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ABSTRACT A multi-microgrid (MMG) consists of several individual microgrids (MGs) within a distribu-
tion system to improve the system’s stability and reliability. A MMG can operate in grid-connected or island
mode and requires advanced control techniques and effective energy management. This paper proposes
a novel energy management approach for a MMG at the tertiary level control (TLC) using an adaptive
optimal control model. Operational costs of theMMGareminimized for short-term planningwhile satisfying
operational constraints of the network; the influential indices, the energy not supplied (ENS) and fatigue life
(FL), remain balanced. The information gap decision theory (IGDT) is used to consider uncertainties in
power generation and consumptions. MATLAB and DigSilent are used simultaneously to model optimally
connected individual MGs within a MMG. The Tunicate Swarm Algorithm (TSA) is used for TLC for cost
calculation and forming optimal connection models of individual MGs. The proposed method is validated
through several case studies, showing superior performance.

INDEX TERMS Energy management, fatigue life, information gap decision theory, multi-microgrid,
tertiary-level control, tunicate swarm algorithm.

ABBREVIATION
MG Microgrid.
MMG Multi-microgrid.
TSA Tunicate swarm algorithm.
EV Electric vehicle.
DR Demand response.
DG Distributed generation.
MT Microturbine.
RER Renewable energy resources.
RPC Renewable power curtailment.
DER Distributed energy resource.
PV Photovoltaics.
ESS Energy storage system.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohsin Jamil .

WT Wind turbine.
SW Social welfare.
TLC Tertiary-level control.
IGDT Information gap decision theory.
PSO Particle swarm optimization.
MAS Multi-agent system.
AOCM Adaptive optimal control model.
FL Fatigue life.
CHP Combined heat and power.
ENS Energy not supplied (kWh).
PCC Point of common coupling.
HV/NV/LV High/Normal/Low-voltage.
Hf/Nf/Lf High/Normal/Low-frequency.
PNL Nominal load power.
CRP Cost reduction percentage.
MT cost The total cost of the microturbine ($).
MT EF The emission factor of MT (kg/kWh).
ENScost The total cost of ENS ($).
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PlossCost The total cost of losses ($).
MT fuelcost The fuel cost of MT ($/kWh).
Cf Fuel cost ($/Liter).
MT opcost The operation cost of MT ($/kWh).
MTMAcost The maintenance cost of MT ($/kWh).
MT EMcost The emission cost of MT ($/kWh).
MT FLcost The fatigue life cost of MT ($/kWh).
FLK FL coefficient.
γ Fatigue rate.
PMT MT power (kW).
SOC State of charge.
ρ Air density (kg/m3).
A Wind generator blade area (m2).
ηW Wind generator power coefficient.
VWT ,V nom

WT Wind speed and nominal wind speed
(m/s).

T ,Tamb Cell and environmental temperature of
PV (◦c).

NPVs,NPVp Number of series and parallel cells in a
PV module.

NOCT Nominal operating cell temperature
(◦c).

GT Solar radiation on tilted module
plane(kW/m2).

τ Power temperature coefficient.
Pd The total load (kW).
MAX Pavgd The maximum supply of load.
PEV The total electric vehicle load (kW).
ζ Radius of uncertainty.
Ptc, P

t
dis The total charging and discharging

power at time t.
Pc,max , Pdis,max The maximum charging and discharg-

ing power.
Pmingeneration The minimum power generation.
Pmaxgeneration The maximum power generation.
σWT Scale parameter of the WT distribution.
αkt,s The beta distribution scale parameter of

the solar index.
βkt,s The beta distribution shape parameter

of the solar index.
µkt , σ

2
kt,s The mean and variance values of the

solar clearness index’s historical data.
St Remaining electricity in the shared ES

at the time t.
ηc, ηdis Charging and Discharging efficiencies

of ES.
Erate The rated capacity of ES.
fmin,max,operation Minimum, maximum, and operation

frequency.
Vmin,max,operation Minimum, maximum, and operation

voltage.
∝ Non-essential load reduction factor.
N The number of microgrids.
M The number of generators in a micro-

grid.

K The number of energy storage systems.
FmaxP,Q The maximum active and reactive

capacity of a line.

I. INTRODUCTION
Increasing penetration of distributed energy resources
(DERs), including wind turbines (WTs), solar photovoltaic
(PV) units, and energy storage systems (ESSs), in distri-
bution systems introduces significant challenges for system
planning and operation. Power generation is gradually tran-
sitioning from centralized generation facilities to DERs in
modern power grids [1], [2].

Microgrids (MGs) are fundamental building blocks of
a smart grid, and may include renewable and traditional
distributed generation (DG) units, small power plants, com-
bined heat and power (CHP) plants, and load [3]. MGs
are mainly located near electrical loads and can operate in
grid-connected or island mode. Among many operational
aspects, the energy management system (EMS) for MGs is
essential [4], significantly affecting their stability [5] and
economic operations [6].
Energy management is studied for a grid-connected MG

in [7], [8] and an islanded MG in [9]. A demand response
(DR) model is proposed in [10] by sharing an EV parking
station. In [11], the energy is managed through coordina-
tion and negotiation techniques among neighbors. In [12]
and [13], the EV energy sharing and consumer participation
have been studied simultaneously. However, a MG’s capac-
ity may not be sufficient to supply electrical load alone in
certain operating conditions, which require forming a multi-
microgrid (MMG) through connections with other MGs [14],
[15], [16]. Boglou et al. have conducted the energy man-
agement of a MMG in [17]; the MMG formation has been
optimized in terms of operating costs [18], stability [19], and
protection [20].

There are three main control methods for MGs: central-
ized, decentralized, and distributed (Fig. 1). The centralized
control offers a simple structure, low operating costs, and
high speed, but may experience single-point failures [21].
The decentralized control has a more complex structure,
and higher operating costs, but offers an acceptable reli-
ability [22], [23]. The distributed control has the most
complicated structure and is the most expensive for energy
management in a MMG.

To manage energy in MGs without considering the energy
not supplied (ENS) and fatigue life (FL), centralized control
throughmachine learning is used to realize the optimal energy
flow in [26]; the Internet of Things (IoT) and decentralized
control are used in [28]; distributed control realized through
the multi-agent system (MAS) and the game theory is pro-
posed in [29]. In [27], ENS is considered, but FL is not.

The Information Gap Decision Theory (IGDT) is an
efficient method for dealing with a high level of uncer-
tainty [30]. The inability to supply load, especially sensitive
load, increases operational costs directly related to ENS.
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FIGURE 1. The structures of the three main control models:
(a) distributed, (b) decentralized, (c) centralized.

By using IGDT, ENS is reduced, and operational costs are
minimized.

In the literature, the primary purpose of energy manage-
ment is to minimize costs, which can be in the form of
electricity market exchange [31] to simultaneously increase
profits of the consumer and the producer or reduce costs of
power generation [32]. Objective functions include minimiz-
ing ENS, FL, and emission, and maximizing Social Welfare
(SW). From the economic point of view, ENS and FL are
the most influential factors in optimizing the MG’s cost
function. An optimal dispatch achieved by determining the
power generation of each MG within a MMG reduces ENS
and operational costs. FL depends on the power generation
of each MG. When ENS is minimized, FL increases, and
vice versa. Table 1 shows a summary of research done on the
energy management of MMGs in the literature.

In this paper, we aim to determine the optimal connection
of each MG within the MMG through the TLC to achieve
a compromise between the two influential factors, ENS and
FL, and optimize the cost function. Therefore, an adaptive
optimal control model (AOCM) is proposed in this paper,
through which power generation of each MG is firstly pre-
dicted, the optimal interconnection model of MGs is then
determined using TLC by determining the consumption pat-
tern by AOCM.

Real-life optimization problems have a large number
of solution spaces with non-linear constraints, they are
non-convex and complicated, leading to high computational
costs. Metaheuristic algorithms are efficient for solving
very complex optimization problems, and can be divided
into two types, single solution-based algorithm (SSBA) and
population-based algorithm (PBA). However, SSBAs can-
not find the global optimum solution, and PBAs certainly
can. PBAs can be further categorized based on the the-
ory of evolutionary algorithms, logical behavior of physics
algorithms, swarm intelligence of particles, and biological
behavior of bio-inspired algorithms. The Tunicate Swarm
Algorithm (TSA) is a new bio-inspired population-based
metaheuristic algorithm, imitating jet propulsion and swarm
behavior of tunicates in the navigation and foraging pro-
cess [48]. TSA has been compared with other metaheuristic
algorithms in [48], such as Genetic Algorithm (GA) and
Particle SwarmOptimization (PSO), showing better solutions
by providing global optimal solutions and good convergence,
and thus, TSA is chosen in this paper.

The AOCM Rayleigh and Beta probability distribution for
wind and solar output power are used to determine the gen-
erator’s set-points and MGs connection models [33], and the
computation time can be significantly reduced. The proposed
method considers factors such as ENS, FL, and renewable
power curtailment (RPC) and creates a balance among them
in a MMG.

Increasing penetration of renewable energy sources creates
operational challenges in power systems, often related to lack
of capacities of the network model. To fill in this research
gap, with the combination of two software, MATLAB and
Digsilent, we propose a robust hierarchical control structure
in this paper that can perform various operations, such as
forming a MMG by connecting microgrids, reducing power
output of diesel generators, and shedding load in a logical
and fast manner. This control structure is functional very
well thanks to accurate forecasting models of load and power
generation, as well as the use of two powerful software tools
simultaneously. The proposed model determines the best
connection models of microgrids and optimal set points of
generators at a desired level to minimize operating costs. This
type of studies has not been done in the literature previously.

In this study, an optimal energy management method is
proposed for MMGs at the tertiary level, and an intra-day
scheduling is applied to minimize operating costs subjected
to various operational constraints. Uncertainties in different
resources and demands are managed using IGDT. The prob-
lem is solved by a two-stage iterativemethod usingMATLAB
and Digsilent: MATLAB first finds optimal connections
between microgrids through TSA; the results fromMATLAB
are then input into Digsilent for load distribution, so that a
high speed energy management structure of the MMG can
be formed. Uncertainties are considered in this study to be
compatible with the reality. The combined use of MATLAB
and DigiSilent also leads to more accurate simulation results
with less computation time.

In this paper, all load and power generation data are col-
lected from actual one-year data samples within 24 hours
for day-ahead load and generation forecasting. The main
contributions of this paper include:

• A novel energy management approach for MMGs at
TLC is proposed through IGDT and TSA. Using the
AOCM framework, the daily load curves based on each
MG’s Arima model and generation resource capacity
are prepared for TLC. The IGDT-TLC method man-
ages uncertainties of load and power generation, and
minimizes non-essential load shedding, ENS, and oper-
ational costs.

• The TSA algorithm chooses the best connection model
for individual MGs by testing different connection mod-
els and adjusting each MG’s local hierarchical control
within a MMG.

• The simultaneous optimization through MATLAB for
TLC implementation and throughDigSilent for DGopti-
mal dispatch in a MMG can be achieved.
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TABLE 1. The research summary on MMGs.

The paper is arranged as follows: Section II describes the
proposed energy management method for MMGs; the math-
ematical formulation of the proposed energy management

method is derived in Section III; Case studies are conducted in
Section IV; Section V concludes the paper and recommends
the future work.
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FIGURE 2. A graphical representation of the proposed method.

II. THE PROPOSED ENERGY MANAGEMENT METHOD
FOR MMGS
In this paper, an effective IGDT and TSA-based optimal
energy management approach is proposed for a MMG at
TLC. The main idea is shown by the flowchart in Fig. 2,
which can be implemented through a two-stage procedure as
follows:

Stage 1: The proposedAOCMmethod can be implemented
in the following five steps:

• Step 1: Data for the load, wind and solar resources are
gathered on an annual basis.

• Step 2: Load and power generation uncertainties are
considered.

• Step 3: Using the collected data in Step 1 and uncertain-
ties in Step 2, predictions are made for the load, and the
wind and solar power generation.

• Step 4: The charging status of the ESS is determined,
i.e., whether the ESS should be charged or discharged
based on the predicted load and power generation.

• Step 5:The power shortage/surplus for eachMG is deter-
mined based on the predicted load and power generation.

Stage 2: The IGDT-TLC-based approach can be imple-
mented in the following five steps:

• Step 1: The probabilistic data obtained from the AOCM
method in Stage 1 are classified using the IGDT struc-
ture.

• Step 2: The data from the IGDT structure are sent from
MATLAB to DigSilent.

• Step 3: In DigSilent, optimal dispatch of DGs is per-
formed by satisfying operational constraints.

• Step 4: The data from DigSilent are sent back to
MATLAB, where operational costs are calculated. The
TLC optimization algorithm applies the proposed hierar-
chical control to eachMG tominimize operational costs.

• Step 5: The data and commands obtained in Step 4 are
sent back to DigSilent (Step 3), and this iterative cycle
continues until the system reaches an optimal state to
achieve the lowest operational cost while satisfying
operational constraints.

In this paper, the test MMG network in Fig. 3 has two
inter-connected sections without connecting to the utility

FIGURE 3. The structure of the test MMG network.

grid. Each section has three MGs that share their resources
to reduce operational costs. Power generation in each MG
is controlled by the proposed local hierarchical controllers.
These local hierarchical controllers are controlled through
TLC, which is the central control of all MGs. TLC col-
lects information, such as power generation prices, the grid
status, and the usable resource capacity, from the MMG, per-
forms connection among individual MGs, and, if necessary,
reduces load through the DR program. There are essential
and non-essential loads in this test MMG. If loads need to be
reduced, non-essential loads participate in the DR program.

A. TLC STRUCTURE
There are three levels in the hierarchical control of a MMG:
primary, secondary, and tertiary (Table 2 ). The primary level
control has the highest control speed; primary controllers
aim to control local loads and are located near the load. The
secondary level control manages primary controllers. The
TLC determines the working point of the secondary level
control and manages energy to minimize operational costs.

B. IGDT
IGDT is suitable for a small number of data samples with
severe uncertainties. In this paper, IGDT is used to manage
uncertainties of power generation and load and reduce their
probability range. With IGDT, the initial data are firstly
obtained using accurate models of power generation and
load, and uncertainties of the data are considered using prob-
abilistic methods, such as Rayleigh and Beta probability
distribution.

III. THE MATHEMATICAL FORMULATION OF THE
PROPOSED METHOD
The mathematical formulation of the objective function and
its associated constraints of the proposed method are pre-
sented in Eqs. (1) to (25), i = 1, . . . ,N , j = 1, . . . ,M ,
t = 1, . . . ,T . Eq. (1) shows the total cost of a MMG,
including costs of MTs, WTs, PVs, ESSs, ENS, and power
losses. The cost of MTs is presented in (2) to (7). Eq. (5) is
related to the greenhouse gas emission from MTs under the
Paris Agreement [37], [44]. Eq. (6) represents the cost of FL,
where γ is the fatigue rate (Fig. 4), and γ increases as power
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TABLE 2. Three levels in the hierarchical control of a MMG [47].

generation increases.

Min Cost = Min
[
MT cost +WT cost + PV cost

+ESScost + ENScost + PlossCost

]
(1)

MT cost =

NMG∑
i=1

NMT (i)∑
j=1

T∑
t=1

[
MT fuelcost (i, j, t)

+MTOPcost (i, j, t) +MTMAcost (i, j, t)

+MT EMcost (i, j, t) +MT FLcost (i, j, t)
]

(2)

MTOPcost (i, j, t) = PMT (i, j, t) × CostMTop (i, j, t) (3)

MTMAcost (i, j, t) = PMT (i, j, t) × CosMTMA (i, j, t) (4)

MT EMcost (i, j, t) = (CE × PMT (i, j, t) ×MT EFCO2
)

+ (CE × PMT (i, j, t) ×MT EFNOX )

+ (CE × PMT (i, j, t) ×MT EFSO2
) (5)

MT FLcost (i, j, t) = FLK × ϕMT (i, j, t) × γ × PMT (i, j, t) (6)

ϕMT (i, j, t) = MTOPcost (i, j, t) +MTMAcost (i, j, t)

+MT EMcost (i, j, t) (7)

WT cost =

∑N

i=1

∑M

j=1

∑T

t=1

[
WTOPcost (i, j, t)

+WTMAcost (i, j, t) +WT FLcost (i, j, t)
]

(8)

WTOPcost (i, j, t) = PWT (i, j, t) × CostWTop (i, j, t) (9)

WTMAcost (i, j, t) = PWT (i, j, t) × CostWTMA (i, j, t) (10)

WT FLcost (i, j, t) = FLK × ϕWT (i, j, t) × γ × PWT (i, j, t)

(11)

ϕWT (i, j, t) = WTOPcost (i, j, t) +WTMAcost (i, j, t) (12)

PV cost =

∑NMG

i=1

∑NPV (i)

j=1

∑T

t=1

[
PVOP

cost (i, j, t)

+PVMA
cost (i, j, t) + PV FL

cost (i, j, t)
]

(13)

PVOP
cost (i, j, t) = PPV (i, j, t) × CostPVop (i, j, t) (14)

PVMA
cost (i, j, t) = PPV (i, j, t) × CostPVMA(i, j, t) (15)

PV FL
cost (i, j, t) = FLK × ϕPV (i, j, t) × γ × PPV (i, j, t)

(16)

ϕPV (i, j, t) = PVOP
cost (i, j, t) + PVMA

cost (i, j, t) (17)

ESScost =

∑NMG

i=1

∑NESS (i)

j=1

∑T

t=1

[
ESSOPcost (i, j, t)

+ESSMAcost (i, j, t) + ESSFLcost (i, j, t)
]

(18)

ESSOPcost (i, j, t) = PESS (i, j, t) × CostESSop (i, j, t) (19)

ESSMAcost (i, j, t) = PESS (i, j, t) × CostESSMA (i, j, t) (20)

ESSFLcost (i, j, t) = FLK × ϕESS (i, j, t) × γ × PESS (i, j, t)

(21)

ϕESS (i, j, t) = ESSOPcost (i, j, t) + ESSMAcost (i, j, t) (22)

ENScost =

∑NMG

i=1

∑M

j=1

∑T

t=1
ENSk × £ (i, j, t)

× DurationENS(i, t) (23)

£(i, j, t) = DGOPcost (i, j, t) + DGMAcost (i, j, t) (24)

PlossCost =

∑NMG

i=1

∑M

j=1

∑T

t=1
Ploss(i, j, t)×Cost loss

(25)

Costs of WTs, PVs, and ESSs are described in (8) to (22).
There are no costs associated with fuel and emissions. Eq.
(23) shows the cost of ENS, where the £ factor is the highest
cost factor of power generation due to load shedding, i.e., £ is
a penalty factor that imposes a high cost on the cost function
when the MMG has load shedding. Eq. (25) is the cost of
power losses.

A. RENEWABLE POWER GENERATION
The power output of a WT is given as follows [38]:

PWT (t) = 0.5 × ρ × A× ηW × min(VWT (t),V nom
WT )3

(26)

VCut in
WT ≤ VWT (t) ≤ VCut out

WT (27)

The power output of a PV system is given as follows [39]:

PPV (t) = [PPV STC × (
GT (t)
1000

) × [1−τ × (T (t) − 25)]]

× NPVs × NPVp (28)

T (t) = Tamp + (
GT (t)
800

) × (NOCT − 20) (29)

Eq. (30) is based on IGDT to reduce uncertainties in renew-
able power generation.

Max PavgRES =

∑NMG

i=1
(PRES ) × (1 + ζ ) (30)

B. ENERGY STORAGE SYSTEM
The ESS is modeled as follows:

SOC t =
St
Erate

(31)

SOCmin(i, j) ≤ SOC t (i, j, t) ≤ SOCmax(i, j) where

i = 1, . . . ,N , j = 1, . . . ,K , t = 1, . . . ,T

(32)

Ptc =

∑m

i=1
Ptc,i (33)
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FIGURE 4. The fatigue rate for power generation.

Ptdis =

∑m

i=1
Ptdis,i (34)

Ptc,iP
t
dis,i = 0 (35)

−Pc,max ≤ Pt ≤ Pdis,max (36)

St = St−1 + Pt−1
c ηc1t −

Pt−1
dis 1t

ηdis
(37)

S1 = ST (38)

Eqs. (31) and (32) show the charge status and their con-
straints. Eqs. (33) to (36) show each MG’s charge and
discharge power. Eqs. (37) and (38) introduce each MG’s
shareable power.

C. MICROTURBINES
MTs use fossil fuels and have emissions. Eq. (39) provides
power generation limits for MTs. Eq. (40) shows the relation
between fuel costs and the output power of a MT [41], where
ai, bi and Ci are cost coefficients of the MT.

PminMT (i, j) ≤ PMT (i, j, t) ≤ PmaxMT (i, j)

i = 1, 2, . . . ,NMGj = 1, 2, . . . ,NMT (i),

t = 1, 2, . . . ,T (39)

MT fuelcost =

∑NMG

i=1

∑NMT (i)

j=1

∑T

t=1
Cf

×

[
aiP2MT (i, t) + biPMT (i, t) + Ci

]
($/hr)

(40)

D. THE LOAD UNCERTAINTY MODEL
Uncertainties of the load are expressed in (41) by the prob-
ability density function (PDF). In this model, the normal
distribution shows good accuracy, where µ and σ represent
the mean and the variance, respectively. Eq. (42) is to mini-
mize load shedding based on IGDT.

Pd + PEV =
1

σest
√
2π

e
−

(x−µest )2

2σ2est (41)

Max Pavgd =

∑NMG

i=1
(Pd + PEV ) × (1 + ζ ) (42)

E. UNCERTAINTIES OF RENEWABLE POWER GENERATION
Uncertainties of wind power generation are represented by
the Rayleigh probability distribution [42]:

PWT =
V

σ 2
WT

e
−V2

2σ2WT (43)

Uncertainties of solar PV power generation are represented
by the Beta probability distribution [43]:

PPV = (
1

B(α, β)
)Kα−1

t,s (1 − Kt,s) (44)

αkt,s =

(
(1 − µkt )

σ 2
kt,s

−
1

µkt,s

)
µ2
kt,s (45)

βkt,s = αkts (
1

µkt,s
− 1) (46)

F. OTHER CONSTRAINTS TO MAINTAIN THE STABILITY OF
MMGS
Other constraints include:∑NMG

i=1
[PPVi + PWTi + PMTi + PDis/ESSi ]

=

∑NMG

i=1
(Pd + PEV + PC/ESS

i ) (47)

fmin ≤ foperation ≤ fmax (48)

Vmin ≤ Voperation ≤ Vmax (49)

Total generation capacity

≥ Total essential loads

+ ∝ × (Total non− essential loads)

+ Losses 0 ≤ ∝≤ 1 (50)

Eqs. (47) to (50) show a balance of power generation and
load to maintain the stability of the MMG. In DigSilent, the
optimal load dispatch is performed using Newton-Raphson
load distribution equations as follows:

S∗
i = V ∗

i Ii = Pi − jQi (51)

Pi = PGi − PDi (52)

Qi = QGi − QDi (53)

where Si is the apparent power of each node. PDi and QDi are
active and reactive power consumed, PGi and QGi are active
and reactive power generated in each node, respectively. The
allowable power capacity range of a line can be determined
by

|FP,Q| ≤ FmaxP,Q (54)

G. SPECIFICATIONS OF THE TSA ALGORITHM
The mathematical modeling of TSA has three primary con-
ditions: avoid conflicts between search agents, move towards
the position of the best search agent, and be close to the best
search agent [48]. To prevent conflicts between search agents,
the A⃗ vector is used to calculate the position of the new search
agent as follows:

A⃗ =
G⃗

M⃗
(55)
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G⃗ = c2 + c3 − F⃗ (56)

F⃗ = 2 × c1 (57)

where G⃗ is the gravity force and F⃗ shows the water flow
direction in the deep ocean. The variables, c1, c2, and c3, are
random numbers in the range of [1, 0]. M⃗ is the social force
between search agents, which can be calculated as follows:

M⃗ = [Pmin + c1.Pmax − Pmin] (58)

where Pmin and Pmax are initial and subordinate speeds
for social interaction, respectively. In this paper, Pmin =

1, and Pmax = 4. The three vectors, A⃗, G⃗, and F⃗, assist the
solutions to behave randomly in a given search space, are
responsible for avoiding conflicts between different search
agents, and provide possibility of better exploration and
exploitation phases through variations in the three vec-
tors [48].
The TSA algorithm in problem-solving can be summarized

as follows:
• Step 1: Initialize the tunicate population.
• Step 2: Choose initial parameters and the maximum
number of iterations.

• Step 3: Calculate the fitness value of each search agent.
• Step 4: The best search agent is explored in the given
search space.

• Step 5: Update the position of each search agent.
• Step 6: Adjust the updated search agent, which goes
beyond the boundary in a given search space.

• Step 7: Compute the updated search agent’s fitness
value, then update the tunicate population.

• Step 8: The algorithm stops if the stopping criterion is
satisfied. Otherwise, repeat Steps 5–8.

• Step 9: Return the best optimal solution obtained.
The computational efficiency, time and space complexity

of the proposed TSA algorithm are explained as follows [48]:
• Computational Efficiency: Computational efficiency
indicates the algorithm’s performance through com-
putational time. In [48], the average computational
time performed by Harris Hawks optimization (HHO),
PSO, equilibrium optimizer (EO), Salp swarm algorithm
(SSA), grey wolf optimizer (GWO), and TSA are com-
pared for 30 independent executions in 23 benchmark
functions, and their computational time are 0.17945 s,
0.10355 s, 0.098161 s, 0.092174 s, 0.076043 s, and
0.071683 s, respectively. The TSA uses the least amount
of computational time among these algorithms, showing
a superior computational efficiency.

• Time complexity: The initialization process of the pop-
ulation needs (n × d) time, where n is the population
size, and d is the dimension of a given test problem; the
agent fitness needs (Max iterations × n× d) time, where
Max iterations is the maximum number of iterations; TSA
needs (N ) time, where N defines the jet propulsion
and swarm behaviors of tunicate for better exploration
and exploitation. Therefore, the total time complexity of
the TSA algorithm is (Max iterations × n× d × N ).

TABLE 3. Possible actions based on the IGDT-TLC approach.

• Space complexity: The space complexity of the TSA
algorithm is (n× d), which is considered as the maxi-
mum amount of space during its initialization process.’’

IV. CASE STUDIES
To validate the proposed energy management method in a
MMG, case studies are conducted using the test MMG net-
work in Fig. 3. The detailed configuration of the test MMG
network is shown in Fig. 5, with six MGs divided into two
inter-connected regions. The six MGs can exchange power
without connecting to the utility grid. The power generation
and ESSs in the test MMG in Fig. 5 include:

• Six WTs, each located in one MG (Three WTs are rated
at 20 kW each, and other three WTs are rated at 30 kW
each).

• Six PV units, each located in one MG (five PV units are
rated at 20 kW each, and one PV unit is rated at 10 kW).

• Six ESSs, each located in one MG (two ESSs are rated
at 8 kW each, two ESSs are rated at 10 kW each, and
two ESSs are rated at 12 kW each).

• Six MTs, each located in one MG (two MTs are rated at
50 kW each, two MTs are rated at 40 kW each, one MT
is rated at 60 kW, and one MT is rated at 70 kW).

In Fig. 5, the load and transmission lines are present in
each MG. The load consists of industrial, health services,
residential & EV, official, and military, and the capacity of
each type of load in kW are given in Fig. 5. The impedance
and length of each transmission line are also given in Fig. 5.

For wind power generation, the Rayleigh probability dis-
tribution and the data from the Kiata wind farm in Australia
are used [45]. For solar power generation, GermanKrebse PV
solar farm data from [46] are used. The detailed data for the
system in Fig. 5 are given in Table 4.
Figs. 6 and 7 show power generation by WT and PV,

respectively. Given the capacity of resources, Fig. 8 shows
the daily load curve of each MG in the test MMG. The power
of ESS participation in the MMG is shown in Fig. 9.

The set of commands generated from the IGDT-TLC has
the logic in Table 3, where the TLC issues orders that improve
stability and reduce operational costs. Table 4 shows the load
and power generation data.
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FIGURE 5. Specifications of the proposed MMG test network.

FIGURE 6. WT 24-hour power generation in each MG.

The optimization through TSA involves a multi-objective
function consisting of linear and mixed-integer non-linear
programming. To solve this problem, MATLAB 2019b and
DigSilent 15.1.7 are used simultaneously: MATLAB opti-
mizes the connection of MGs and TLC commands, and
DigSilent performs optimal dispatch of DGs. It is conducted
on a computer with Core i7, 1 GHz processor, and 4 GB of
RAM.

The objective in the test MMG is to minimize the renew-
able power generation curtailment (RPC), ENS and FL
simultaneously, which directly affect the cost function. It is
assumed that renewable power generation fromWTs and PVs
is used to the maximum while trying to reduce MTs’ usage.

In this paper, five case studies are conducted under differ-
ent power generation and loads. The acceptable voltage and
frequency limits are assumed to be 1 ± 0.05 per unit and

FIGURE 7. PV 24-hour power generation in each MG.

50 ± 0.02 Hz, respectively. Cases 1-4 are under the AOCM
framework using the IGDT-TLC method. Case 5 considers
the MT failure in the control process.

A. CASE 1: POWER SHORTAGE IN SOME MGS
In Case 1a at 17 o’clock, RERs generate 139.44 kW. Due
to power shortages in MGs 3 and 6, operational constraints
for the voltage and frequency are not within acceptable lim-
its. To correct this, the DR program must reduce the load
by 2.453 kW. A MMG is formed by MGs 3, 4, 5, and 6
(50 Hz nominal frequency) with a voltage of 0.9594 p.u.
at the interconnection bus, and the DR program is not
needed. Transmission losses increase by 0.744 kW, the FL
factor decreases by $4.363, and the CRP index decreases by
21.029%.
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TABLE 4. Data of load and generation in the test MMG [37], [44], [47].

FIGURE 8. Forecasted loads of each MG in the test MMG.

FIGURE 9. ESS power participation rate in each MG.

In Case 1b at 21 o’clock, MG1 faces a power shortage and
must participate in the DR program by reducing non-essential
loads by 6.5129 kW. PVs have no power output and active
power from renewable energy sources, PRER, is 89.704 kW.
Using the proposed control method by connecting and con-
trolling MGs 1, 2, 4, and 6, the TLC sets operational
constraints within an allowable range without participating in
the DR program. Transmission losses increase by 0.172 kW,
the FL factor is reduced to $0.983, and the CRP index

decreases by 39.128%. Comparing to Case 1a, the power
shortage increases in Case 1b without solar PV power gener-
ation, and the TLC’s performance becomes more prominent.
EMS programming tries to use the maximum amount of
RERs.

B. CASE 2: POWER SHURPLUS IN SOME MGS
In Case 2a at 13 o’clock, MGs 2 and 4 have 7.538 kW and
1.59 kW of renewable power generation surplus, respectively,
which leads to their instability and, thus, must be curtailed.
The surplus renewable power can reduce operational costs
if used by other MGs. TLC takes advantage of the surplus
power by connecting MGs 2, 4, 5, and 6. Transmission losses
increase from 2.173 kW to 4.678 kW, the FL factor drops
from $8.225 to $4.414, and the CRP index decreases by
10.638%.

In Case 2b at 23 o’clock, MG6 has a power surplus of
2.475 kW, causing its frequency to increase to 50.951 Hz,
which must be reduced. The voltage is within the allowable
range. The operational cost is $74.302. By connectingMGs 2,
3, 5, and 6, TLC ensures the frequency within an allowable
range. The FL factor decreases from $18.131 to $14.202, and
the operational cost is $69.351with the CRP index of 6.663%.
Comparing to Case 2b, the optimization in Case 2a with more
RPC value increases the CRP index.

C. CASE 3: SIMULTANEOUS POWER SHORTAGE AND
POWER SURPLUS IN SOME MGS
In Case 3 at 19 o’clock, MG1 has a power shortage and MG6
has a power surplus. To maintain stability, MG1 must partici-
pate in the DR program and reduce 3.271 kW of non-essential
loads while MG6 must reduce RER power by 2.784 kW. The
operational cost is $75.558. By connecting MGs 1, 2, 3, 5,
and 6, TLC ensures the frequency of MG1 and MG6 remains
at 50 Hz. Transmission power losses increase by 1.743 kW,
but there is no need to participate in the DR program (ENS =
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TABLE 5. The status of MGs before and after using the proposed model.

FIGURE 10. The RPC factor in 24-hour.

0 kW). The FL factor decreases from $15.8 to $11.586, and
the CRP index decreases by 26.746%.

D. CASE 4: MGS IN POWER EQUILIBRIUM (NO POWER
SHORTAGE OR SHURPLUS)
Case 4 at 3 o’clock shows a power-balanced condition for
MGs with an average voltage of 0.99 p.u. and a frequency
of 50 Hz. The operational cost is $40.196. Using the proposed

FIGURE 11. ENS factors in 24-hour.

method, TLC establishes a relationship among MGs 1, 4, 5,
and 6 while maintaining operational constraints within the
allowable range. Transmission losses increase from 0.868 kW
to 2.645 kW, the FL factor is reduced from $5.749 to $3.302,
and the CRP index is 6.455%.

E. CASE 5: MT FAILURES
In Case 5 at 9 o’clock, the MT in MG4 fails and is out of
service. Due to the power shortage in MG4, the frequency
drops to 49.188 Hz, and the DR program participation is
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FIGURE 12. Losses in 24-hour.

FIGURE 13. ENS costs in 24-hour.

FIGURE 14. FL costs in 24-hour.

required by reducing non-essential loads of 7.997 kW. The
operating cost is $100.39. TLC examines connections ofMGs
with the lowest power generation level and MG6 is found
with its MT power generation equal to 1.794% of its nominal
capacity. By connecting MG4 and MG6, TLC increases the
system frequency to 50.011 Hz, which is within the allowable
range, and the DR program participation is not required.
Transmission losses increase by only 0.206 kW, and the CRP
index is 40.475%.

Table 5 shows the result summary of the five case studies.
Fig. 10 shows the RPC factor during 24 hours. The RPC factor
is minimized with the proper control when the RER is high.
MGs often face power shortages, and ENS is used to represent
such power shortages. In Fig. 11, the highest ENS occurs at
9 o’clock because at this time, MT-MG4 is out of service.
A high ENS also occurs at 21 o’clock due to lack of solar PV
power generation. One issue regarding power exchange in a
MMG is the increased power losses, and TLC tries to form a
MMG with the least power losses. In Fig. 12, power losses in

FIGURE 15. Operation costs in 24-hour.

FIGURE 16. CRP in different cases.

Case 4 are more than three times their initial value. Four MGs
in both regions of the test MMG network are connected, and
the CRP index is equal to 6.455%.

Costs of ENS are shown in Fig. 13. A comparison between
Figs. 13 and 14 indicates that TLC has tried to maintain both
ENS and FL at an acceptable level. Fig. 15 shows operational
costs before and after optimization. The CRP index based on
the percentage of optimization is shown in Fig. 16.

V. CONCLUSION AND FUTURE WORK
This paper proposes a novel multi-objective energy manage-
ment system for MMGs through Information Gap Decision
Theory and Tunicate Swarm Algorithm to minimize opera-
tional costs and improve system stability. The proposed EMS
uses an adaptive optimal control framework at the tertiary
level control to maximize the control system’s adaptability
by considering uncertainties of load and power generation.
IGDT handles uncertainties by increasing the probability of
occurrence in forecasts. Multi-objectives refer to ENS, FL,
and transmission line losses. TLC reduces ENS to optimize
operational costs, causing FL to increase; to reduce FL, the
load must be reduced, causing ENS to increase. MATLAB
and DigSilent are used simultaneously in the MMG control
process for all MGs. The proposed EMS is validated through
five case studies using a test MMG network with six MGs,
showing superior performance.

Many studies have been done in the field of MMG energy
management due to increasing renewable energy sources
in power systems, which creates increasing technical and
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financial challenges. The future research directions in this
field are recommended as follows:

1) In this study, a simple model is used to connect micro-
grids and form a MMG. In the future study, a more
complex model can be used to better represent real
cases.

2) Vehicle-to-grid (V2G) and grid-to-vehicle (G2V) can
be used as resources.

3) Tomanage multi-uncertainties, different risk measures,
such as Conditional Value-at-Risk (CVaR) and Glue-
VaR, can be applied.
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