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ABSTRACT The main objective of this paper is to highlight the research directions and explain the
main roles of current Artificial Intelligence (AI)/Machine Learning (ML) frameworks and available cloud
infrastructures in building end-to-end ML lifecycle management for healthcare systems and sensitive
biomedical data. We identify and explore the versatility of many genuine techniques from distributed
computing and current state-of-the-art ML research, such as building cognition-inspired learning pipelines
and federated learning (FL) ecosystem. Additionally, we outline the advantages and highlight the main
obstacles of our methodology utilizing contemporary distributed secure ML techniques, such as FL, and
tools designed for managing data throughout its lifecycle. For a robust system design, we present key
architectural decisions essential for optimal healthcare data management, focusing on security, privacy and
interoperability. Finally, we discuss ongoing efforts and future research directions to overcome existing
challenges and improve the effectiveness of AI/ML applications in the healthcare domain.

INDEX TERMS Machine learning, healthcare, biomedicine, data management, federated learning, cloud,
coded computation, distributed systems.

I. INTRODUCTION
Traditional healthcare, as a mission-critical domain, is in
flux for various reasons: Cost and capacity concerns, age-
ing populations, personalized treatments, and technological
advancements that enable speedy pattern analysis. Data
analytics and Artificial Intelligence (AI)/Machine Learning
(ML) techniques are paving the way for many use cases
in medicine that are quite critical today. At the same time,
healthcare and biomedical applications are constantly gen-
erating increasingly large and diverse datasets. Information
can include a variety of data types, spanning from genetic
information to Electronic Health Records (EHRs), which
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can cover details like patient medical records, important
physiological measurements, results from laboratory tests,
inherited disorders, behavioural tendencies, and more. This
information can also be gathered from wearable gadgets
utilizing headgear (AR and VR technologies) or networks
of body sensors, largely constituting time-series biomedical
data. The range of modern biomedical applications is already
huge and growing each day. AI in healthcare is shown
to help transform medical techniques into better disease
treatment and prevention, therapy recommendations, and
health management that considers various factors such
as a patient’s genetic, environmental, and usual lifecycle
behaviors. In the present era, AI/ML methods are employed
for diverse purposes: Foreseeing illnesses in high-risk
patients requiring additional support [1], aiding individuals
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with motor impairments [2], uncovering potential drug
combinations for novel medications [3], and identifying
cancer through X-Ray analysis [4].

Regarding intelligent decision-making in healthcare, var-
ious stakeholders possess distinct objectives. For instance,
pharmaceutical firms seek enhanced market comprehension
and product distinction, while healthcare providers aim to
optimize treatment safety and effectiveness, reducing costs.
Additionally, patients necessitate disease-specific medica-
tions/therapies with minimal side effects, improving their
quality of life affordably. Simultaneously, public or social
institutions, often funding healthcare expenses of citizens,
strive for humane clinical outcomes while ensuring the
long-term safety and efficiency of the healthcare system.
Recent advances in data engineering and data science have
enabled the easy integration of a variety of datasets from each
patient, rapid processing, and powerful analytical results.
By bringing together diverse health datasets per patient
and leveraging advancements in data engineering/science,
it becomes feasible to advance, administer, and bolster
individualized therapies and treatments, often termed as
precision medicine [5]. This approach facilitates accu-
rate diagnosis, efficient patient monitoring, and informed
decision-making regarding the health status of patient. On
the other hand, data analysis has recently been revolutionized
by decentralizing computational tasks across multiple nodes
or devices, enhancing efficiency and scalability for handling
large and complex healthcare datasets. The latter is usually
referred to as distributed ML. With the increasing adoption
of distributed ML techniques, several economic impacts
emerge.

Distributed ML allows healthcare providers to leverage
large and diverse datasets more efficiently by merely
distributing the overall workload, reducing the need for
expensive localized hardware infrastructure. This cost-saving
benefit enables healthcare organizations to allocate resources
more effectively, potentially reducing operational costs and
improving financial sustainability. Additionally, pharmaceu-
tical companies can utilize distributed ML to gain deeper
insights into market trends, patient demographics, and
treatment efficacy, analyzing large volumes of healthcare
data from various sources such as EHRs, genetic infor-
mation, and wearable device data. This enhanced market
understanding can lead to more effective and profitable
medications. Moreover, distributed ML enables healthcare
providers to deliver more personalized treatments (precision
medicine) by analyzing patient-specific data, including
genetic information, medical history, and lifestyle factors,
tailoring treatments to individual patients. This personalized
approach to healthcare can result in better patient outcomes,
reduced hospital readmission, and lower healthcare costs
dramatically. Furthermore, by streamlining data processing
and analysis through distributed means, healthcare orga-
nizations can optimize resource allocation and workflow
efficiency, improving patient scheduling and inventory man-
agement. This leads to reduced wait times, enhanced patient

satisfaction, and overall operational financial gains, with the
ability to proactively allocate resources to areas with the
greatest need, such as disease prevention and population
health management.

In this study, we consider the end-to-end management of
the health/biomedical data lifecycle in the cloud from both
data science and data engineering perspectives in an Internet
of Things (IoT) context. The main goal of this work is to
outline the research directions and explain the role of current
AI/ML frameworks in building such end-to-end lifecycle
management systems for healthcare, provide an overview of
the current state-of-the-artMLmethods and tools for lifecycle
management along with their benefits, challenges, and future
directions. We also explain how Federated Learning (FL)
approaches can be used for biomedicine, their benefits,
associated challenges and recent advances. At the end of the
paper, we highlight the potential issues and future directions
toward the convergence of biomedical data engineering
approaches in the healthcare sector.

Fig. 1 summarizes the outline of the our paper. The rest
of the paper is organized as follows: Section II provides
the related work. In Section III, we provide background
information and relevant use cases in healthcare and explain
the main motivation for this paper. In Section IV, we provide
a detailed insight into the structures of an end-to-end machine
learning pipeline using known data engineering frameworks
in healthcare. Section V discusses the FL approach, including
healthcare datasets, its mechanisms, challenges, and recent
advances. In Section VI, we present some potential issues and
further discussions in healthcare and the integration of data
engineering frameworks. Finally, in Section VIII, we draw
conclusions from the paper.

II. RELATED WORK AND MAIN CONTRIBUTIONS
Many recent technological advances such as FL, blockchain,
explainable-AI [6], IoT and data engineering can be used
to find solutions to some of the healthcare domain prob-
lems. These advancements can be used individually or in
combination to address a specific set of problems [7], [8].
For instance, one specific recent health-related issue was the
COVID-19 pandemic, which led to a burst of studies to cure
and predict its effects. An overview of different research,
platforms, services, and products where IoT technology is
used to combat the COVID-19 pandemic is studied in [9].
The heavy use of AI technologies in the healthcare sector
has become quite common both for research and industry
to improve the performance and efficiency of handling
mechanisms of biomedical data. A review of cutting-edge
network architectures, applications, and industrial trends
using a deep learning approach applied to healthcare systems
can be found in [10]. The authors in [11] use an active
learning approach for heart disease prediction. The study
in [12] uses an autoencoder-based semi-supervised deep
learning approach to identify rare thyroid nodules. The
authors in [13] use AI to improve the interpretation of the
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FIGURE 1. The outline of the paper.

role of genetic risk elements in Neurodevelopmental and
Neurodegenerative Disorders (NNDs) pathogenesis. Long-
Short Term Memory (LSTM) based Deep Learning (DL)
models are used for heartbeat classification in [14].ML-based
approaches are used to identify chronic urticaria subtypes
in [15]. Yet another technique called Bayesian Deep Learning
(BDL) is used to identify the emotions from the patterns
of the heartbeats [16]. A comprehensive survey about this
novel technique specifically applied to healthcare is surveyed
in [17]. Additionally, using ML, the authors in [18] classify
schizophrenia and healthy control cohorts. Patient time series
data is predicted in [19]. Another prediction solution for
Hepatitis B surface antigen levels in inactive carrier patients is
performed in [20] using Deep Neural Networks (DNNs) and
acute coronary syndrome and death from non-steroidal anti-
inflammatory drugs is predicted using ML models in [21].
The use of deep networks has been extended to electro-

physiological brain signals. For example, the authors of [22]
have used Deformable Convolutional Networks (DCN) to
detect ocular artefacts from the input Electroencephalography
(EEG) signal. Recently, the Compact Multi-Branch One-
dimensional Convolutional Neural Network (CMO-CNN)
has been used to decode Motor Imagery EEG signals by
utilising the original signals and enhanced ERD/ERS pattern
recognition as an example for streamlined preprocessing-free
decoding techniques [23]. The study in [24] proposes an
improved graph convolution model with dynamic channel
selection to address the challenge of variable EEG channel
data, which is critical for accurate emotion classification
and important applications in healthcare, including autism
research. Equally important is how health data is stored
and managed throughout its lifetime. In [25], for example,
the researchers investigated a machine learning model that
suggests allocating health data blocks to specific storage
media and determining their retention period. The storage
and transmission of such biomedical data have also led
to associated privacy apprehensions. To this end, FL-based
studies have recently appeared in healthcare with promis-
ing results. A privacy infrastructure based on FL and
blockchain technology is proposed to disseminate COVID-19

information in [26]. One of the problems of modern FL is
the availability of heterogeneous devices and the statistical
imbalance of data between the participating nodes. For
example, the collected Magnetoencephalography (MEG)
signals are dependent on the biophysical properties of the
skull, and therefore, the signals yield different features and
statistics [27]. Studies such as [28] address the problem
of availability with self-adaptive techniques. On the other
hand, the distribution of computations to different clients
is also considered in [29], where the statistical imbalance
is addressed by an adaptive workload distribution strategy.
A comprehensive state-of-the-art survey on the use of FL in
smart healthcare can be found in [30].
Building data engineering pipelines has been the focus

of many previous works in different domains (see, e.g. [31]
for application of data engineering concepts to network
management and orchestration). The authors in [32] study
technological advances in platforms, tools, methodologies
and various challenges when applying big data analytics in
healthcare. A review of recent advances in big data generated
from biological research (cancer, infectious diseases, etc.)
and major computational techniques, algorithms, and their
outcomes have been given in [33]. From existing survey
papers in the literature, the authors in [10] provide a
taxonomy and overview of deep learning approaches in
healthcare, identifying challenges and open issues, but lack
focus on lifecycle management and IoT integration. The
paper in [17] reviews Bayesian deep learning applications in
healthcare, discussing challenges but with limited emphasis
on IoT integration and data lifecycle. The authors in [30]
surveys FL in smart healthcare, highlighting its applications
and challenges but lacking detailed lifecyclemanagement and
data engineering analysis. In [26], a COVID-19 healthcare
system using FL and blockchain for privacy is discussed
but does not cover end-to-end data lifecycle management.
The paper in [33] explores big data advances and trends
in biomedical research without addressing comprehensive
lifecycle management. The paper in [34] offers a thorough
review of big data analytics platforms and tools in healthcare,
with a limited focus on FL applications. Authors in [35]
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survey AI and big data analytics applications in m-health,
lacking a detailed focus on lifecycle management and
data engineering. The paper in [36] reviews IoT and
cloud computing in healthcare without comprehensive data
lifecycle analysis. Finally, [37] surveys privacy-preserving
data mining and ML in healthcare, limited in focus on
FL and lifecycle management. However, all these analysis
on big data platforms is limited in the sense that they
do not include an end-to-end management of biomedical
health data lifecycle, which includes stages such as data
connection, data ingestion, data processing and analysis,
data storage, data visualization and data management and
orchestration stages. In this survey, We present a compre-
hensive analysis of lifecycle management for healthcare,
focusing on data engineering aspects, FL efforts, and future
research directions.

Despite the progress made in these studies, several
deficiencies and gaps remain in the literature. One notable
gap is the lack of an end-to-end management framework
for the biomedical health data lifecycle, encompassing data
connection, data ingestion, data processing and analysis,
data storage, data visualization, and data management and
orchestration. Additionally, many studies focus on specific
aspects of AI/ML applications in healthcare without address-
ing the integration of data engineering principles necessary
for robust and scalable solutions. There is also a limited
exploration of the potential synergies between advanced data
engineering techniques and traditional healthcare systems,
which is critical for practically deploying AI/ML solutions in
real-world settings. Finally, to highlight the existing gaps in
the literature, we summarize relevant survey papers and their
corresponding descriptions and limitations in Table 1.
This paper aims to provide an overview of data engi-

neering/science frameworks suitable for solving healthcare
problems. We explore the necessary link between recent
advances in data engineering and traditional healthcare
ecosystems in the context of end-to-end machine learning
lifecycle management, which, to our knowledge, has not been
explicitly addressed in any previous work. This paper partic-
ularly emphasizes how these data engineering principles can
be integrated and enhanced in IoT-based biomedical systems
to ensure efficient and secure data flow from IoT devices
through the entire ML pipeline. The main contributions of
this paper can be summarized as follows:

• We begin by providing an explicit overview of building
a ML pipeline and a carefully designed platform for the
healthcare domain.

• The general proposed platform is categorized into
three modules: data sources, data engineering layer and
target systems. This modular architectural design allows
simplicity, easy management and support for building
robust AI/ML pipelines for healthcare applications.

• One of the main objectives is to link the capabilities of
the data engineering ecosystem with a possible link to
future healthcare systems. Unlike previous work on data
engineering, this paper also explores the necessary link

that needs to be established between recent advances in
data engineering and traditional healthcare ecosystems.

• We focus on the mechanics, challenges, and recent
advances of FL and how the FL approach can be
applied in the healthcare sector. Since its inception,
FL has become an imperative component of AI-powered
automation technologies.

• Finally, we highlight some potential issues and pro-
vide further discussions on achieving end-to-end ML
lifecycle management and data engineering pipelines
in real-world healthcare scenarios. We conclude by
identifying the research directions that may naturally
arise in the future.

III. HEALTHCARE USE CASES
The data landscape is constantly evolving over time. As a
result, many new technologies, frameworks, and tools are
introduced over time. However, healthcare organizations
must combine these evolving data landscape technologies in
a meaningful way to meet their needs, i.e., to gain intelligent
insights from data. The healthcare sector is expected to
change rapidly with advances in AI/ML technologies.
For example, some of the time-critical decisions can be
transferred to the intelligent systems of AI/ML [39]. Thus,
depending on the symptoms of the patient symptoms,
better conclusions can be drawn about their condition (both
current and future) [40]. Some of the main reasons for
the growing interest in AI/ML in healthcare are: (i) large
datasets, (ii) diversity of digital health data with different
characteristics (imaging, lab tests, devices, genomics, sensor
data, etc.), (iii) breakthroughs in AI/ML algorithms (semi-
supervised, self-supervised and unsupervised learning) and
availability of open-source software tools and libraries
(Tensorflow, PyTorch, scikit-learn, etc.), and (iv) industry
investments.

Deep learning has been used extensively in imaging
technology in the last decade. Efficient and accurate results
make it a breakthrough technology in medical imaging [41],
[42], [43]. Deep learning has enabled the analysis of medical
images for oncology and radiology to be better and faster
than expert human accuracy with computer-aided signal
detection (e.g., detecting regions with suspicious image
characteristics). Applications range from chest X-rays, brain
scans, Alzheimer’s dementia, or cancer (breast, prostate, etc.)
in patients. The authors in [43] have given many examples,
use cases, and a new proposal for the use of computer vision
techniques (especially deep learning based on Convolutional
Neural Networks (CNN) and Vision Transformers (ViT)
[44]) in cardiology, pathology, dermatology, ophthalmology,
haematology, serology, and gastroenterology. Some of the
important use cases relevant to data analytics with data
from, e.g., patients, caregivers, healthcare organizations
and society, community service providers, etc., can be
enumerated as follows:
(i) Diagnosis using medical imaging: Leverage clinical

and other relevant data to enable early diagnosis and
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TABLE 1. Summary of Important Surveys on Managing Healthcare Data in the Cloud.

treatment of diseases. Analyse and transform images
using advanced medical imaging technology to gain
medical insights (e.g., to help pathologists distinguish
cancer types) andmodel potential diseases. For instance,
the use of AI in mammography has significantly
improved the early detection rates of breast cancer,
reducing false positives and enhancing diagnostic accu-
racy [45].

(ii) Healthcare management: Determine the optimal price
for healthcare services provided, gain competitive intel-
ligence between hospitals, use AI-powered automation
technologies to automate routine operations, reports,
etc. and reduce CAPEX and OPEX costs. For exam-
ple, applying predictive analytics in hospital resource
management has led to better allocation of staff and
equipment, reduced waiting times and improved patient
care outcomes [46].

(iii) Patient care based on patient data: Use prescriptive
analytics on patient data to enable real-time triage and
prioritization of cases by automatically identifying and
predicting high-risk and adverse health conditions (e.g.,
frail older adults, patients with chronic conditions). Find
the best patient care while reducing costs and increasing
efficiency thanks to advances in data analytics and
related techniques. Predictive modelling could identify
patients at risk of sepsis, enabling timely intervention
and significantly lowering mortality rates [47].

(iv) Remote monitoring: The benefits of remote patient mon-
itoring systems include increasing patient awareness
and accountability, saving overall healthcare costs
by reducing hospitalization and admission costs, and
providing real-time recommendations based on patient
health status. For example, using remote monitoring
systems to patients with chronic heart failure showed
a marked decrease in emergency room visits and
hospital admissions, enhancing patient quality of life
and reducing healthcare costs [48].

Finally, Fig. 2 shows various use cases in healthcare
(diagnosis with medical imaging, health management, patient
care, remote monitoring) enabled by AI/ML technologies and
illustrates their benefits and the diversity of digital health data
sources.

IV. BUILDING A MACHINE LEARNING PIPELINE FOR
HEALTHCARE
With the advent of open-source software, various tools and
frameworks have emerged for advanced data engineering.
As the ecosystem for data engineering and AI/ML grows
and matures, so do the opportunities for building a scal-
able production-level data science pipeline. Several sectors,
including the medical domain and healthcare services,
can benefit from this. For example, better design for a
data-sharing platform for health can provide access to big data
sources that can help develop better solutions (e.g., disease
detection and treatment). In addition, mobile applications
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FIGURE 2. AI/ML applications in healthcare: Use cases and benefits.

connected to AI/ML platforms can enable patients to
access health services in their own personal environment.
Assembling large and complex datasets that can fulfil some of
the functional and non-functional requirements of healthcare
requires data pipelines. Data pipelines help develop and
deploy the AI/ML models at scale. The analytics tools and
models used in the data pipeline provide actionable insights
into key performance metrics (e.g., operational efficiency and
patient satisfaction) and a range of healthcare problems, from
predictive to prescriptive.

Fig. 3 shows an overview of the three layers of the proposed
platform adapted for healthcare. In this figure, the first layer
is the data source layer, the second layer in the middle is the
data engineering layer, and the top layer is the target systems.
The layered architecture helps healthcare administrators to
implement the desired functionalities at any layer without
affecting the elements of the other layers.

A. DATA SOURCE LAYER
This layer contains the data sources that are the lifeblood
of the health system and represent the most valuable asset.
Multiple data sources can provide a complete picture of the
user’s health status, including physical, cognitive, and social
conditions. Data sources can include databases, sensor data,
EHRs, Comma Separated Value (CSV) files, remote services,
distributed file systems such as the Hadoop Distributed
File System (HDFS) [49], and so on. Some examples
of real-world healthcare data sources include pharmacy
data, wearables, surveys, hospital data, lab/biomarker data,
electronic medical and health records, social media data,
disease registries, claims data, experimental (cell lines,
clinical trials, histology, etc.), electrophysiology data (EEG,
MEG, ECoG, etc.) biological (genome, epigenome, etc.) and
clinical data (family history, medications, disease history,
laboratory tests, etc.). With the possible invasive and non-
invasive techniques, vital signs such as blood pressure, heart
rate, EEG, Electrocardiography (ECG), etc., of patients inside

or outside the hospital can be continuously monitored via
IoT systems. In addition, IoT devices can also capture
other context variables (such as room temperature, pressure,
or oxygen levels) to extend sensing data collection through
both environmental activities and wearable devices.

Sensors can be either implanted or carried through external
means. Implanted sensors are located in the patient’s body,
while external sensors are either placed on the patient’s skin
or at a distance of 2-5 cm distance from the patient [50]. Some
other devices such as a Brain–Machine Interface (BMI), can
help translate neural information into computer commands
to control external software or hardware. Non-invasive
techniques such as Functional Near-Infrared Spectroscopy
(fNIRS) can record brain signals. Medical images can be
acquired using electron radiation (ECG,Magnetic Resonance
Imaging (MRI), Near-infrared spectroscopy (NIRS)), sound
(ultrasound, echocardiogram), or ionizing radiation (X-ray,
PET), all of which serve as important data sources for further
processing and reliable inference.

Datamay also be collected in observational, noncontrolled,
and nonexperimental studies. Data sources can be either
real-time data or data at rest. However, collecting real-world
data on which the decision-making process depends is
difficult. Real-time data collection includes time series
data for blood pressure, pulse oximetry, respiration, skin
temperature, and activities. In addition to proprietary datasets
from individual healthcare institutions, some of the other
public and private health related data can be collected from
portals and competitions (Kaggle,∗ DrivenData,† AiCrowd,‡

Codalab,§ Bitgrid,¶ IEEE Dataport,‖ Medical Segmentation
Decathlon,∗∗ etc.) and open health dataset providers for
researchers (CheXpert (a large dataset of chest x-rays) [51],
MIDRC (Medical Imaging Data Resource Center, an open
radiology database),†† NIH Clinical Center Dataset [52],
Image Processing Portal of CBICA,‡‡ Genomic Data
Commons Data Portal,§§ and Mendeley Data¶¶).

B. DATA ENGINEERING LAYER
This layer (shown in the middle of Fig. 3) consists of
several interconnectedmodules. Note that the interconnection
between each module is only roughly shown and multiple
interfaces may connect these modules, depending on the use
case. Therefore, multiple pipelines may be based on Service
Level Agreements (SLAs) or non-functional requirements.
One pipeline may be appropriate for real-time notifications,

∗Online: https://www.kaggle.com/, [accessed Dec-2023]
†Online: https://www.drivendata.org/, [accessed Dec-2023]
‡Online: https://www.aicrowd.com/, [accessed Dec-2023]
§Online: https://competitions.codalab.org/, [accessed Dec-2023]
¶Online: https://bitgrit.net/, [accessed Dec-2023]
‖Online: https://ieee-dataport.org/, [accessed Dec-2023]

∗∗Online: http://medicaldecathlon.com/, [accessed Dec-2023]
††Online: https://www.midrc.org/, [accessed Dec-2023]
‡‡Online: https://ipp.cbica.upenn.edu/, [accessed Dec-2023]
§§Online: https://portal.gdc.cancer.gov/, [accessed Dec-2023]

¶¶Online: https://data.mendeley.com/, [accessed Dec-2023]
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FIGURE 3. A high level illustration of a general platform to support AI/ML in healthcare domain.DL: Deep Learning,
ML: Machine Learning, FL: Federated Learning, RL: Reinforcement Learning.

while another may be more appropriate for non-real-time
requests. In addition, in some scenarios, such as IoT-based
healthcare network services, raw data collected via the
Data Connect module (e.g., blood pressure, heart rate) can
be integrated with the data visualization component either
via mobile applications or web user interfaces for direct
visualization in a dashboard through thin-layer interface.

In other scenarios, further data analytics and processing
may be required between data connection and data visu-
alization modules, leveraging recent advances in AI/ML
algorithms (e.g., risk factor prediction or statistical analysis of
overall health). In other scenarios that require data reliability
and swift response (e.g., predicting neurological or cardio-
vascular disorders in health of a patient), the data ingestion
and data analytics modules (for real-time ultra-low latency
event processing) must be embedded in the data engineering
pipeline. The key steps in building a healthcare-focused data
engineering pipeline can be summarized as follows.

1) DATA CONNECTION MODULE
The first step is to collect health data needs from multiple
sources using existing data connectivity tools to connect to
each source separately through a reliable channel. This step
is critical because to represent the performance of a model
in real-world applications accurately. The data connection
process must retrieve the correct data that meets the needs
of the use case. During the data collection procedure, patient
data, e.g., from wearable sensors (e.g., accelerometers and
electrodermal activity (EDA)), can be transmitted either to
the cloud or to the on-premise data ingestion layer, mainly in
four modes: (i) continuous transmission for all data, (ii) con-
tinuous transmission at specific times, (iii) event-driven
transmission, and (iv) on-demand transmission.

2) DATA INGESTION MODULE
After the data connection between the data sources and the
data engineering layers is established, data from various
data sources must be ingested into a buffer or temporary
storage systems in a reliable and timely manner. Time-
sensitive events are triggered when healthcare users perform
certain actions, such as real-time interactions in response to
critical events for data sharing between physicians, sending
real-time updates on health status of a patient to healthcare
professionals, real-time monitoring of heart disease, etc. For
this reason, hundreds of terabytes of data must be retrieved
daily from heterogeneous data sources and ingested for
further low-latency processing. At the data ingestion stage,
data can also be optimally processed, cleaned, corrected,
or enriched so that downstream pipeline modules (e.g., data
storage and data analytics modules) can consume it in the
format they understand. Healthcare data can be unstructured
(text, images, audio, sensor readings, binary data, etc.) [53]
and must be converted to numeric features for downstream
AI/ML applications. Thanks to wearable sensors, remote
monitoring platforms can provide 24/7 care at home at
little or no cost. These sensors measure patients’ vital signs
and transmit the data continuously in real-time. In real-
time applications, three important requirements must be
met: (i) Each dataset must be processed as fast as possible
(low latency). (ii) Data must be ingested reliably without
losing data in case of failures (resiliency). (iii) The growing
volume of data should be processed without any problems
(scalability).

Even streaming platforms such as Apache Kafka [54],
Apache Flume [55] and AmazonKinesis [56] are some exam-
ples of distributed data ingestion platforms that can collect,
aggregate, and transfer large amounts of data seamlessly and
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reliably for real-time applications. These platforms enable
applications to publish and consume messages stored as
records in a “topic” and react to real-time data streams.

3) DATA ANALYSIS AND PROCESSING MODULE
After data ingestion, this module ensures the creation
of insights from data and translates them into intelligent
decisions. The data can be aggregated and transmitted to the
cloud or a local site for analysis and processing with analytics
tools. Local sites can perform data analysis (e.g., heart illness
prediction using ML, DL, Reinforcement Learning (RL) or
FL prediction module) in a real-time scenario for internal
patients. In contrast, the cloud layer can perform the same
tasks for remote patients. In this module, specific features
relevant to the patient status problem under consideration are
identified, correlations are explored and AI/ML techniques
(model training and evaluation, cross-validation, etc.) are
applied. Finally, the AI/ML model that is evaluated and
performs best according to the requirements of the problem
domain and uses case (e.g., selection of the best model
based on accuracy, precision, recall, etc.) is deployed in the
production environment.

The data analyzed in this module can help physicians
identify important patient condition changes and make
real-time or non-real-time decisions or recommendations
about the current or future condition of patient. For
example, brain signals recorded with fNIRS, EEG and
Magnetoencephalography (MEG) techniques can be used
to interact with the environment using deep reinforcement
learning algorithms [57] within this module. Fig. 4 shows
a general integrated AI/ML system for end-to-end lifecycle
management that consists of the following ten major
components:
(1) Data collection: This component is important to train the

model and make inferences. Healthcare-related data can
be collected from various internal and external sources,
as described in the data source layer in Fig. 3. Due to
the sensitivity of the healthcare data, most institutional
review boards (IRB) must provide appropriate consent
before executing the experiment, which may cause
various delays and biases in the data collection process.

(2) Data clean-up and preparation: Healthcare data may be
messy and contain missing values or erroneous features
(data may need to be extracted from electronic health
records or aggregated from multiple sources), which
can be a challenge for training correct ML models.
In addition, due to the variety of error root causes/types,
the generalizability of the ML models is pretty limited.
This component includes data cleansing, filtering, and
transformation and is used to prepare the data for ML
tasks.

(3) Feature engineering: This module performs feature
wrangling and ensures that raw input data is transformed
into feature vectors (i.e., integer mappings). The data
analyst also applies his or her expertise to feature
selection.

(4) Data analysis and visualization: This component is used
to validate the input data fed into the system. It ensures
that the data is error-free. It can compute and display
descriptive statistics of the data, infer data schemas, and
detect anomalies - all using exploratory data analysis.
Note that it can also be used to identify patterns and
trends in patient data [58].

(5) Model training: This component is responsible for
training the model. For example, a model could be
trained to predict the likelihood of a patient developing
a particular disease based on his or her medical his-
tory [59], or to determine/recommend the most effective
treatment for a patient based on the characteristics of
his or her disease [60]. For imbalanced data, a data
augmentation must be accompanied by the training
data set for better accuracy. If the data does not fit in
memory for training, the model training components
should be able to parallelize data and model and process
out-of-memory data.

(6) Model evaluation: In this module, a thorough analysis
of the training results is performed to ensure that the
exported models perform adequately in the production
environment. In this phase, the best models are tested
and selected. This phase is essential in healthcare
to ensure the model is reliable and makes accurate
predictions.

(7) Model deployment: This component ensures that the
models are ready for the production system (such as a
hospital or clinic) and can accept user queries to the
model to make appropriate decisions. Deployment can
be done on servers or mobile devices themselves.

(8) Model serving: This component is responsible for
responding to user requests by minimizing response
time and maximizing throughput (e.g., the number of
served requests). When changes are made to the model
or data is updated, this component can easily update
newer versions of the trained models. In this phase, the
model is hosted on a server (either in a hospital or in
the cloud) and an API is created so that other healthcare
applications (e.g. mobile applications) can access the
predictions of the model.

(9) Model monitoring: This component is responsible for
automatically monitoring and logging all steps from
model training to production. Suppose the performance
of the ML model degrades over time (e.g., predicting
patient outcomes or identifying potential diseases).
In that case, this component ensures to send notifica-
tions, perform rollbacks for deviating values or possibly
invoke a new ML process iteration.

(10) Model maintenance: This component is used to trou-
bleshoot and decide when and how to update models
in production. The feedback collected from healthcare
providers is used to retrain the model on new data or to
fine-tune the hyper-parameters of the model.

Project management tools are also required for the
project setup step. A good and detailed explanation of most
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FIGURE 4. Creation and maintenance of AI/ML models over the end-to-end project lifecycle.

components of the ML lifecycle can be found in [61]. Data
processing can be done either in real-time or in batch mode:

• Real-time processing: Some of the vital signs of patient
(SpO2, ECG, blood pressure, blood glucose levels)
need to be processed in real-time to enable continuous
tracking and risk mitigation. For this reason, critical
health applications such as vital sign monitoring and
health status assessment must rely on a streaming
pipeline of data ingestion frameworks for real-time
interactions in response to critical events. Application
requirements can vary depending on real-time (in
less than 10 ms) or near-real-time (less than a few
minutes). For example, a ECG healthcare service
requires a delay of about one second at a data rate of
1.0–20.0 kbps and with zero packet loss, while remote
teleoperation requires less than 300.0 milliseconds of
raindrop time [62]. Various modifications can be made
in the data ingestion frameworks to meet these dif-
ferent application requirements (e.g., using RabbitMQ
for latency-sensitive or Kafka for throughput-sensitive
applications [63]).

• Batch processing: Some healthcare applications may
require high throughput (processing data on the order
of PB/day in a single cluster). For example, ML can
be used to analyze, large volumes of patient medical
records to predict readmissions [64], mortality [65],
[66], intensive care units complications [67], [68],
sepsis [69], [70], diabetes [71], etc. among them.
In addition, body sensor network data can also be
analyzed in batch mode to understand patient behavior
and provide tailored services to each patient [72], [73].
Some leading open-source frameworks and tools in
this module are Tensorflow [74], PyTorch [75] and
Keras [76] frameworks. Some examples of cloud tools
are BigQuery with SQL and BigQueryML to analyze
data stored in BigQuery [77].

Overall, AI/MLmodel in a healthcare setting requires care-
ful planning and attention considering the unique challenges
of the healthcare domain. Note that many companies want
to develop AI models on healthcare data, but the data is
often not readily available. Additionally, some companies
are looking to sell back data analytics [78] by having
hospitals upload healthcare data to the cloud. Still, hospitals
may prefer vendors to deploy their tools/models locally to
keep the data within the domain of the hospital. Therefore,
effectively utilising healthcare data is essential to the success
of AI/ML in healthcare. Furthermore, understanding the
challenges of, and potential solutions for, infrastructure
related to healthcare AI/ML is vital to ensure the efficient
and effective utilization of healthcare data.We have discussed
some potential challenges and solutions in Section VI.

4) DATA STORAGE MODULE
All data can be stored in the cloud or on the hospitals’ local
premises. Stored data can be kept in a data lake, data marts,
or data warehouse for real-time reporting and analysis or
long-term archival purposes. Stored data should be securely
accessible from multiple sources, including laboratories,
pharmacies, ambulances, clinics, etc. The backend storage
systems in the cloud can collect patient data either through
direct communication with the data connection module (e.g.,
HTTP, REST API calls) or through the data ingestion
module (e.g., through the streaming integration tools Kafka,
Pulsar [79], Spark Streaming [80]). Canonical examples of
object storage in cloud environments include Amazon S3
and Google Cloud Storage (GCS). The GCS∗ platform can
provide four types of storage options:
(i) Standard storage: This option allows frequent access to

data, i.e., it is well suited for hot data such as hospital
websites, mobile applications, streaming videos, etc.

∗Online: https://cloud.google.com/storage, [accessed June-2022]
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(ii) Nearline storage: This option provides at least 30 days
of storage for backup and long-tail multimedia content.

(iii) Coldline storage: For disaster recovery scenarios, this
option enables storage for at least 90 days.

(iv) Archive storage: For data to be stored for a period of
at least one year. Existing optimized data formats, such
as AVRO, Parquet, Pbuffer, etc., can be exploited to
store health data for further analysis. Cloud tools such as
BigQuery (a serverless data warehouse) can be used to
store data. On the other hand, tools like Elasticsearch can
be used as a search engine tomakemedical data (images,
text, etc.) searchable via metadata or tags.

5) DATA VISUALIZATION AND MONITORING MODULE
This module allows users to visually abstract or aggregate
data to understand the content of the data and monitor
progress. AI/ML-based data monitoring is important in
production systems to decide which model from one or
more available base models to adopt in the final application.
This can be accomplished by tracking and visualizing the
performance of production data. It may happen that the
performance of a model suddenly drops. Then it is important
to find the root cause of the failure in a data engineering
pipeline. Some options for monitoring are Prometheus [81]
and Grafana∗ as a data engineering monitoring stack or
using popular techniques like SHapley Additive exPlana-
tions (SHAP) for model interpretability and analysis, etc.
Tools such as Kibana as a visualization tool can enable
interactive exploration of e.g. Digital Imaging and Commu-
nications in Medicine (DICOM) data already indexed by
Elasticsearch.

6) DATA MANAGEMENT AND ORCHESTRATION
Data management frameworks ensure that all phases of
data lifecycle management (connection, ingestion, retention,
compliance, and export) are covered for industries with
large datasets. Features such as auto-scaling, fault tolerance,
and managing data model evolution make data management
frameworks the first choice across industries. For medical
field analysis, tools such as AirFlow can be used for workflow
management systems to enable complex and flexible data
processing workflows. Using data orchestrators, models can
be updated regularly, such as every week. Schedulers can
also easily be part of Continuous Integration (CI)/Continuous
Development (CD) pipeline via Application Programming
Interfaces (APIs). Together with the monitoring capabilities
of the monitoring components, the orchestrator/scheduler can
evaluate the performance of the models. If a model is deemed
good enough, it can be made available via APIs to client
software (e.g., ML-driven devices used by hospital staff on
the front end).

In the application scenario for predicting a disease
using medical images and advanced AI/ML techniques, for
example, different models can be compared with the actual

∗Online: https://grafana.com/, [accessed June-2022]

diagnosed disease after important medical tests have been
performed. When a new and better version of the model is
available, requests for predictions can be forwarded to the
API of the new model via the front end. This process can be
performed in a controlled environment for each new incoming
user request while monitoring performance (on the dashboard
of the system owner) and verifying whether the new model
behaves as expected. Cloud orchestration tools such as
Kubernetes (along with Docker instances) can manage
multiple health applications at scale as micro-applications.

On the other hand, cloud systems offer several benefits in
healthcare, such as reducing costs and improving efficiency
in healthcare system development. Since every healthcare
application generates data whose volume is constantly
growing, data engineering pipelines must be scalable to
adapt to dynamic changes in data growth. For this reason,
establishing pipelines in the cloud makes sense because the
cloud offers scalability and flexibility on demand. The cloud
portion acts as a bridge between patients and the hospital
in a cloud-enabled system. Cloud computing can help unify
EHRs between hospitals and improve the interoperability,
maintainability, and scalability of the healthcare system.
A cloud-based system can easily handle large amounts of
patient data from various sources, such as remote monitoring
systems, databases, file servers, etc.

C. TARGET SYSTEMS, SECURITY AND PRIVACY
The target users and institutions are at the top level of
Fig. 3. At this level, the end user may be a patient in a
hospital or an elderly person being remotely monitored in
a smart home facility. Other healthcare providers (a mobile
ambulance, a drugstore, a research facility) can also benefit
from the platform as end users. In building a ML pipeline
for healthcare, sensitive personal and medical information
must be handled appropriately. For this reason, prioritizing
the security and privacy of such data is paramount in gaining
the trust of patients and other entities involved during the
build process. Some of the key considerations that must be
tackled are:

1) Data protection: Employing encryption, access con-
trol and backups can enhance data protection from
unauthorized access, deletion or modification. These
measures ensure that data integrity and confidentiality
are maintained throughout the data lifecycle.

2) Data privacy: Compliance with general personal and
medical data privacy regulations such as the General
Data Protection Regulation (GDPR) in the European
Union (EU) or the Health Insurance Portability and
Accountability Act (HIPAA) in the United States
(US) is essential. These regulations ensure that the
healthcare data is protected and handled in a way that
preserves patient privacy and meets legal requirements.

3) Data governance: While building ML pipeline, data
should be managed according to clear procedures and
policies to comply with relevant rules and regula-
tions [82]. This includes establishing data ownership,
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accountability, and stewardship practices to ensure data
is used responsibly and ethically.

4) Data security: Stored or processed data can be secured
via secure communication protocols, firewalls, or fre-
quent security updates. Implementing multi-factor
authentication and regular security audits contributes
to a robust security posture.

5) Data minimization: Data protection can be further
enhanced by collecting and processing only a specific
data set needed for a specific healthcare task. For
instance, when developing an ML model for image
analysis (e.g., image dataset ImageNet), only the
relevant image data should be collected and used,
minimizing the exposure of unnecessary personal
information.

6) Data de-identification: Techniques such as differ-
ential privacy [83], Multi-party Computation (MPC),
Privacy-Preserving ML (PPML) or blockchain and
cryptography encryption [84] can help anonymize
personal identifiers in personal andmedical data. These
techniques help ensure that individuals cannot be easily
identified from the data, thus protecting their privacy.

V. FEDERATED LEARNING IN HEALTHCARE
There are several distributed learning strategies to increase
the security and durability of sensitive data, such as gossip
learning [85]. However, the most prominent and successful
approach has been FL [86] due to its privacy-preserving and
half-centralized (aggregation) nature. In addition, relevant
alternatives seem to share much in common regarding system
components, architecture and performance. Therefore, this
subsection will heavily focus on FL. We would like to
begin by observing that healthcare has experienced an
unprecedented boom in the last decade, thanks to analytics
and big data generated by the widespread use of IoT
devices to collect sensitive health data. This data typically
comes from clinical facilities, patients wearing small gadgets
(such as headsets), the pharmaceutical industry, and various
insurance companies. The high quality of healthcare can only
be maintained if a high computational burden due to the
processing of large data sets is viable with data security
and privacy guarantees. Healthcare data is usually disease-
and patient-oriented; finding a common pattern in such a
large dataset can be extremely difficult. Additionally, one of
the challenges for the modern ML ecosystem for healthcare
is the unavailability of large amounts of training data to
provide reliable insights into inherently fragmented data.
Similarly, adopting data science and engineering principles
and potential data-sharing processes between organizations
is slow due to the sensitivity of patient data and format
variability.

Data privacy issues play an important role in developing
healthcare applications and services. Most patients using
systems such as remote patient monitoring are concerned
about the security and privacy of their data. The access,
analysis, modelling, and use of such data are extremely

protected by various regulatory acts such as the Health
Insurance Portability and Accountability Act [87]. Therefore,
patient data must be processed confidentially and securely
while complying with required governance and privacy
regulations. Data privacy/security technologies combined
with data engineering frameworks can help address these
issues. Techniques for privacy-preserving AI/ML such as
FL, Differential Privacy (DP) and Homomorphic Encryption
(HE) are increasingly becoming promising approaches to
data privacy preservation. For example, recent frameworks
such as CrypTFlow∗ can securely run trained models over
Secure MPC protocols without sharing sensitive data of
patients with privacy-preserving ML in healthcare.

The concept of FL was originally proposed by Google
researchers back in 2017 [88] and has since been of
interest to the broader community, particularly in the area of
healthcare [89]. Thanks to its privacy-centric approach, it is
evident that approaches such as FL are critical to healthcare
data processing. Due to policies and regulations governing
the sharing of sensitive patient data, AI/ML is perfect for
developing life-saving tools without moving sensitive health
data from its original location and exposing it to privacy
breaches. FL is about training privacy-preserving machine
learning models where computation is moved to where the
data is originated, stored and preserved. The main goal is
collectively training a global model by exchanging model
parameters instead of sensitive data between distributed com-
puting nodes. There is also a close relationship between FL
and consensus algorithms, as local models achieve consensus
using their local data by exchanging their model parameters.
Once the convergence is established, we hopefully have
a globally trained model that works best with the entire
dataset (good generalization properties). Finally, we must
distinguish between a collaborating single organization and
multiple organizations to train a model, as the latter involves
considering reliable entities. In other words, we must ensure
that the participating entities do not tamper with the model
parameters during the data exchange. Accordingly, we can
refer to FL as “cross-device” and “cross-silo” depending
on the scope of the learning. A good example of cross-
device FL is Apple’s approach [90] in iOS 13. As for
the healthcare sector, doc.ia [91] develops FL solutions for
medical research. “Cross-silo” has also attracted attention and
is used in healthcare sector [92].

A. FEDERATED LEARNING FROM DATASET-PERSPECTIVE
IN HEALTHCARE SECTORS
Datasets collected or accumulated over time in healthcare
may not have the same feature space for all medical
devices. For example, a standardized Magnetic Resonance
Imaging (MRI) device or Computed Tomography (CT)
scan generates patient information in the same data format,
whereas blood-test devices from different manufacturers

∗Available online: https://github.com/mpc-msri/EzPC, [accessed June-
2022]
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output different formats. Similarly, DNA sequencers used
in drug development and pharmaceuticals also have a few
common data formats, such as FASTQ [93]. Standardization
can be expected only after their commercialization in the
market. In the latter case, datasets with different feature
spaces may have to be used to train the global model.

Indeed, the homogeneity assumption across devices
(regarding hardware and statistical data distribution) would
oversimplify the large and diverse nature of the healthcare
sector and patient portfolio. Datasets with the same feature
space for all devices have been referred to in the literature as
“Horizontal FL”. In contrast, datasets with different feature
spaces are referred to as “Vertical FL”. Vertical FL is
more appropriate for domain-specific training. However, the
common practice is to use it with a pre-trainedmodel that uses
a similar feature dataset and then specialize its parameters
for a particular topic. This technique is known as federated
transfer learning, which is based on vertical FL and is the
foundation for personalized patient-centred recommendation
systems in healthcare.

B. FEDERATED LEARNING FUNDAMENTALS
Suppose there are K (patient) clients, where a client could
be a bioinformatics tool, a cell phone, a sensory wearable
device, or a clinical warehouse. Each client can provide nk
data samples. Given a total number of n =

∑K
k=1 nk data

samples, we minimize empirical risk as follows

min
w∈Rd

F(w) = min
w∈Rd

nk
n
Fk (w), (1)

where

Fk (w) =
1
nk

∑
xi∼Dk

fi(w, xi), (2)

and w ∈ Rd is the model parameter (w∗ being the optimal
that minimizes Eqn. (1)), Dk is the data distribution for
the k-th client and xi ∼ Dk means that xi is distributed
according to Dk . Here fi(w, xi) is a loss function computed
based on the input-label pairs (xi, yi). For example, in the
case of logistic regression (binary classification), we have
xi ∈ Rd , yi ∈ {+1, −1} and fi(w, xi) = − log

(
1 + e−yix

T
i w

)
in Eqn. (2). Accordingly, each local institution performs
its own training to find the model parameters specific to
its training data as a result of the minimization given in
Eqn. (1). Then, they submit these local parameters (w∗)
as updates to a central server and contribute to the global
model learning process. The central server collects all the
local updates. It combines them (based on a combining
algorithm such as averaging) to generate the updated
global model parameters before sharing them with the local
institutions.

C. COMMUNICATION COST OF FL
During the execution of FL, model sharing takes place
both from client-to-server (uplink) and from server-to-client

(downlink) in both directions. To minimize the communi-
cation between the client and the server, lossless model
compression is usually used [94]. Ideally, both the model and
its updates can be compressed to its entropy H (1w) where
1w represents the updates to the model parameters. Thus,
the total number of bits transmitted in either the uplink or
downlink can be expressed as O(U × |w| × H (1w)) where
|w| is the size of the model and U is the number of iterations
performed during the update phases of the FL process [95].
As can be seen, there are three main ways to reduce the
traffic through FL: (1) enabling a smaller number of clientsK ,
(2) smaller update size |w| and (3) smaller number of update
iterations U .
One of the best-known methods for reducing traffic

is model compression. Models can either be compressed
losslessly using standard compression techniques (data
compression) or created by observing structures whose
parameters are learned from only a few variables [86].
On the other hand, there are also lossy model compression
techniques that come at the cost of reduced learning
accuracy or an increased number of iterations U . These
techniques include pruning the least useful connections
of a deep network, weight quantization [96], and model
distillation [97]. Lossy compression can also be applied to
full model updating, which goes through standard encoding
stages such as transformations, subsampling, quantization,
and rotations. On the server side, decoding is performed
before aggregating the updates. Another idea is the so-called
“federated drop-out”, where clients generate updates for a
subset of the global model (a sub-model) rather than for
the global model itself [98]. These updates, which affect
a reduced set of parameters, are typically lower in size
and can, therefore, significantly reduce the computational
requirements of individual clients. The computed updates
for the subsets of the global model can be interpreted and
modified to aid in updating the global model. The same study
shows that the drop-out idea reduces the uplink and downlink
communication costs incurred by processing/generating an
update for a subset model.

Client selection is another simpler method to reduce
communication within FL. Depending on the client data
and the trained model, some model updates may be more
informative for the global model than the rest. For example,
in the case of stochastic gradient descent, the parameters can
be selected based on the distance of the current value to the
local optima, i.e., those with larger gradients [99]. Let us
consider the practical healthcare sector and the heterogeneous
devices used in our healthcare system. It is advisable to have
a reliable server that manages the resources of the other
nodes based on their channel quality, the ability of each client
to access them and the type of data stored in that client.
Usually, there are trade-offs between these resources, and
if one aims to minimize bandwidth cost, the server must
make appropriate decisions. Note that the average energy
consumption or training latency may not be optimal and may
need to be optimized in such grounds [100].
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In addition to client selection, updates can also be
reduced through delayed messages and averaging models.
This way, communication costs can be reduced by an
order of magnitude [101]. In some special cases of deep
networks, it has been shown that passing local data multiple
times without sending parameter updates to a central server
improves the communication cost of FL at the expense of a
small change in learning time [102]. Recently, two techniques
have been used to reduce the total number of iterations to one:
(1) one-shot FL and (2) data distillation [103]. In the latter
work, each client applies distillation (a purification of data)
to its private data and sends the synthetic data (e.g., images
or sentences instead of parameter updates) to a central server.
The distilled data usually looks like noise and is treated as
unusable after model fitting.

D. RECENT ADVANCES IN FL
In this section, we would like to present two important
advances related to FL that can be directly applied to the
health sector: (1) The decentralization of FL and (2) The
quantum computing counterpart of FL, which we discuss in
more detail below.

1) DECENTRALIZED FL
First, we note that all previous works mentioned so far
usually rely on a trusted central server, for example, a primary
hospital which manages the interoperability of data collected
at the edges. However, the total communication cost may
be prohibitive with many clients involved in global model
training. In addition, servers are subject to unpredictable
failures that can lead to training interruptions or total loss
of the global model. To address this problem, studies such
as [104] investigate the decentralized environment with no
trusted central server. Peers (local clients) exchange model
update information with each other until they agree on the
global model. However, the fully decentralized approach
presents many challenges, such as lacking training capacity
at all federated nodes, lacking high-quality training datasets,
and the authentication requirements for each participating
client. To overcome these challenges, blockchain-based FL
solutions have been presented in the literature related to the
Internet of Health Things (IoHT) [105]. The main purpose of
such studies is to trust the decentralized network of healthcare
with carefully designed consensus protocols that would also
be useful for FL, such as measuring the training quality for
each peer and validating their work quality through such
consensus protocols (proof of training quality) [106]. These
studies still need somematurity as security attacks may reveal
sensitive information to undesired third parties.

2) QUANTUM COMPUTING FOR PRIVATE DISTRIBUTED
LEARNING
The use of quantum computers to accelerate ML is a
well-researched topic in the literature [107], [108]. This
work focuses on exploiting potential quantum mechanical

advantages over classical systems to improve the execution
speed of ML algorithms on a large scale. However, the
special nature of quantum mechanics can also be exploited
to solve the privacy problems we face everyday such as key
distribution [109]. In the context of FL for the healthcare
sector, the goal is to learn a global model while protecting the
privacy of patient data. Therefore, quantum techniques can be
applied to private distributed learning to solve the interplay
between individual patient privacy and machine learning
techniques. Most conventional approaches to extending FL
in quantum computing involve retaining the protocol but
replacing the client’s classical computations with quantum
computations. For example, in [110], variational quantum
classifiers (QVCs) are run on the clients, while the server
aggregates the local parameters of the QVCs and computes
global parameters that are shared. They use transfer learning
to retrain the local QVCs while keeping the local data private.

An alternative approach is based on blind quantum
computing. The idea behind the blind quantum computing
protocol is based on a quantum server that can perform
quantum computations for a client without explicitly knowing
the client’s data and computations (because that would
require measurement and hence the loss of data). In such
an environment, the client has no quantum computation or
memory capabilities [111]. This seems to be in contrast to
the original definition of FL, where clients are an active
part of the overall computation, computing gradients in the
context of ML, for example. However, given the potential
capabilities of quantum computers (inherent parallelism),
limited mobility, and large number of clients, it makes more
sense to move the computation to the server side. On the
other hand, we note that such a large-scale environment must
enable unconditionally secure private distributed learning.
Thus, there are two clear advantages: (1) offloading local
model training to a centralized, untrusted quantum computer
while preserving the privacy of patient data, and (2)
leveraging the potential quantum advantages in accelerating
various ML algorithms in healthcare [112].

3) SUITABILITY OF FL FOR HEALTH DATA
Perhaps the most cited accumulation of data in the healthcare
sector is due to EHRs [113] which typically provide biased
patient-related data for analysis. The basic randomness or
inherent bias in the data does not help machine learning
algorithms with their generalization capabilities. To avoid
wrong inference on local data, it is beneficial to use EHRs,
develop models for global population and health trends.
However, mainly for privacy reasons, collected data are rarely
merged into a single database for combined processing, even
within the same medical institution. Moreover, some of the
data have many common records, leading to replication-
discovery methods [114] as found in all deduplication
systems [115]. Based on all these observations, FL seems
to be a good candidate to address the problems of data
agglomeration and global model fitting simultaneously. With
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recent advances in the FL literature, new perspectives on data
sharing, high levels of privacy, client verification, on-device
ML, incentive-based training protocols, and rapid access
to intelligent diagnostic decisions can be achieved without
leaking sensitive patient data.

E. FEDERATED LEARNING APPLICATIONS IN HEALTHCARE
FL has emerged as a transformative approach in healthcare,
significantly enhancing applications such as Remote Patient
Monitoring (RPM), Medical IoT, wearable devices, Home
Care, and telemedicine. By training machine learning models
directly on devices at the edge nodes, FL fundamentally shifts
away from the traditional centralized approach of managing
sensitive patient data, placing privacy and compliance at the
forefront in alignment with regulations like HIPAA [116].
In the realm of RPM, FL enables real-time refinements for
personalized care models, ensuring continuous and secure
monitoring of a patient’s health status with updated models
through the latest data without compromising individual
privacy. This allows for more responsive and adaptive
healthcare, as the most current data can be used to tailor
interventions and treatments. For medical IoT and wearable
health devices, FL leverages the vast amounts of data
generated by these devices to gain deeper insights into
patient health trends and disease patterns. The decentralized
nature of FL means that the raw data does not need to be
transferred from the device, significantly mitigating the risks
of data breaches and reducing the latency and bandwidth
requirements associated with large data transfers. The result
is faster, more scalable and more efficient solutions for the
healthcare sector.

Home care and telemedicine also benefit greatly from
FL. In-home care, FL enables continuous learning and
improvement of models based on data from the home of
patient without violating their privacy. This is particularly
beneficial for elderly or chronically ill patients who require
constant monitoring. Telemedicine platforms can use FL to
integrate data from multiple sources, such as patient self-
reports, home monitoring devices and remote consultations,
to enable comprehensive care and timely interventions while
ensuring privacy and security. The advantages of FL in these
contexts include:

• Enhanced Privacy: By keeping data localized on the
devices, FL minimizes the risk of data breaches and
ensures compliance with stringent privacy regulations.

• Personalized Healthcare: Continuous model updates
using real-time data allow for highly personalized
treatment plans and interventions.

• Scalability and Efficiency: Reducing the need for cen-
tral data aggregation decreases latency and bandwidth
use, facilitating quicker and more scalable solutions.

• Collaborative Ecosystem: FL promotes a collaborative
approach where multiple healthcare institutions can
contribute to and benefit from shared AI models without
exposing proprietary or sensitive information, fostering
innovation and improving overall healthcare quality.

FIGURE 5. FL applications in healthcare in a collaborative ecosystem.

Consequently, FL envisions a secure, patient-centric col-
laborative ecosystem that drives innovation in healthcare by
enabling diverse healthcare institutions to share and utilize
AI models safely. This approach not only preserves patient
privacy but also accelerates the development of advanced,
data-driven healthcare solutions that can adapt to the dynamic
needs of patients and healthcare providers. Fig. 5 shows the
collaborative ecosystem and FL components for healthcare
applications.

Finally, Table 2 provides an extended overview of the
practical applications and case studies of Federated Learning
in healthcare, highlighting the benefits of each application.

F. PERFORMANCE ADVANTAGES AND DISADVANTAGES
OF FEDERATED LEARNING IN HEALTHCARE
FL offers a promising approach to improving healthcare
through decentralized machine learning, enabling better
data privacy, real-time personalization, and collaborative
innovation. However, like any technology, it has its own
challenges and limitations. Understanding the pros and
cons of FL is crucial for effective implementation in
healthcare. One of the key benefits of FL is its ability
to protect privacy by localizing data. This minimizes the
risk of data breaches as sensitive patient information is
not transmitted to a central server. This aspect is crucial
in the healthcare sector, where patient confidentiality is of
paramount importance. However, ensuring complete security
against sophisticated cyber-attacks remains a challenge.
Even if the data is not centralized, the model parameters
exchanged during the training process can still be vulnerable
to inference attacks. Advanced encryption techniques and
robust security protocols are essential to minimize these
risks. FL enables real-time model updates and thus highly
personalized treatment plans and interventions tailored to
the individual patient. This is particularly beneficial in
scenarios that require immediate responses, such as chronic
diseasemonitoring or critical caremanagement. However, the
heterogeneity of data from different sources can complicate
the modeling process. Variations in data quality, format and
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TABLE 2. Practical Applications and Case Studies of Federated Learning in Healthcare.

distribution require sophisticated aggregation and normaliza-
tion techniques to ensure that personalized models remain
accurate and effective.

FL reduces latency and bandwidth utilization by pro-
cessing data locally, making it a scalable solution suitable
for large healthcare systems. This decentralized approach
enables faster updates and scalability. However, frequent
updates can lead to high communication costs and latency
issues, especially in resource-constrained environments.
Optimizing communication protocols and using model
compression techniques can help alleviate these issues and
ensure efficient and scalable FL deployment. FL fosters a
collaborative environment where multiple healthcare orga-
nizations can share AI models without disclosing sensitive
information. This collaborative innovation can accelerate
progress in healthcare by utilizing different data sets from
different institutions. However, standardizing data across
different devices and institutions remains complex and time-
consuming. The development of interoperable standards
and frameworks can streamline this process and enable
smoother collaboration and integration. By using edge
devices for processing, FL reduces the need for centralized
data aggregation, leading to resource efficiency. This can
reduce infrastructure costs and improve the responsiveness
of healthcare applications. However, the limited computing
resources on edge devices can affect the efficiency of
model training. Balancing the computational load between
edge devices and central servers and using lightweight
model architectures can improve resource efficiency without
compromising performance. Finally, FL aligns well with
privacy regulations such as HIPAA to ensure compliance and
protection of patient data. This alignment with regulatory

frameworks is critical for trust and adoption in the healthcare
industry. However, compliance requires constant vigilance
and the use of advanced techniques to secure data throughout
its lifecycle. Continuous monitoring, regular audits and
updates to security protocols are necessary to ensure
compliance and protection against new threats.

Table 3 provides an overview of the performance advan-
tages and disadvantages of FL in healthcare, highlighting the
key aspects of this technology.

VI. POTENTIAL ISSUES AND DISCUSSIONS
A. CHALLENGES OF FEDERATED LEARNING AND
POTENTIAL SOLUTIONS
There are multiple challenges related to FL, which are
addressed by a few recent studies, as will be explored
later. These challenges influence how FL operates regarding
convergence, consensus, accuracy, and latency to obtain
reliable results. These challenges are significant in healthcare
applications where reliable results are critical.

1) STATISTICAL CHALLENGE
This refers to the fact that health data originating from mul-
tiple resources and geographic locations may have dramatic
differences, i.e., the nature of the data distribution may be
quite different for each patient. The presence of signal/data
differences on a large scale can cause difficulties for the
learning algorithms to converge within a reasonable time.
For example, patient data from different regions may have
different disease prevalences and health indicators, making it
difficult to train a unified model. Personalized FL techniques
can be used to tailor the models to individual clients or groups
of clients with similar data distributions. In addition, transfer
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TABLE 3. Performance Advantages and Disadvantages of Federated Learning in Healthcare.

learning and domain adaptation methods can help align the
models so that they can handle different data sources better.
The data engineering layer in Section IVwith its data analysis
and processing modules can use personalized federated
learning techniques to process different data sources and
ensure that the models are accurate despite different data
distributions.

2) NETWORK RESOURCE DYNAMICS
The dynamic capacity of network resources poses another
challenge. Since the number of patients could be quite large,
typically larger than the average number of samples per
patient, FL may suffer from the high-load communication
requirements since transmitting the patient model over the
network would cause too much data traffic, making the data
communication to be the main bottleneck of the system.
Moreover, this traffic can vary due to leaving and arriving
participants in dynamic network environments [28]. Imple-
menting efficient communication protocols and optimizing
the frequency of model updates can reduce communication
overhead. Techniques such as asynchronous FL, where
clients update the central model at different times, can
also help to manage the network load more effectively.
Efficient communication protocols and asynchronous FL can
be integrated into the data connection and ingestion modules
discussed in Section IV to manage network load and ensure
timely data processing without bottlenecks.

3) TRUST AND SECURITY
among participating entities: Ensuring trust among par-
ticipating entities is crucial. For instance, some of the
clients could be malicious. Therefore, robust authentication
mechanisms are required to ensure participants’ reliability
and prevent untrusted parties from disrupting the training
phase of FL. It would harm the learning convergence if
untrusted parties participate in the training phase of FL.
As a solution, robust authentication and secure aggregation
techniques can ensure that only trusted clients participate.
Techniques such as Secure Multiparty Computation (SMC)
and blockchain can improve trust and integrity in the
FL process. Robust authentication mechanisms and secure

aggregation techniques in the data management and orches-
tration modules discussed in Section IV can ensure that only
trusted entities participate in the FL process and that data
integrity is maintained.

4) STATISTICAL FAIRNESS
InFL, faced particularly in the health domain, the statistical
fairness for the different user data distributions is important.
Simply taking the average as the combining mechanism of
central server would be unfair if the data distributions are
skewed. One solution is to model the target distribution
based on a mixture of client distributions obtained by having
each client node uniformly sample their data and share
it across the network. The data sharing process can be
between trusted parties or only with representative data
containing mostly non-sensitive content [126]. We note
that Eqn. (1) assumes homogeneity among Dk ’s. In other
words, the optimal model parameter w would not be the
best fit if Dk ’s have dramatic differences. This observation
and heterogeneity in the real world have led researchers
to explore multi-task learning (MTL) strategies in which
non-identically distributed imbalanced data can be modelled
based on the relationship between them. Note that non-
IID (non-Independent and Identically Distributed) data can
lead to biased models if not handled properly, as standard
aggregation techniques may not adequately represent the
different data distributions. Thus, instead of training a single
global model, multiple models are trained in their graph
representation based on sparsity, low-rank structure, etc..
To account for data heterogeneity, studies such as [127]
have explored variations in gradient descent and shown that
training multiple models can outperform the i.i.d. assumption
commonly adopted for health data. Of course, the success
of MTL here depends heavily on the assumptions about
the relationship between different types of health data from
different institutions. Recent studies such as [29] proposed
to minimize the runtime gap between clients and maximise
convergence gain by optimizing the number of local iterations
based on the workload assignments. Techniques such as
personalized federated learning, where models are tailored
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to individual customers or groups of clients with similar
data distributions, can also mitigate the problem and enable
the creation of models that are better tailored to the
specific data distributions of individual clients or groups.
Weighted aggregation techniques in the data analysis and
processing modules, discussed in Section IV, can provide a
fair distribution of data and ensure that the models accurately
represent different patient populations. In addition, feature
engineering and model training components can utilize
federated multi-task learning to account for the distribution
of non-IID data and ensure fair and accurate model training.

5) INDIRECT LEAKAGE
Although the natural setting of FL prevents direct leakage
of patient data in the training phase, it does not preclude
clients from learning about another client’s private dataset
by observing fi(w, xi) or the shared predictive model param-
eter w. There are methods such as homomorphic encryption,
where each client encrypts its data with a public key, and
any client with the same public key can process the private
data. However, a homomorphic approach does not completely
solve the problem of individual privacy. It is also very
computationally intensive. An alternative theoretical method
is known as DP, where the goal is to keep the statistical
nature of the dataset the same (e.g., for FL) while keeping
the identities of individual patients secret. Maintaining the
privacy of individuals has a limited impact on the descriptive
nature of the data (pattern). Because of its lossy nature, using
DP may reduce predictive accuracy [128]. Therefore, com-
bining homomorphic encryption with DP might be a good
idea to get the best of both worlds [129]. The combination of
homomorphic encryption and differential privacy in the data
storage and management modules discussed in Section IV
can protect patient data while preserving the performance of
the model.

6) CROSS-VALIDATION, BIAS, AND CALIBRATION
Healthcare data can be biased and may not represent the
physical world accurately. While the validity of data-driven
research largely depends on the accuracy and representative-
ness of the used data, healthcare data collected with common
mechanisms can be biased compared with the distribution
of related features in the physical world. Many healthcare
observations come from small datasets, and using these to
make predictions for larger datasets could introduce bias due
to size dependency. The choice of cross-validation method is
crucial in obtaining accurate estimates, as different variants
have varying levels of bias and variance depending on the
problem at hand [130]. The importance of calibration in
healthcare settings is highlighted in [131], which proposes a
new approach that outperforms classical and modern survival
analysis baselines regarding discriminative performance and
calibration, particularly for minority demographics. Contin-
uous validation and updating are recommended in [132]
to account for variations in calibration and reliability of

predictions when pursuing clinical implementation. While
current models for hypertension prediction demonstrate
acceptable to good discrimination and calibration ability,
more validation and adjustment are needed before they can
be applied in clinical practice, as stated in [133]. In [134],
a model is developed to predict infants at risk of severe
adverse neonatal outcomes, which achieves high calibration
with moderate accuracy using a combination of maternal,
intrapartum, and ultrasound variables. To address calibration
issues, techniques such as data resampling [135] and
improved calibration approaches [136] have been proposed.

FL has shown promise in developing robust predictive
models for COVID-19 EHR data while maintaining patient
privacy, as discussed in [137]. FL can also allow models
to be trained on datasets of unprecedented size, which
can significantly impact precision/personalized medicine,
as noted in [138]. Reference [139] proposes optimizations
to FL methods to handle heterogeneity across institutions,
providing valuable guidance for real clinical applications. FL
can also be used for analyzing medical images while protect-
ing patient information, as shown in [140]. A new method
called Federated-Autonomous Deep Learning (FADL) is
proposed in [141], which trains part of the model using all
data sources in a distributed manner and other parts using
data from specific sources, outperforming traditional FL
strategies. Another adaptive boosting method, LoAdaBoost
FL, which increases the efficiency of federated machine
learning, is proposed in [142] using intensive care unit
data. Decentralized FL is shown to be superior to classic
methods in [143], based on multiple numerical simulations
using large real-world electronic health record databases.
Finally, in [144], the authors propose a feature fusion method
to address communication costs and performance drops
in federated averaging, the leading optimization algorithm
in FL, especially when the local data is distributed non-
IID. Other solutions, such as the XGBoost model, are
also discussed in [145] for obtaining the best calibration
compared with other machine learning algorithms. Robust
cross-validation and calibration techniques in the model
evaluation module discussed in Section IV can ensure the
reliability and accuracy of predictive models in clinical
settings.

7) REAL-TIME DATA PROCESSING
Finally, in the context of Healthcare IoT, the size of typically
generated patient data is voluminous and difficult to process.
The data load may result in congestion in the network and
increased latencies due to the imperfection of the network
and the required computation. The increased round-trip
and hop times between IoT devices and cloud servers
may render healthcare data stale, irrelevant or inadequate
for some users. In the case of time-sensitive healthcare
sectors, the real-time data streams must be processed by
ML on time to make FL useful. Particularly, if some of
the client processing is delayed, the overall latency and
accuracy of the trained model can be seriously affected.
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There are multiple solutions proposed in the literature.
An interesting load of work has been conducted in the context
of coded computation [146] where matrix multiplications are
distributed for reliability in the event of laggy, struggling
and unreliable commodity hardware [147]. In addition, the
same line of work has been extended to gradient computations
which are encoded to avoid stragglers [148]. In such a setting,
the computation (gradients in an ML context) gets encoded
in a redundant fashion and distributed across multiple
client nodes. The redundancy introduced in the computation
enables reconstruction if a subset of these clients completes
their assigned work and can communicate it with the server.
That way, a straggler would not be a bottleneck to the overall
iterative global model training process. Edge computing and
coded computation techniques in the data connection and
ingestionmodules discussed in Section IV can process data in
real-time, reducing latency and ensuring timely patient care.

B. CHALLENGES OF ML LIFECYCLE MANAGEMENT AND
POTENTIAL SOLUTIONS
In this section, we discuss potential challenges that may
arise when applying the proposed end-to-end ML lifecycle
management and data engineering pipelines in real-world
scenarios. There are several challenges to overcome when
applying the techniques of AI/ML to large, complex, and
imperfect health data. Therefore, both data management and
algorithm transparency should be systematically addressed.
One of the biggest challenges in big data in healthcare
is the sheer volume of data that needs to be managed,
as well as the complexity of the data. This includes data
from electronic health records, medical imaging, genomic
sequencing, and wearable devices. Recent experiments
have focused on using machine learning algorithms and
AI to manage and analyze large and complex healthcare
datasets.

1) DATA VOLUME AND COMPLEXITY
A fundamental problem is that all deep learning approaches
require large datasets to train models (e.g., image classifiers
in supervised learning models). Some complex models such
as deep learning-based models, require large datasets for
acceptable generalization. This is particularly difficult in
healthcare, where collecting large datasets (e.g., in medical
imaging, medical recommendations) is difficult, especially
when patient privacy is involved. Some of the relevant
solutions to this problem are listed below:

(i) Labelling: To quickly label the new data or relabel the
existing data for a new model. Solutions such as Snorkel can
be used for this purpose. Snorkel is based on labelling func-
tions (LFs) where, for example, in healthcare, the patient’s
health history/report is encoded as functions, and these
functions are used to label training data programmatically.
If a health history/report says “malignant”, the data can be
labelled as “emergent” and so on.

(ii) Transfer Learning: Since not many samples/images of
patients can be collected and separate models are trained in

each hospital, a suitable approach is to use transfer learning
to train deep neural networks (e.g., Convolutional Neural
Networks (CNN))). Together with transfer learning, better
accuracy of deep learning models can be achieved with small
datasets. This is achieved by leveraging existing models
trained with large datasets. For example, using the knowledge
of how bacterial pneumonia is detected with X-rays taken
from the patient using very large datasets of images (e.g.,
RestNet-50 [149]), learning to detect different types of viral
pneumonia (e.g., COVID-19) is called transfer learning. This
is based on using similar low-level image features. For
example, the results in [150] show that the transfer learning
approach (pre-trained on ImageNet [151]) can perform better
in detecting COVID-19 viral pneumonia thanwithout transfer
learning (i.e., training from scratch).

(iii) Weak Supervision: This is based on leveraging noisy
and imprecise sources to create labels.

(iv) Semi-supervised Learning: It is a special version of
weak supervision. To use unlabeled data automatically, this
learning technique aims to use a small amount of labeled data
to label large amounts of unlabeled data to train models.

(v) In active learning, the points that are most valuable
to solicit labels are estimated. For example, in computerized
tomography (CT) scans, labeling can be solicited only for
those close to the decision boundary.

Using techniques such as transfer learning and weak super-
vision, the data source layer in Section IV can effectively
process diverse and large data sets and improve the overall
quality of data collected from different sources. Using active
learning tools and data labeling tools can ensure that data
ingestion processes are efficient and capable of managing
large volumes of complex data. Finally, the above solutions
can enable more accurate and comprehensive data analysis
in the data analysis and processing module in Section IV,
leading to better insights and decisions.

2) DATA QUALITY AND BIAS
The second fundamental challenge is that medical data,
like other real-world data, can be incomplete, missing,
incorrect, or biased (depending on gender, weight, race,
sexuality, and many other factors). This can be due
to various reasons, such as incorrect calibration of the
instruments used to collect patient data (e.g., heart rate
monitors, pulse oximeters, etc.). Therefore, biases, delays,
and errors in data and observations can lead to inaccurate
diagnoses and decisions when using AI/ML algorithms
that rely on these data. In addition, incorrectly assuming
that AI/ML algorithms are implemented without error can
negatively affect patients because of errors in the software
implementation of the algorithm. The collected data must
also be carefully preprocessed (data cleaning, data joining,
etc.). Data augmentation (labeling, expert access) and data
analysis (profiling) are other considerations during the data
management process. FromML pipeline building perspective
of Section IV, ensuring high-quality data ingestion processes
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can improve the reliability of downstream data analysis and
processing. In addition, addressing data quality and bias in
the data analysis and processing module can ensure more
accurate and fairer model training and evaluation. Finally,
continuous monitoring of the model monitoring module
helps maintain model performance and ensures reliable and
unbiased predictions over time.

3) CONCEPT DRIFT
The third challenge is that the model must be updated after
deployment due to concept drift constraints. The model must
be retrained if the data distribution has shifted. For this
reason, additional AI/ML infrastructure should be put in
place as to monitor and perform the continuous delivery of
the model, which is normally part of the data operations.
From ML pipeline building perspective of Section IV,
the continuous delivery mechanisms of the model training
module ensure that the models are regularly updated to
reflect changes in the data distribution. Monitoring model
performance and triggering retraining processes in the model
monitoring module help maintain the models’ relevance and
accuracy.

4) DATA PRIVACY AND SECURITY
The fourth challenge is related to data privacy and secure
communication. Patient data should be used to train models
while maintaining patient privacy. The whole process should
also be GDPR-compliant. As a solution, libraries such as
PySyft∗ can be used for secure and private deep learning
using techniques such as FL, DP, and Encrypted Computation
(such as MPC and HE) within popular deep learning
frameworks such as TensorFlow and PyTorch. Moreover,
secure communication channels should be established via
encryption algorithms (like AES, RSA) and other security
measures (like HTTPS and SSH) to protect data as it is
transmitted over the internet or other network [152]. From
ML pipeline building perspective of Section IV, Data source
layer can ensure secure data capture and transmission from
various sources while maintaining patient privacy and data
integrity. The Data Storage Module can provide secure
storage solutions to protect patient data while complying
with privacy regulations. Finally, the model serving module
can provide models securely, ensuring patient data used in
predictions is handled responsibly.

5) INTEROPERABILITY AND INTEGRATION
The fifth challenge is aspects of interoperability, integration
and data heterogeneity. There are several data models
and standards (e.g., HL7, OpenEHR, CEN/ISO, CPT4) for
unstructured data, such as EHRs [153]. Since health data
are large datasets with heterogeneous resources (e.g., XML,
CSV, SQL etc.), different schemas, vocabularies, structures
and standards, interoperability is a critical problem to solve.
Processes such as missing data, same values entered in

∗Online: https://github.com/OpenMined/PySyft, [accessed June-2022]

different data forms, scaling, and maintaining semantic
interoperability must be performed during the data cleansing
and preparation phase, which can be done, for example,
in the data ingestion module of the data engineering pipeline.
ETL (extract, transform, load) tools like Apache Nifi, data
integration platforms like Apache Camel and programming
tools Python and Java can help to manage this challenge.
From ML pipeline building perspective of Section IV,
effective ETL processes within the data ingestion module
can ensure the seamless integration of different data sources
and thus enable comprehensive data analysis. Standardized
data formats in the data analysis and processing module can
improve data processing and model training accuracy and
efficiency.

6) NON-IID DATA
The sixth challenge is concerning Non-independent and non-
identically distributed (non-IID) data [154] in healthcare.
This can happen due to data collection from different
hospitals with different distributions of patient populations
or treatment protocols. This makes generalising models
to new populations difficult since the standard statistical
assumptions may no longer hold. Advanced techniques such
as hierarchical models [155] or multi-level models [156]
can address these challenges. From ML pipeline building
perspective of Section IV, in the data source layer, Collecting
and integrating different data sets using advanced modeling
techniques improves the robustness of the data source layer.
Personalized federated learning can ensure that models
trained on non-IID data are accurate and generalizable in the
data analysis and processingmodule. Finally, hierarchical and
multi-level models improve the ability to process diverse and
complex data sets in the model training module.

VII. LESSONS LEARNED AND FUTURE WORK
In this section, we reflect on the key lessons learned from our
study on FL in healthcare and highlight the main challenges
and potential solutions for effective FL implementation.
We also outline future research directions that can further
improve the applicability and robustness of FL in real-world
healthcare scenarios. The convergence of data engineering
and advanced machine learning approaches such as FL and
DL offers numerous opportunities, but also brings significant
challenges that need to be overcome to fully realize the
potential of these technologies in healthcare.

A. LESSONS LEARNED
While FL holds immense potential to revolutionize healthcare
by enabling collaborative model training while maintaining
data privacy, there are also some challenges that need to be
overcome.

• Data Privacy Concerns: Healthcare data is sensitive
and subject to strict privacy regulations such as HIPAA.
FL solves this problem by localizing the data and
enabling model training without sharing the raw data.
However, ensuring robust privacy mechanisms remains

115768 VOLUME 12, 2024



E. Zeydan et al.: Managing Distributed Machine Learning Lifecycle for Healthcare Data

paramount. The use of secure learning frameworks and
secure communication protocols within the ML pipeline
ensures compliance with privacy regulations and, thus,
patient trust and data integrity.

• Data Heterogeneity: Healthcare data differs from
institution to institution in terms of format, quality
and scope. FL must accommodate this diversity while
ensuring the performance of the model across all
participating facilities. Techniques such as transfer
learning and model aggregation strategies can mitigate
these challenges. Advanced modeling techniques and
personalized federated learning in the data analysis and
processing module in Section IV can help to consider
different data sources and improve model accuracy and
generalizability.

• Communication Overhead: FL requires frequent
communication between the central server and local
devices, which can be resource-intensive and prone to
network latency. Optimizing communication protocols
and model compression techniques can help mitigate
this overhead. Efficient communication protocols and
asynchronous FL within the data connection and inges-
tion modules in Section IV can ensure seamless and
timely data processing.

• Model Aggregation Challenges: Aggregating local
model updates while preserving data privacy and model
performance is non-trivial. Federated averaging and
secure aggregation methods are commonly used but
may need further optimisation for healthcare appli-
cations. Secure aggregation techniques and federated
learning in the data analysis and processing module
in Section IV can ensure robust and accurate model
updates, improving overall system reliability.

• Bias and Generalization Issues: FL models can
suffer from bias due to non-representative local data
sets, resulting in poor generalization performance.
These issues can be addressed by incorporating bias
detection and mitigation techniques, such as federated
meta-learning or personalized FL. Bias detection and
fairness-aware learning methods within the model
evaluation module can ensure that models are equitable
and generalizable across diverse patient populations.

• Regulatory Compliance: Healthcare regulations pose
significant challenges for using FL. Ensuring compli-
ance with privacy laws and regulatory standards requires
close collaboration between stakeholders, including
clinicians, data scientists and policymakers. The data
governance and compliance mechanisms ofML pipeline
can ensure regulation adherence, fostering stakeholder
trust.

B. FUTURE WORK
Future research should focus on various techniques,
such as improving privacy mechanisms, enhancing the
robustness and fairness of the model, optimizing scalability
and efficiency, validating clinical effectiveness, promoting

interoperability, and ensuring long-term sustainability
and governance, as listed below. Collaboration between
researchers, clinicians, policymakers and industry stakehold-
ers is essential to address these challenges and realize the full
benefits of FL in healthcare.

• Enhanced Privacy Mechanisms: Future research
should focus on developing advanced privacy-preserving
techniques, such as differential privacy and homomor-
phic encryption, to strengthen the privacy guarantees of
FL in healthcare. Incorporating these techniques into the
data storage and model serving modules will enhance
patient data protection.

• Robustness and Fairness: Dealing with bias and
fairness in FL models requires ongoing research.
Bias detection techniques, fairness-aware learning and
interpretability should be further developed to ensure
equitable healthcare outcomes. Implementing these
methods in the model training and evaluation modules
will ensure that the models are fair and interpretable.

• Scalability and Efficiency: Improving the scalability
and efficiency of FL frameworks is essential for
widespread use in healthcare. This includes the opti-
mization of communication protocols, the development
of lightweight model architectures and the use of edge
computing resources. Enhancing the data connection
and ingestion modules to handle large-scale data
efficiently and leverage edge computing for real-time
processing.

• Clinical Validation and Real-World Deployment:
Conducting large-scale clinical trials and validation
studies is crucial for evaluating the real-world effec-
tiveness of FL in healthcare. Collaboration between
researchers, clinicians and healthcare institutions is
essential for successful implementation and integration
into clinical workflows. Integrating clinical validation
processes within the data analysis and processing mod-
ules can ensure the practical applicability of developed
models.

• Interoperability and Standardization: To ensure
seamless data exchange and model compatibility,
interoperability standards and best practices for FL
implementation across healthcare systems need to be
established. This requires collaboration between indus-
try stakeholders, standardization bodies and regulators.
Standardizing data formats and integration practices
within the data ingestion and management modules can
facilitate interoperability.

• Long-Term Sustainability: Addressing long-term sus-
tainability and governance challenges of FL in health-
care is critical. Developing sustainable business models,
ensuring data governance and fostering trust between
stakeholders are critical to the continued success of
FL initiatives. Implementing robust data management
and orchestration frameworks can ensure long-term
operational efficiency and stakeholder trust.
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Data engineering and recent approaches such as FL
and DL are nascent fields and are likely to shape future
developments in healthcare. However, there are also major
challenges to be overcome in the convergence of healthcare
and data engineering. High velocity, huge datasets with
high dimensions or diversity of healthcare data (e.g.,
radiology, genomics, etc) present additional challenges
for healthcare analytics platforms. In addition, data can
be of poor quality and trustworthiness, imbalanced and
subject to noise. Additional stringent clinical guidelines, data
ownership, administrative compliance rules, and regulatory
submission standards further complicate the work of health-
care platform teams. Processing segmented or siloed data
across multiple hospitals is also no easy task. For these
reasons, healthcare data engineering teams face unparalleled
challenges compared to other industries. On the other hand,
advances in next-generation high-performance computing
platforms, paradigms and technologies based on concepts
such as AI/ML/DL, cloud/fog/edge, robotics, blockchain,
serverless and quantum computing can help mitigate these
challenges and improve the connection between the data
science/engineering and healthcare fields [17].

VIII. CONCLUSION
The ecosystem of data engineering and data science will
inevitably play an important role in the healthcare sector.
In this paper, we have explored recent advances in data
engineering-based approaches tailored to healthcare needs.
In particular, we have analyzed and proposed a method to
build an end-to-end data engineering pipeline and focused on
efficient end-to-end ML lifecycle management of healthcare
data. Our key findings highlight the significant potential
of integrating AI/ML frameworks and cloud infrastructures
in developing scalable, secure and efficient healthcare
solutions. By leveraging FL, we can ensure data privacy
and compliance with stringent healthcare regulations while
enabling a collaborative model for training across multiple
institutions. We have outlined the architecture of an end-
to-end data engineering pipeline that includes data source
integration, ingestion, analysis, storage and visualization.
Each module is designed to address specific healthcare
data challenges, such as heterogeneity and volume of data.
We have addressed critical challenges in ML lifecycle
management, including data privacy, data quality, commu-
nication overhead and interoperability. Our proposed solu-
tions, such as secure aggregation techniques and advanced
modeling methods, provide practical approaches to these
challenges. In summary, integrating advanced data engi-
neering and AI/ML technologies holds immense potential
to revolutionize healthcare. We can develop robust, scal-
able and patient-centric healthcare solutions by addressing
the challenges outlined and focusing on future research
directions. The findings and proposals in this paper pave
the way for significant advances in the effective use of
healthcare data to improve patient and healthcare outcomes
ultimately.
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