloy to
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estimate tool wear based on a Bayesian hierarchical Gaus-
sian process model. The Bayesian approach significantly
improved tool wear estimation accuracy, even for non-linear
wear rates, making it applicable for online tool life prediction.

B. PROGRESS IN DEEP LEARNING
Since the emergence of AlexNet, Convolutional Neural
Networks (ConvNets) have dominated computer vision [27].
Meanwhile, inspired by the success of self-attention models
like Transformers in natural language processing, efforts have
been made to integrate attention mechanisms into computer
vision. Recently, in a study, Dosovitskiy et al. [28] the Vision
Transformer (ViT) demonstrated competitive performance
on ImageNet-1K using primarily vanilla Transformer layers.
When pre-trained on the extensive JFT-300M dataset, ViT
achieved comparable results to state-of-the-art ConvNets,
hinting at the potentially greater scalability of Transformer
models. However, ViT’s performance lags behind ConvNets
in low-data scenarios. Even with additional pre-training, its
accuracy on ImageNet is notably lower than ConvNets of
similar size [29]. This suggests that vanilla Transformer lay-
ers may lack certain inductive biases inherent to ConvNets,
necessitating more data and computational resources. Conse-
quently, recent research has focused onmerging ConvNet and
Transformer attributes [30], [31], [32], but often lacks a sys-
tematic understanding of their respective roles. The challenge
lies in effectively combining them to strike a balance between
accuracy and efficiency. CoAtNet, a model that integrates
convolutional and attention layers, achieves state-of-the-art
performance under comparable resource constraints across
various data sizes. In low-data settings, CoAtNet benefits
from ConvNet’s strong generalization properties due to its
favorable inductive biases. With abundant data, CoAtNet not
only leverages Transformer models’ superior scalability but
also attains faster convergence and improved efficiency [20].
This survey by Shafiq and Gu [33] explores the methods and
advantages of deep ResNets, their performance on ImageNet,
and their potential applications beyond image classification
tasks that makes it ideal to use for our purpose. In another
paper Gupta et al. [34], have used different deep learning
techniques along with ResNet18 to find the optimal model
to classify defective and non-defective casting for industrial
uses. Similarly, AlexNet have been used for transfer learning
model in several industrial applications, such as detecting
fabric defects in garments sector by Şeker [35] analyzing
casting surface defect images of a metal pump impeller
for performance testing in the study by Thalagala and
Walgampaya [36].

III. METHODOLOGY
The experimentation is performed using different deep learn-
ing architectures including a simple CNN architecture and
some advanced architectures like AlexNet, EfficientNetB0,
MobileNetV2, and Resnet18. Further, in the recent devel-
opments of deep learning architectures, some sophisticated
architectures integrating convolution and self-attention are

also proposed. One such architecture is CoAtNet. In this
study, CoAtNet-0 is evaluated for its performance to see
how such architectures respond to these specific datasets.
Subsequently, PyTorch and Torchvision libraries were used
for AlexNet, EfficientNetB0, MobileNetV2, and Resnet18.

In this study, some common transformation techniques
were used for every model. Such as, all input images were
resized to (224, 224) pixels to ensure consistent size formodel
compatibility and normalized within a range of [−1, 1] using
‘transforms.Normalize((0.5,), (0.5,))‘ from PyTorch.

Data augmentation techniques from PyTorch’s
‘torchvision.transforms’—such as random flips, rotation,
resized crop, color jitters, affine transformations, and Gaus-
sian blur—enhance the diversity of minority class samples,
addressing issues like class separability, noise sensitivity, and
computational complexity. Augmented examples are shown
in Figure 12. For downsampling, we randomly removed
50% of the majority of ‘Accepted’ class, leaving ‘Optimal’
and ‘Unaccepted’ classes unchanged. These steps ensured a
comprehensive preprocessing and augmentation approach.

Further background details on the architectures are
provided below.

A. CONVOLUTIONAL NEURAL NETWORK (CNN)
A simple CNN architecture is used to test its performance
on the machining dataset. The network consists of a feature
extraction module followed by fully connected layers for
classification. The feature extraction module comprises two
convolutional layers, each succeeded by a Rectified Linear
Unit (ReLU) activation and max-pooling operation. The first
convolutional layer processes three input channels with a 3×

3 kernel and 16 output channels, while the subsequent layer
has 16 input channels and 32 output channels. The ReLU
activations introduce non-linearity, and max-pooling layers
reduce spatial dimensions. The flattened output from the
feature extractionmodule is then forwarded through two fully
connected layers, consisting of 128 units and ReLU activation
in the first layer, and a linear layer producing the final
classification output with a user-specified number of classes
in the second layer. The overall architecture is designed for
simplicity and efficiency,making it suitable for themachining
image classification tasks. The input images are preprocessed
using a set of transformations, including resizing to (224,
224) and normalization (pixel values scaled to a range of [−1,
1]). This simple CNN architecture served as a fundamental
component in our experimental framework, demonstrating its
efficacy in capturing discriminative features for machining
image classification. Further details of the architecture
are shown in Figure 1. corresponding model summery is
presented model in table 1.

B. COATNET
This architecture explores the optimal integration of con-
volution and self-attention mechanisms in a computational
block, addressing two key aspects: (i) combining these
mechanisms effectively, and (ii) vertically stacking them in
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a network. The similarities between depthwise convolution
and self-attention are noted, emphasizing their per-dimension
weighted sum approach within a receptive field. The study
by Dai et al [20] further highlights that self-attention excels
in capturing intricate relational interactions but may be
prone to overfitting with limited data, while convolution
benefits from translation equivalence, making it superior
for smaller datasets. Additionally, the authors stress the
importance of receptive field size. They propose a method
to combine convolution and self-attention by summing a
global static convolution kernel with the adaptive attention
matrix. They also introduce a variant of relative self-attention.
In terms of network layout design, they compare strategies
to manage computational complexity associated with global
attention and select the C-C-T-T multi-stage layout for
CoAtNet, considering factors such as generalization, model
capacity, transferability, and efficiency. This comprehensive
study provides valuable insights into the strengths and
considerations of combining these critical mechanisms in
neural networks. In this study, we have evaluated this model
on our dataset to test its capabilities on data containing
some real challenges. In a recent study by Basit et al. [37],
the authors have used CoAtNet-0 to classify oil spillage
over sea on the spaceborne synthetic aperture radar (SAR)
data. In this study, a similar CoAtNet-0(without pretrained
weights) architecture was applied on the dataset that contains
3 classes. The architecture of the CoatNet-0 model is
presented in Figure 2.

The model summery of the CoatNet-0 is provided in
Table 2.

C. RESNET18
For our work, we have utilized an 18-layer CNN deep
learning model known as Residual Network(ResNet18) [38]
which is specially developed for image classification tasks.
This model is a pretrained model on the ImageNet dataset
which includes approximately 1.3 million images. First,
to adapt our input images for processing, they resized into the
224*224 resolution required for our model and normalized
before feeding to the model.

ResNet is a widely used deep learning model for its
innovative use of ‘skip connections’. These ‘skip connec-
tions’ address one of the most frequently occurring problems
‘vanishing gradient’ where the model ceases to learn further.
Among all the versions of ResNet, the standard 18-layer
version seemed to be an ideal balance for our needs; it is
sufficiently deep to capture complex features without being
overly extensive comparing the size of our dataset. The other
versions might not offer proportional benefits for our specific
dataset.

The ResNet-18 model had 18 layers for efficiently classi-
fying images of different objects from different categories.
To adapt the model to our specific needs, we added 3 fully
connected(fc) layers comprising 512, 256, and 128 neurons
respectively, and added a dropout of 0.4 after the fc layer
to reduce any overfitting and we have used SGD optimizer

for this purpose. We have applied this model on two
datasets(containing identical images), one with 2 outputs and
another with 3 outputs, the final output layer was different
on training on each dataset. This model worked well on both
upsampled and downsampled data. However, on actual data,
its performance is not acceptable. The architecture of the
pretrained ResNet18 is shown in Figure 3.

D. ALEXNET
Following our experiment with ResNet18, we shifted our
focus on a simpler architecture, AlexNet. As demonstrated
by Krizhevsky, Sutskever, and Hinton [39], AlexNet is
one of the pioneering and most influential deep learning
models comprising 5 convolutional layers and 3 layers of
fully connected neurons. It addresses the overfitting issue in
deep neural networks by using dropout techniques. In our
experiment with AlexNet, we introduced two additional
fully connected layers with configurations of 640 neurons
(accompanied by a 50% dropout rate) and 256 neurons,
respectively. The output layer was modified to fit the
requirements of our two datasets, one with three classes and
the other with two classes. For training, we have used it
with pre-trained weights from ImageNet [40] with Stochastic
Gradient Descent (SGD) as the optimizer. We transformed
our image dataset into 224*224 resolution and normalized
them before the training.

Remarkably, our AlexNet model achieved competitive
performance, showing equally well performance as the
previous model. It demonstrated higher accuracy for both
the three-class and two-class datasets, outperforming all
other models we considered for this research. This outcome
shows AlexNet’s efficiency with medium to small datasets in
deep learning tasks, even when compared to more complex
models. 3 presents the architecture of the pretrained AlexNet
used in this study.

E. EFFICIENTNETB0
A pre-trained baseline EfficientNet model was tested while
freezing it and adding additional layers for our 3 class
and 2 class outputs respectively. EfficientNetB0 is also a
CNN-based architecture that has been trained on images
from the ImageNet database. The EfficientNetB0 architecture
employs a compound scalingmethod that offers a coordinated
way of enlarging convolutional neural networks. Unlike
conventional scaling practices that typically expand a single
dimension—like width, depth, or resolution —which may
result in low performance or inflated computational demands,
this method enhances all three dimensions in a balanced
manner that helps to optimize performance while maintaining
computational efficiency [29]. The pre-trained weights were
used, so instead of starting from scratch (random initializa-
tion), the model starts with patterns and features already
learned from a vast and varied dataset. 3 fully connected
layers were added at the end of themodel comprising of 1280,
640, and 256 neurons respectively for the model to adapt
to our 3 class dataset. After that, the model was fine-tuned
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FIGURE 1. CNN architecture: Mainly two sequential 2D convolution blocks with RelU, followed by
fully connected linear layers.

FIGURE 2. CoAtNet-0 architecture.
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TABLE 1. Summary table for the CNN model.

TABLE 2. Summary table for the CoAtNet-0 model.

FIGURE 3. Resnet18 pretrained architecture used for transfer learning.

to get the maximized accuracy and paired it with SGD
optimizer. For better understanding, the architecture of the
EfficientNetB0 is given in Figure 5.

The EfficientNetB0 model demonstrated excellent perfor-
mance on the upsampled data for the three-class system.
However, it showed poor performance on the actual imbal-
anced data and downsampled data. So, we didn’t further
progress with the binary class dataset. As EfficientNetB0
has approximately 237 layers we assume that the actual data
and downsampled data were comparatively too small for
the model to be generalized, resulting in overfitting for our
particular data.

F. MOBILENETV2
In our previous experiment with baseline EfficientNet,
we observed impressive performance was confined to
scenarios involving upsampled data only. This led us to
presume that EfficientNetB0’s deapth could be excessive
for our dataset’s specific characteristics. So, we shifted
our minds to another lightweight architecture known as
MobileNetV2. MobileNetV2 is distinguished by its inverted

residual structure where the input and output of the residual
block are thin bottleneck layers [41]. Prior research has
shown that MobileNetV2 is highly efficient at extracting
features from segments, and it has a good potential for use
in mobile vision applications [42]. therefore we decided to
use it for our research.

In our research, we have used the pretrained MobileNetV2
model, originally trained on ImageNet dataset. Our prepro-
cessing steps mirrored those used in earlier experiments
to ensure consistency across models. The model is already
53 layers deep, we added two fully connected layers with
640 and 256 neurons, respectively, incorporating a 20%
dropout rate and paired it with Stochastic Gradient Descent
(SGD) optimizer. Finally, we adapted the output for both our
3-class datasets and hypertuned it for optimal accuracy.

The architecture of the model is prvided in Figure 6 for
better visualization.

However, like the previous model, MobileNetV2’s per-
formance was markedly better with upsampled data. Given
this outcome, we decided not to proceed with testing on the
two-class dataset.
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FIGURE 4. AlexNet pretrained architecture used for transfer learning.

FIGURE 5. EfficientNetB0 pretrained architecture used for transfer learning.

IV. EXPERIMENTAL SETUP
A general flow of chip collection process is provided
in Figure. 8. Chip is formed when a metallic workpiece
is machined based on Computer Aided Manufacturing
(CAM) program instructions. Here, the cutting Parameters:
Cutting parameters are derived from engineering machining
calculations based on the workpiece’s specific metal and
cutting insert combination. Cutting Parameter such as Depth
of Cut (mm), Feed Rate(mm/s) and Cutting Speed (revolution
/ s or mm /s) are specific parameters which determines
the machining or material removal rates chip is removed
optimally on balance of these 3 parameters for any given
material types. Depth of Cut (mm): it is amount of insert
inside the workpiece while material is being removed. In the
images below you can see the formation of chips. Depth of
cut determines the width of chip whereas federate or feed
determines the thickness of chip. The length of chip can
be determined by many parameters but primarily on Chip

breaker Design on Insert and combination of Depth of cut,
Feed and Cutting Speed. For better visualization 2 figures
Figure: 7a and Figure: 7b are added.

During the machining experiments, the ambient temper-
ature of the workshop was maintained between 21-25◦C.
To manage the heat generated during the cutting process and
to improve the quality of the chips produced, we employed
a e.g., ‘water-soluble cutting fluid’ delivered through a e.g.,
‘flood cooling system’. The CNC turning machine used in
our experiments was regularly calibrated and maintained to
ensure optimal stability. The experiment was conducted on a
Turning Machine with Turning Inserts on Various Cut Data
Parameters to identify the right machining parameter for a
given workpiece. These cut data parameters are Depth of
Cut, Federate and cutting speed. However, the scope of study
was limited to Identify the optimal cutting parameters (DoC,
Feed, Cutting Speed) which was prime part of study as they
play crucial role in determining the quality of chips and
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FIGURE 6. MobileNetV2 pretrained architecture used for transfer learning.

Cooling/ Lubrication conditions, temperature and machine
stability are known to determine the tool life.

After machining, the chips are carefully collected from
the predefined cutting zones. The process involves halting
the machine at regular intervals to gather the chips, ensuring
that they represent the specific machining parameters used at
each stage (e.g., depth of cut, cutting speed, feed rate). The
collected chips are then arranged on a display table known as
a Chip Chart. This table is designed with a grid layout where
each cell corresponds to a unique combination of machining
parameters. The grid helps in systematically organizing the
chips, making it easier to record and analyze the conditions
under which each type of chip was produced. Each grid cell
on the Chip Chart is labeled with the specific machining
parameters used to produce the chips placed in that cell. This
includes details such as the depth of cut, cutting speed, and
feed rate. By doing so, the Chip Chart serves as a visual and
documented record of the experimental conditions. A Chip
chart is the output of experiment to determine within which
machining range of machining parameters we get which kind
of chips. This is experimental. In the above image experiment
was first set up in following order:

1) Cutting Speed Vc is determined.
2) Choices of Feed, f , are determined.
3) Choices of Depth of Cut are determined.
4) Experiments were conducted and machining was

performed.
5) Chip formed after running each choice was then

collected manually from inside the machine from the
chip tray/belt.

6) The chip was then put on display with the empty chart.
7) Once the experiment was completed with all the

choices and all chips were collected one by one on the
display table, then a photograph was taken for further
studies.

These choices of cutting parameter are step values and
are determined by the design of Insert geometrical attribute
and other engineering calculations. An example of various
quality chips produced and arranged in the chip chart is
shown in Figure. 9. After identifying proper cutting speed
(Vc) based on metal cutting calculations or recommendations
based on prior history, the chip was collected for various
depths of cut at regular intervals and feed combinations.
These combinations produce different kinds of chips, which
were later classified as optimal, acceptable, and unaccepted.

Chips are visually inspected and compared against stan-
dard samples to determine their length and size, which
helps in categorizing them into the optimal, acceptable, and
unaccepted categories. Experienced machinists or engineers
play a crucial role in the classification process, using their
expertise to identify the optimal balance between chip size,
surface finish, and material removal rates. Chips that are
excessively long can lead to entanglement with machining
parts and inserts, potentially damaging equipment. Such
chips also pose handling issues for disposal after machining,
even if high material removal rates or surface finish are
achieved. Therefore, excessively long chips are classified
as unaccepted. Chips that are too small may indicate low
material removal rates. While they may result in good surface
finish and are easy to dispose of later, they are considered
suboptimal for machining processes due to their impact on
material removal rates. Optimal chips are those that strike
a balance between the surface finish, ease of disposal, and
material removal rates. They are of the right size to ensure
efficient machining while maintaining good surface quality
and easy handling for disposal.

Our objective is to determine the ‘optimal’ chips. The
definition of ‘Optimal’ Chip is the Chip which should not
interfere while machining while high material removal rate or
high surface finish. Following characteristic can be obtained
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FIGURE 7. (a)Chip breaker Design on Insert and combination of Depth of cut,Feed and Cutting Speed (b)Depth of Cut(DOC) (Angular
view).

by studying chips. a) Chips that are very long: It may lead to
entanglement of chips with machining parts and inserts and
lead to damaging of equipment. This also leads to handling
issues for disposal of chips later after machining, even if we
achieve high material removal rates or high surface finish it
is unacceptable. b) Chips that are too small: Low material
rates, may be good surface finish easy to dispose off later.
c) Optimal Chips: Right chip size where we have balance
of optimal surface finish, easy to dispose off chips and good
material rates. This classification of chip based on grading is
detailed in Table. 3 and is shown in Figure. 10.

A. DATASET
The data collected is from a real industry environment,
therefore, it poses some real challenges, and the most critical
is the class imbalance problem. There are very few manual
preparations needed for the practical application, for exam-
ple, cleaning and maintenance of chip adhesion including
manual inspection, however, it doesn’t affect the outcome
of the study. As there are only a few unaccepted samples
available compared to the accepted samples, therefore it
causes a huge imbalance in the classes.

From the several chip charts available, the individual
chips are extracted to create the dataset. Some samples of
extracted chips and their corresponding labels are shown in
Figure. 11. In total, 9,795 individual chips are extracted,
out of which 7,523 are ‘Accepted’, 850 are ‘Optimal’,
and 1,422 are ‘Unaccepted’. The data we got were clearly
imbalanced. In addressing the challenge of imbalanced
data, we explored two distinct strategies: upsampling and
downsampling. Therefore, the two minority class samples
are up-sampled through data augmentation to decrease the
imbalance ratio between classes. Rather than using more
sophisticated oversampling approaches like KNNOR [43]
or SMOTE [44], the data augmentation is done using
PyTorch’s torchvision’s ‘transforms’ module. This is done
to avoid issues like intrinsic class separability, sensitivity
towards noise, and computational complexity. To add more
data diversity, the augmentation is done through random
horizontal/vertical Flips, random rotation, random resized

TABLE 3. Classification of chip based on grading.

crop, color jitters, random Affine, and Gaussian blur.
Examples as a result of augmentation on two minority class
samples are provided in Figure. 12. Following the data
balancing process, we achieved a more even distribution:
9,404 instances in the ‘Accepted’ class, 4,776 in the ‘Optimal’
class, and 8,882 in the ‘Unaccepted’ class. To enhance
robustness, we upsampled the ‘Accepted’ class, which
primarily contained regular images, by introducing flipped,
rotated, and cropped variants as these modifications were
also introduced in the other two classes. This strategy was
employed to align with the modifications made in the other
two classes.

For the downsampling approach, we randomly removed
50% of only the majority ‘Accepted’ class, with no modifi-
cations done on the other two (‘unaccepted/optimal’) classes.
The summary of data samples is provided in Table 4.

In an industrial context where promptly identifying
any ‘Unaccepted’ items is crucial, the study focused on
decreasing the false positive rate for the ‘Unaccepted’ class.
The best performing model was optimized for heightened
sensitivity to this category. Additionally, binary classification
was experimented with to simplify the task and focus on
distinguishing between acceptable and unacceptable tool
wear states. A binary version of the dataset was created
with only two classes: ‘Accepted’ and ‘Unaccepted’. The
‘Optimal’ class, representing the highest quality of chips, was
merged with the ‘Accepted’ class, while the ‘Unaccepted’
class remained unchanged. This restructuring aimed to
simplify the classification task. For the binary classification’s
upsampled dataset, the upsampled instances of the ‘Accepted’
and ‘Optimal’ classes were combined with the upsampled
instances of the ‘Unaccepted’ class, ensuring a balanced
representation for the binary classification model.
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FIGURE 8. General Flow of Experimental Setup for chip collection.

FIGURE 9. Classic way of various quality chips produced and arranged in a chip chart.

V. PERFORMANCE EVALUATION
All the models are evaluated with different experimental
settings using their train and validation loss curves to ensure
each model has learned properly and is reported using 5-fold
cross-validation. The experimental settings that produced
optimal results for different models are reported in Table 5.

A. EVALUATION METRICS
Themodels are evaluated based on precision, recall, F1-score,
accuracy, macro average precision, and weighted average
precision. Moreover, all the models are statistically tested and
validated against their performance. For statistical testing,
the Friedman test followed by Nemenyi Post Hoc test
is performed to see the performance difference between

different models. The next section details the results of the
evaluation of different models.

B. MULTI-CLASS RESULTS
The evaluation results of the CNN model, as presented in
Table 6, 7, 8, demonstrate its varying performance across
different datasets. When tested on actual data, despite its
simple architecture, the model exhibited a commendable
accuracy of 86%. However, its performance was notably
reduced on down-sampled data, where accuracy dropped
to 75%. The down-sampled scenario presented challenges,
particularly in achieving a balance between precision and
recall for each class. Notably, the precision for the ‘Accepted’
class suffered a significant drop, indicating difficulties in
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FIGURE 10. A visual example of chip classification based on grading
displayed in Table. 3.

correctly identifying positive cases under down-sampled
conditions. In contrast, the up-sampled data showcased the
model’s capability to achieve perfect precision, recall, and
F1-score for all classes, emphasizing the importance of data
balance in enhancing model performance.

In the case of CoAtNet-0, the evaluation results (Table 6,
7, 8) reveal a similar trend. The model achieved an accuracy
of 75% on actual data, which dropped to 69% on down-
sampled data. This decrease is consistent with the challenges
posed by class imbalance, affecting both precision and recall.
The ‘Unaccepted’ class, in particular, faced a decline in
recall. However, on up-sampled data, CoAtNet-0 showcased
a remarkable accuracy of 94%, underlining its adaptability
to a more balanced dataset. Despite a lower macro average,
the model’s weighted average remains high, emphasizing
its ability to handle imbalanced data effectively. The results
for EfficientNetB0, AlexNet, ResNet18, and MobileNetV2
pretrained models on the up-sampled data, the down-
sampled data, and the actual data are provided in Table 6,
Table 7 and, Table 8, respectively. The EfficientNetB0 model
demonstrates high precision, recall, and F1-score across
all three classes on the upsampled data(Table 6), resulting
in an impressive overall accuracy of 95%. This indicates
the effectiveness of EfficientNetB0 in handling somewhat
balanced datasets, making it a good candidate for tool
wear classification. However, its effectiveness diminishes
with down-sampled(Table 7) and actual(Table 8) datasets,
particularly struggling with the ‘Optimal’ and ‘Unaccepted’
classes due to the inherent class imbalance in real-world data.
This indicates that EfficientNetB0 excels when there’s plenty
of data, thus, it tends to favor the ‘Accepted’ class, which is
most prevalent in the dataset. Increasing the training iterations
would lead to overfitting this class without effectively
improving the model’s ability to recognize the less common
classes.

The evaluation results for AlexNet on up-sampled data
(Table 6) also show robust performance with an accuracy
of 96%. The model achieves perfect precision, recall, and
F1-score for the ‘Accepted’ class. However, it shows a

TABLE 4. Summary of number of data samples in each class.

FIGURE 11. Example of extracted samples from the chip chart.

FIGURE 12. Examples from augmented data samples from two minority
classes.

relatively lower F1-score for the ‘Optimal’ class, which may
be attributed to challenges in correctly identifying instances
of this class. It achieves an accuracy of 86%on down-sampled
data(Table 7). It demonstrates balanced precision and recall
for all classes, indicating its ability to handle class imbalances
to some extent. Furthermore, it performs well on actual
data with an accuracy of 90%. It exhibits high precision,
recall, and F1-score for the ‘Accepted’ and ‘Unaccepted’
classes. However, it struggles with the ‘Optimal’ class, where
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precision is compromised. As its result was quite satisfactory
on the multiclass data, we further explored its efficiency on
Binary class data which is demonstrated in the later part.

ResNet18, as depicted in Table 6, exhibits consistent
performance across all metrics, with an accuracy of 96%.
The model achieves perfect precision, recall, and F1-score
for the ‘Accepted’ class. It also maintains high scores
for the ‘Optimal’ and ‘Unaccepted’ classes, showcasing
its reliability in tool wear classification tasks. It performs
consistently on down-sampled data(Table 7), achieving an
accuracy of 85%. It maintains high precision, recall, and
F1-score for the ‘Accepted’ and ‘Unaccepted’ classes, but
faces challenges in correctly classifying the ‘Optimal’ class.
Furthermore, it demonstrates consistent performance on
actual data, achieving an accuracy of 86%. It maintains high
precision, recall, and F1-score for the ‘Accepted’ and ‘Unac-
cepted’ classes. Challenges persist in correctly classifying the
‘Optimal’ class. ResNet18 was further assessed on a binary
class dataset due to its strong performance on the multiclass
dataset.

Table 6 also presents the evaluation results forMobileNetV2
on up-sampled data. The model achieves a commendable
accuracy of 95%, with balanced precision, recall, and F1-
score for all three classes. This highlights MobileNetV2
as a reliable choice for tool wear monitoring in machining
processes if ample data is present. However, in the case of
the imbalanced datasets, such as the downsampled (Table 7)
and actual data (Table 8), ResNet18 did not perform as well
compared to the previous models. This outcome highlights its
limitations in adjusting to handle imbalanced data effectively.

The comparative analysis of models, as evaluated by the
weighted average precision, is presented in Table 9. Com-
plementing this tabular representation, a visual illustration of
the comparative performance is depicted in Figure. 13. The
results of this performance assessment reveal that AlexNet
exhibits superior efficacy compared to other models under
consideration. On the original dataset, without any data
augmentation, AlexNet attains the highest performance, with
a noteworthy second place achieved by a simplistic Convolu-
tional Neural Network (CNN) architecture. Although subtle,
the discernable differences in overall performance among
the models become more pronounced when augmenting data
samples from minority classes. Strikingly, augmenting the
dataset enhances the performance of all models. In contrast,
downsampling the majority class samples leads to a decline
in performance across all models. The results of the statistical
significance test done through Friedman Test followed by
Nemenyi Post Hoc Test are depicted by the heat maps as
shown in Figure. 14. From these results, it can be seen that
the performance of AlexNet and ResNet is significantly better
throughout the datasets, mainly compared to CNN, CoAtNet,
and MobileNet.

C. BINARY CLASS RESULTS
We later evaluated the two best-performing models, AlexNet
and ResNet18, on up-sampled data for Binary classes

(Accepted and Unaccepted), and the result is summarized
in Table 10, 11, 12. Both models demonstrate strong
performance on the up-sampled data, with high precision,
recall, and F1-scores for both classes. ResNet18, in particular,
shows slightly better precision for the Accepted class,
contributing to its higher overall performance in terms
of macro and weighted averages. The accuracy for both
models is consistent at 96%. Overall, these models exhibit
robust performance in handling imbalanced data through
upsampling. The results on actual data using the same
two models are detailed in Table 11. Both models show
solid performance on actual data, with high precision,
recall, and F1-scores for the Accepted class. However, the
Unaccepted class poses a challenge, especially for AlexNet,
where the recall is relatively low. ResNet18, on the other
hand, maintains a higher recall for the Unaccepted class,
contributing to its better overall performance in terms of
macro and weighted averages. The models achieve accuracy
levels of 93% and 94%, respectively. These results highlight
the models’ capability to handle real-world data, with
ResNet18 demonstrating a slight advantage in performance
over AlexNet. Similarly, the performance for both models on
down-sampled data for two classes is shown in Table 12. Both
models exhibit robust performance on downsampled data.
AlexNet maintains high precision and recall for the Accepted
class, contributing to a strong F1-Score. However, it faces
a challenge in correctly classifying Unaccepted samples,
resulting in a lower recall for this class. ResNet18, while
slightly lower in precision for both classes, compensates with
better recall for the Unaccepted class, achieving comparable
F1-Scores. The models achieve an accuracy of 91%, and their
macro and weighted averages are consistent, indicating stable
performance across both architectures on downsampled data.

D. DISCUSSION
The dataset was collected from real machining operations,
reflecting the natural variability and diversity present in
industrial settings. The dataset already contained classes for
chips, as classified by experts or based on specific industrial
standards. These classes were not controlled or standardized
but were inherent to the dataset. There is currently no one rule
to fit all machining strategies as some machines determine
high material removal rate without worrying about surface
finish, whereas some determine high surface finish with low
material rates. Chip Size and quality are mostly determined
by playing within the range of machining parameters for
given machining strategies. Therefore, the parameters or
conditions during chip collection have not been manipulated
to control the variability or standardize the classification.

The design of image or feature enhancement methods
specific to chips, considering their symmetry and geometric
features was performed using traditional methods like
random flipping, rotating, and scaling due to lack of specific
domain knowledge that includes geometric calculation and
geometrical attributes and other engineering calculations.
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TABLE 5. Experimental Settings for different models.

TABLE 6. Evaluation matrix for different models on Upsampled data for Multiclass classification.

TABLE 7. Evaluation Matrix for different models on Downsampled data for Multiclass classification.

TABLE 8. Evaluation Matrix for different models on Actual data for Multiclass classification.

Each chip of the dataset reflects the state of the cutting
tool and as soon as some ‘unaccepted’ classified chips are
collected, it indicated that the tool is needed to be replaced
to ensure better quality chips. The dataset doesn’t provide
continuous data on tool wear progression and it wasn’t
specified if all those chips were cut using the same tool
reflecting its gradual degradation on the chips with uses.

Therefore, this study proposed for a classification model
instead of a regression one.

While choosing models to experiment with, this study
conducted research on different models from classical,
lightweight, to deep models with pretrained weights. The
reason behind this was the nature of data used in this
study. The data was imbalanced, but our goal was to
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TABLE 9. Performance comparison of models based on the weighted average precision using the up-sampled data.

FIGURE 13. Comparison of different models based on the Weighted
Average Precision. Three groups show results on three data cases.

make model that is sensitive to the ‘Unaccepted’ class
which was more than 5 times less than the ‘Accepted’
class. To achieve this, we experimented with upsampling
and downsampling techniques. We also assumed that the
classical and lightweight models would do better when we
experimented with the Actual and the down-sampled data.
However, when we work with the upsampled data, the deep
models would work better. The overall goal was to find a
technique that provides good accuracy and precise response,
especially with the unaccepted class.

Initially, this study used a simple 2-layers CNN structure
and the bare architecture of CoAtNet0. For AlexNet,
ResNet18, MobileNetV2 and EfficientNetB0, their pre-
trained weights from ImageNet dataset were used. First, all
the layers in the models were frozen to utilize their pretrained
feature extractors. By doing this, it was ensured that only
the newly added classifier layers are updated during training.
This allows the models to maintain the robust features it
learned from the ImageNet dataset, while the new classifier
layers adjust to perform well on our specific task. Every
model was fine-tuned by monitoring the loss curve, adjusting
training parameters to minimize the loss function, ensuring
optimal convergence, and preventing overfitting.

Both CNN and CoAtNet-0 models faced challenges in
scenarios with imbalanced data, especially under down-
sampled conditions. The results highlight the importance
of considering data distribution during model training, with
up-sampling proving effective in improving performance.
Notably, CoAtNet-0 demonstrated consistent and competitive
performance with CNN, showcasing its potential as an
alternative model for tool wear classification tasks. The
findings underscore the significance of selecting appropriate
models and data preprocessing strategies to address the
intricacies of real-world machining datasets.

EfficientNetB0, AlexNet, ResNet18, and MobileNetV2,
alongside CNN and CoAtNet-0, demonstrate strong perfor-
mance on up-sampled data. They showcase their ability to
handle class imbalances and effectively classify tool wear
states. The choice of the most suitable model may depend
on specific requirements, computational resources, and the
complexity of the machining dataset.

The models show varying performances on down-sampled
and actual data. While some models maintain robustness in
handling imbalanced datasets, challenges persist in correctly
classifying less represented classes. The choice of a model
should consider the specific characteristics of the machining
dataset and the importance of accurate classification for
each tool wear state. In summary, all six models exhibit
promising results, emphasizing the feasibility of employing
various deep learning architectures for real-world tool wear
classification tasks in machining processes.

To ensure a fair comparison between the different models,
this paper standardized the evaluation process across all
models. This included training and testing the models on
the same datasets, using consistent evaluation metrics (e.g.,
precision, recall, F1-score, accuracy, macro average preci-
sion, and weighted average precision), and applying uniform
training procedures (e.g., number of epochs, learning rates,
and optimization techniques) to all models. Additionally,
all models were evaluated on the same hardware to ensure
consistent computational comparisons.

1) OVERALL COMPARISON OF PERFORMANCE
Determining the best-performing model depends on several
factors. The following are the observations based on different
factors in this case:

1) Overall Accuracy:
• Up-sampledData:All models perform exception-
ally well with high accuracy (above 94%). In this
scenario, all models are competitive, with little
variation in accuracy.

• Actual Data: AlexNet and ResNet18 outperform
other models with accuracies of 90% and 86%,
respectively. These models demonstrate better
generalization to real-world machining scenarios.

• Down-sampled Data: ResNet18 and AlexNet
show the highest accuracies (86% and 85%) on
down-sampled data, indicating their ability to
handle reduced data scenarios.

2) Handling Class Imbalance:
• Up-sampled Data: All models show excellent
performance on the imbalanced up-sampled data,
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FIGURE 14. Heat map of the statistical performance of different Models on three different data sets.

TABLE 10. Evaluation matrix for different models on Upsampled data for binary class classification.

TABLE 11. Evaluation matrix for different models on actual data for binary class classification.

TABLE 12. Evaluation matrix for different models on downsampled data for binary class classification.

with high precision, recall, and F1-scores across all
classes.

• Actual Data: AlexNet and ResNet18 exhibit
balanced performance on the ‘Accepted’ and
‘Unaccepted’ classes, indicating their ability to
handle class imbalances in real-world machining
data.

• Down-sampledData:AlexNet and ResNet18 also
demonstrate somewhat balanced precision and
recall on down-sampled data, showcasing their
robustness in scenarios with limited samples.

3) Robustness Across Scenarios:

• AlexNet: Performs consistently well across dif-
ferent datasets and scenarios, making it a strong
candidate for tool wear classification.

• AlexNet and ResNet18: Demonstrate versa-
tility, showing competitive performance across
up-sampled, down-sampled, and actual datasets.

Though upsampling is considered superior to downsampling,
there could be scenarios where there is abundance of a
particular class of data, but the model needs to perform well
in the minor class. This can be attributed to the nature of
data in real machining industry settings, where there are
typically ample majority-class samples (representing good
tool conditions) and fewminority-class samples (representing
various stages of tool wear). Downsampling the majority
class preserves much of the information as these samples
are often similar and redundant, whereas upampling the
minority class can introduce noise and synthetic samples,
potentially leading to overfitting. In this kind of situation,
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downsampling can reduce the redundancy of the majority
class while also mitigating the overfitting issues. However,
in this study upsampling performed comparably better
to downsampling in tool wear monitoring despite having
chances to get contradictory results. The findings of the
study suggest that downsampling can be a viable option,
especially when computational efficiency and simplicity are
crucial. However, before applying the random downsampling
technique, it should be ensured that the downsampled
instances represent the actual data without losing important
features which was limited in this study. This underscores
the importance of considering the dataset’s characteristics
and practical constraints when choosing between upsampling
and downsampling techniques in tool wear monitoring. The
broader implication of our findings is that the choice between
upsampling and downsampling should be guided by the spe-
cific characteristics of the dataset and goal, and the practical
constraints of the application. For tool wear monitoring,
where real-time processing and model simplicity can be
critical, downsampling presents a compelling alternative.
We plan to reapply the downsampling approach in future, this
time ensuring that the instances remain representative of the
actual data introducing an evaluation method.

It is true that the modern architecture like CoAtNet-0 was
far behind than classic AlexNet on our dataset, the reason
behind that is: while using upsampled data, the accuracy
of AlexNet and CoatNet-0 both were noticeably well. The
average accuracy of AlexNet was 96% and the average
accuracy of CoatNet-0 was 94%. However, when we used
the actual data and downsampled data, though AlexNet
performed satisfactorily, CoAtNet-0 performed poorly. The
drastic difference between these results could be described
by their training system. the study have used pretrained
AlexNet while the CoatNet-0 had only the bare architecture.
So, as the training instances became lower, the complicated
architecture without previous training failed to capture
enough details from the data. CoAtNet-0 represents a more
advanced architecture, its performance is highly dependent
on the availability of sufficient data and appropriate training.
However, as AlexNet had previously trained weights from
ImageNet, it could still perform better than more modern
CoAtNet-0. Thus, AlexNet can leverage prior knowledge
to perform better on smaller or less diverse datasets,
making them valuable even in the presence of more modern
architectures

In conclusion, the choice of the best-performing model
depends on the specific characteristics and requirements of
the machining dataset. ResNet18 and AlexNet stand out as
strong contenders, with AlexNet being particularly notable
for its consistent performance across scenarios. Furthermore,
it’s recommended to consider factors such as computational
efficiency, and interpretability.

E. FUTURE WORK
In order to consider the symmetrical and the geometric fea-
ture, future research directions could include the development

of custom augmentation algorithms that leverage the spe-
cific geometric and symmetrical properties of chips. Such
algorithms could include symmetry-based augmentation
techniques, such as mirroring along specific axes, and
geometric feature augmentation methods that preserve or
emphasize chip-specific shapes and patterns. Additionally,
we plan to explore feature extraction and enhancement
techniques tailored to chips, such as edge detection and
pattern recognition, to further improve the robustness and
accuracy of our models. These enhancements aim to not only
improve the diversity of our training dataset but also enhance
the generalization of our approach to new and unseen chip
images.

Again, determining the tool wear condition through chip
analysis future study is needed. Based on the data considered
in the study, there is no step-by-step link indicating tool wear
conditions. This determination requires high-frequency data
collection, detailed physical examinations, and laboratory
analyses to provide immediate feedback on tool wear.
Consequently, assessing any potential lag in determining tool
wear conditions is beyond the scope of our research.

VI. CONCLUSION
In this study, we delved into the critical realm of tool wear
monitoring in machining processes, recognizing its profound
impact on final output quality and production efficiency. Our
exploration of direct and indirect tool monitoring methods
revealed the importance of a dependable system for early tool
wear detection. Leveraging recent advancements in artificial
intelligence (AI) and aligning with the principles of Industry
4.0, we focused on employing AI models for monitoring
and classifying tool wear using authentic image data from
machining processes.

The evaluation of multiple convolutional neural network
(CNN) architectures, including AlexNet, MobileNetV2,
ResNet18, and the recently introduced CoAtNet-0, across
various datasets provided nuanced insights. While each
model exhibited strengths under different scenarios, the
overall robustness of AlexNet stood out, demonstrating
consistent performance across up-sampled, down-sampled,
and actual datasets. ResNet18 showcased adaptability to
class imbalances, generalization to real-world machining
scenarios, and competitive accuracy.

Our findings underscore the significance of considering the
specific characteristics of machining datasets when selecting
an appropriate tool wear monitoring model. ResNet18 and
AlexNet emerge as strong candidates, with AlexNet being
particularly noteworthy for its versatility and resilience across
different scenarios. As we move towards the era of highly
automated manufacturing, the integration of AI models in
tool wear monitoring presents itself as a promising avenue
for achieving adaptable and learning-enabled machining
processes.

In conclusion, this study contributes valuable insights
to the machining industry, addressing challenges related to
tool wear monitoring and emphasizing the role of AI in
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enhancing the efficiency and reliability of manufacturing
processes. Future research could explore additional AI
architectures, refine model interpretability, and investigate
real-time implementation aspects to further advance the field
of intelligent tool wear monitoring.
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