
Received 25 July 2024, accepted 11 August 2024, date of publication 14 August 2024, date of current version 26 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3443509

A Hardware-Based Correct Execution
Environment Supporting
Virtual Memory
DAEHYEON LEE 1, OHSUK SHIN 1, YEONGHYEON CHA 1, JUNGHEE LEE 1, (Member, IEEE),
TAISIC YUN2, JIHYE KIM 3, (Member, IEEE), HYUNOK OH 4, (Member, IEEE),
CHRYSOSTOMOS NICOPOULOS 5, (Member, IEEE), AND SANG SU LEE6
1School of Cybersecurity, Korea University, Seoul 02841, South Korea
2Graduate School of Information Security, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
3Electronics and Information System Engineering Major, Kookmin University, Seoul 02707, South Korea
4Department of Information System, Hanyang University, Seoul 04763, South Korea
5Department of Electrical and Computer Engineering, University of Cyprus, 1678 Nicosia, Cyprus
6Cyber Security Research Division, ETRI, Daejeon 34129, South Korea

Corresponding author: Junghee Lee (j_lee@korea.ac.kr)

This research was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the
Korea Government [Ministry of Science and Information and Communication Technologies (MSIT)] (RS-2021-II210528, Development of
Hardware-centric Trusted Computing Base and Standard Protocol for Distributed Secure Data Box, 50%) (RS-2020-II200215, The
Development of H/W Vulnerability Assessment Technologies against Supply-Chain Attacks, 50%).

ABSTRACT The rapid increase in data generation has led to outsourcing computation to cloud service
providers, allowing clients to handle large tasks without investing resources. However, this brings up
security concerns, and while there are solutions like fully homomorphic encryption and specific task-
oriented methods, challenges in optimizing performance and enhancing security models remain for
widespread industry adoption. Outsourcing computations to an untrusted remote computer can be risky,
but attestation techniques and verifiable computation schemes aim to ensure the correct execution of
outsourced computations. Nevertheless, the latter approach incurs significant overhead in generating a proof
for the client. To minimize this overhead, the concept of a Correct Execution Environment (CEE) has been
proposed (CEEv1), which omits proof generation for trusted parts of the prover. This paper proposes a new
hardware-based CEE (CEEv2) that supports virtual memory and uses an inverted page table mechanism to
detect, or prevent, illegal modifications to pagemappings. The proposedmechanism supports virtual memory
and thwarts virtual-to-physical mapping attacks, while minimizing software modifications. The paper also
compares the proposed mechanism to other similar mechanisms used in AMD’s SEV-SNP and Intel’s SGX.

INDEX TERMS Hardware, verifiable computation, isolation.

I. INTRODUCTION
Outsourcing computations to an untrusted remote computer
is a challenging problem [2]. Attestation techniques aim
at guaranteeing the correct execution of the outsourced
computations by guaranteeing the integrity of the code,
control flow, and data. To avoid Time-Of-Check Time-Of-
Use (TOCTOU) attacks, an isolation technique is often

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Saleem .

employed along with the attestation to preserve the integrity
during the execution [3].

The rapid increase in data generation has heightened inter-
est in outsourcing computation to cloud service providers,
allowing resource-limited clients to manage large-scale tasks
without heavy investment in hardware. However, this raises
security and privacy concerns when sensitive data is pro-
cessed in potentially untrusted cloud environments. Secure
computation outsourcing systems typically involve the client,
the cloud server, and sometimes an independent verifier to

114008

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0004-9351-842X
https://orcid.org/0009-0009-1187-2991
https://orcid.org/0009-0005-0035-3660
https://orcid.org/0000-0003-0733-0136
https://orcid.org/0000-0003-2953-7883
https://orcid.org/0000-0002-9044-7441
https://orcid.org/0000-0001-6389-6068
https://orcid.org/0000-0001-8062-3301

D. Lee et al.: Hardware-Based Correct Execution Environment Supporting Virtual Memory

ensure result correctness. Solutions are categorized into gen-
eral solutions, like fully homomorphic encryption (FHE) for
high-security but computationally heavy tasks, and specific
tasks like matrix operations, systems of linear equations
(SLE), and mathematical optimization problems. Despite
progress, challenges remain in optimizing performance,
enhancing security models, and creating scalable, practical
implementations for widespread industry adoption [4].

Verifiable computation schemes aim at the same goal,
but with a different methodology. In said schemes, the
server (called prover in verifiable computation) returns
the computation result with a proof to the client (called
verifier), so that the verifier can check the correctness of
the result. This is achieved by employing cryptographic
algorithms and the scheme guarantees formally proven
security properties [5], [6].

However, the challenge is that a significant overhead
is incurred in generating a proof. Compared to native
execution, it takes 10,000 to 100,000 times longer to generate
a proof while executing the outsourced computation [7].
To reduce such an excessive overhead, the concept of
Correct Execution Environment (CEE) has been proposed [7]
(CEEv1). Its key idea is that we can omit the generation of
a proof for a part of the prover, if we can trust that part.
CEEv1 guarantees two security properties, soundness and
completeness, which are formally defined and proved [7].
The attributes that the trusted part must guarantee were
formally defined and a hardware prototype of the CEEv1
was presented. Nevertheless, the focus of said work [7] was
on the theoretical foundation of the CEEv1, not on the
hardware implementation. A proof-of-concept prototype was
only presented to demonstrate the feasibility of a hardware
implementation. While that original prototype worked well
for low-end devices, it did not support virtual memory.
Since computations are likely to be outsourced to a server
that operates using virtual memory, then support for virtual
memory is an essential capability for wide deployment of
the CEEv1. It should be noted that the original hardware
CEEv1 implementation had the advantage that only minimal
modification to the software was required. This attribute
is instrumental in facilitating widespread adoption of the
CEEv1 and should – ideally – be maintained in any future
CEEv1 implementations.

In this paper, we propose a new hardware-based CEE
(CEEv2) that supports virtual memory, while still requiring
minimal modifications to the software. Since the virtual
memory is managed by the untrusted operating system,
the hardware CEEv2 needs a mechanism that detects,
or prevents, illegal modifications to the page mappings. For
this, we propose a novel mechanism based on an inverted
page table. AMD’s SEV-SNP [1] employs a Reverse Map
Table (RMT) for the same purpose. However, SEV-SNP
does not allow a change of mapping once the mapping is
validated, whereas the proposed mechanism allows changes
of mapping. To determine whether the change is caused
by benign swapping, or malicious attacks, we measure and

compare the hash of pages being swapped to the disk. The
hash computation is not an additional overhead, because it
is inevitable in validating the integrity of pages swapped to
the disk. In fact, both SEV-SNP and Intel’s SGX [2] require
hash computation for those pages. The proposed mechanism
supports virtual memory and it thwarts virtual-to-physical
mapping attacks, while ensuring that any modifications to the
software are minimal.

In the following section, we explain the background of
verifiable computation and the CEEv2 concept inmore detail.
After presenting the threat models and the key idea of the
proposed mechanism in Section III, we formally define the
proposed CEEv2 in Section IV. Section V explains how we
implement the CEEv2, followed by experimental results in
Section VI. Finally, Section VIII concludes this paper.

II. BACKGROUND AND RELATED WORK
This section describes the concepts of verifiable computation
and CEEv2 – i.e., the foundations of the proposed work – and
discusses related work in this domain.

A. VERIFIABLE COMPUTATION
When a client (verifier) outsources a computation (F) with
an input x to a server (prover), if the verifier wants to verify
the correctness of the output y from the prover, the verifiable
computation scheme can be employed. According to the
verifiable computation scheme, the prover generates a proof
(π), by which the verifier can check whether y= F(x) or not.

In the computer system community, attestation techniques
have been studied extensively. Since the computation is done
by executing instructions stored in memory, the integrity of
the instructions in memory is measured and verified [8],
[8], [9], [10], [11]. The hash of the instructions is often
used as an integrity metric. Even though the instructions
are not modified at all, there still exists a possibility of
changing the behavior of the computation by control-flow
hijacking. To prevent it, the control-flow integrity should also
be verified [12], [13], [14], [15]. Even without modifying the
instructions and the control flow, it is still possible to distort
the computation result by data-only attacks. Data integrity
checking has been proposed to prevent such attacks [15],
[16], [17], [18]. Even though the integrity is verified by
the attestation, there is another issue, known as Time-
Of-Check Time-Of-Use (TOCTOU) attack [3]. While the
challenge-response protocol works, the prover returns the
correct integrity metric, but it may actually execute a different
program when the protocol is not active. To address this
issue, hardware-software cooperative approaches [19], [20],
[21], [22], [23], [24] and employing hardware-based isolation
techniques [18], [25], [26], [27], [28], [29] have been
proposed.

Attestation techniques pursue a similar goal with verifiable
computation, but the latter is more rigorous than the
former. While attestation techniques focus on guaranteeing
the integrity of computation, verifiable computation also

VOLUME 12, 2024 114009

D. Lee et al.: Hardware-Based Correct Execution Environment Supporting Virtual Memory

guarantees that the output is from the given computation and
input.

What is guaranteed by the attestation is the integrity of
F . Even though F may be correctly executed, a malicious
prover may execute F with input x ′, which is different from
the input x given by the verifier. Similarly, a malicious prover
may return a different output. The prover may deceive the
verifier by executing y = F(x) correctly, but what is actually
returned is y′. Without the proof π provided by the verifiable
computation, the verifier cannot confirm that the returned
output is F(x), and not F(x ′), nor y′.

More importantly, the security properties guaranteed by
verifiable computation are formally proven. Completeness
guarantees that, if the computation is correct, the proof must
be accepted; soundness guarantees that, if the computation is
not correct, there must be negligible probability of accepting
the proof. Additionally, verifiable computation schemes
may offer efficiency, which means minimizing the overhead
of checking the proof, and zero-knowledge, which means
revealing no information other than the computation result.

Verifiable computation has been extensively studied within
the context of many applications [5], [6], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], [50]. In particular,
the use of verifiable computation in cloud computing [46],
[48], [49], [51] and Internet of Things [47] are active
fields of research. Integrity and denial prevention (accurate
billing) must be ensured in a cloud-based billing system, and
verifiable computation can be applied in a reliable way for
verification. The verifiable computation allows the cloud to
operate normally and provide accurate results (integrity), and
it allows the verifier to prevent denial. There are also studies
that employVerifiable computation for electronic voting [47].
In an electronic voting system, voters need to ensure that
their votes are accurately collected and aggregated, while
stakeholders need to verify the integrity of the voting system.
These crucial requirements motivate the use of verifiable
computation to verify the integrity of the election results.

B. CORRECT EXECUTION ENVIRONMENT (CEEv1)
While the verifiable computation schemes guarantee prov-
able security properties, they are extremely slow, because
they are implemented with expensive cryptographic algo-
rithms. It takes 10,000 to 100,000 times longer when a
computation is performedwith proof generation, as compared
to the computation without proof generation [7].
To overcome such an excessive overhead, the concept of

CEEv1 has been proposed [7]. If we can trust a part of
the prover, we do not have to generate a proof for that
part, which drastically reduces the overhead. Sealed-Glass
Proof [52] is an example of employing Intel’s SGX for
verifiable computation. The previous work [7] formalizes the
requirements of the trusted part and names the qualified part
as a CEEv1. Depending on the threat model, a CEEv1 can
be implemented by any combination of an operating system,

hypervisor, and/or hardware, as long as it meets the formal
requirements.

Two requirements are identified for the CEEv1: instruction
correctness and state preservation. Instruction correctness
means that every instruction must be executed correctly.
State preservation means that the state after executing
one instruction must remain the same as the state before
executing the next instruction. Cryptographic approaches
guarantee this by checking the hash of every state in-between
instructions [6], [53]. If an operating system, hypervisor,
or hardware guarantees this, the verifiable computation
scheme does not have to generate a proof for this.

Assuming that the manufacturers of the processor do
their best to guarantee instruction correctness, if the trusted
part guarantees that the state of the computation cannot be
modified by any other software, it is qualified as a CEEv1.
Under this definition, Intel SGX is qualified as a hardware
CEEv1, as long as OCALL is not allowed. SGX allows
the trusted application to call a function of an untrusted
application, which is called OCALL. Since the result of
OCALL is from an untrusted application, it may distort the
state of the protected application. Thus, it should not be
allowed for verifiable computation.

This requirement limits the interaction with the world
outside of the computation function. It cannot interact with
any untrusted software, including the operating system.
This limits applicability of the CEEv1. To relax this
limitation, a theoretical extension would be required, which
is considered beyond the scope of this paper. However, it is
still useful for many applications, such as outsourcing heavy
computation for digital rights management, data analytics,
and machine learning [52].

Compared to a typical Trusted Execution Environment
(TEE), CEEv1 has its own pros and cons. CEEv1 does
not guarantee confidentiality and disallows any interaction
with the world outside of the computation. However, CEEv1
guarantees provable security properties and incurs less
performance overhead (4.8% on average [7]).

SGX, SEV-SNP, and CEEv1 all provide protected execu-
tion environments using hardware-based mechanisms. This
creates a trustworthy computing environment at the hardware
level, enhancing resistance to software attacks. Unlike SGX
and SEV-SNP, CEEv1 requires minimal changes to the
operating system and protected applications. Traditional
TEEs require more modifications and cooperation from an
untrusted operating system. SGX offers a high level of
security but has memory limitations, and certain patterns
of memory access can degrade performance. SEV-SNP
effectively defends against hypervisor attacks by protecting
the entire VM, but it has performance overhead due to
encryption/decryption processes. CEEv1 allows for mapping
changes and verifies through an Integrity Metric, enabling
more flexible memory management. However, it requires
trust in the chip vendor, necessitating transparency and strict
management across diverse supply chains. Compared to SGX
and SEV-SNP, CEEv1 offers advantages such as flexible

114010 VOLUME 12, 2024

D. Lee et al.: Hardware-Based Correct Execution Environment Supporting Virtual Memory

memory management, minimal software modifications, per-
formance optimization, and enhanced security. However,
challenges remain in managing the hardware trust model and
scalability.

C. MOTIVATION FOR THE PROPOSED CEEv2
In a previous work [7], a hardware implementation of a
CEEv1 was presented. The hardware implementation gener-
ates the hash of the input and the code of the computation
(henceforth called a protected application) before starting the
application, and the hash of the output when the application
completes. The digital signature on those hash values is
generated as a proof with the private key of the hardware.
To preserve state, the hardware keeps track of the program
counter to identify whether it the protected application that
is currently running, or if it is any other software. While
other software is running, if the target address of a memory
instruction is within the address range of the protected
application, the memory instruction is blocked. It is formally
proven that the hardware meets all the requirements of a
CEEv2.

The advantage of this implementation is that it requires
minimalmodification to the software. It requires nomodifica-
tion to the protected application, and merely a small change
to the operating system, which must notify the hardware of
the start and end of the protected application. Other parts of
the operating system remain unaffected. This advantage could
greatly accelerate the adoption of the CEEv2 concept.

While the original incarnation of a CEEv1 environment
works well for low-end devices that do not support virtual
memory, in most real-world implementations, the computa-
tion is more likely to be outsourced to a server that operates
using virtual memory. Hence, in this paper, we propose a new
hardware-based CEE (CEEv2) implementation that supports
virtual memory, while maintaining all the salient advantages
of the previous implementation [7].
In summary, the design goals of the proposed

hardware-based CEE (CEEv2) are the following:

• It should preserve the state of the protected application
(requirement for any CEEv2).

• Its performance overhead should be small (less than 5%).
• It should require minimal modifications to the software.
• Virtual memory should be supported.

III. OVERVIEW
In this section, we define the threat model, explain the main
challenges, and present the key idea behind the proposed
CEEv2.

A. THREAT MODEL
We trust the hardware and its manufacturer, but not the system
software. This is a typical threat model for trusted hardware
approaches, even though there are existing techniques that
can cope with physical attacks on hardware [54], [55], [56],
[57]. Specifically, we assume the following threat model:

FIGURE 1. The basic virtual-to-physical address translation mechanism.

FIGURE 2. An attack scenario of breaking the hardware-only isolation
technique if the compromised operating system maliciously counterfeits
the virtual-to-physical memory mapping.

• Adversaries can acquire the highest privilege in the system
andmodify any registers andmemory contents, unless they
are explicitly protected by the hardware mechanisms.

• Adversaries cannot modify the hardware, nor extract
secrets (encryption keys) from the hardware through
physical and side-channel attacks.

• Thememory controller is integrated with the processor and
can control access of the Direct Memory Access (DMA)
controller.

• The manufacturer publishes the public key of the hardware
and issues a certificate honestly.

• The manufacturer does its best to verify the correctness of
the instructions.

We use a secure hash function as a cryptographic
primitive.We assume that the secure hash function guarantees
unforgeability, which means there is a negligible possibility
of two hash values being the same for different input values.

B. SUPPORTING VIRTUAL MEMORY
Since the virtual-to-physical address mapping is managed
by the untrusted operating system, it could be exploited by
adversaries if the operating system is compromised.

The basic virtual-to-physical address translation mecha-
nism is illustrated in Figure 1. The mechanism is typically
implemented in the hardware-based Memory Management
Unit (MMU).When a virtual address is given to theMMU, its
virtual page number is translated to the physical page number
and the offset is concatenated. For the translation, a page table
is referred to. The page table is indexed by the virtual page
number and the content is the physical page number. The
content may also include attributes of the page (e.g., read-
only, dirty, etc.). The contents and organization of the page
table may differ depending on the MMU implementation.

The page table is stored in main memory and managed
by the operating system. The operating system informs the

VOLUME 12, 2024 114011

D. Lee et al.: Hardware-Based Correct Execution Environment Supporting Virtual Memory

base address of the table to the MMU. When the context is
switched, a different base address is given for a different page
table. Since the page table is stored in main memory, it takes
time to read it. To reduce access time,a Translation Lookaside
Buffer (TLB) is often employed. The TLB is a cache for the
page tables. When the context is switched, the TLB should
be invalidated to avoid accessing the obsolete page table.
Invalidation is usually done by the operating system.

An inverted page table is sometimes used for a special
purpose. In our prototype, it is employed to detect changes
in the virtual-to-physical mapping. As opposed to the page
table, the inverted page table is indexed by the physical page
number and the content indicates the virtual page number.

Figure 2 shows example attack scenarios related with the
virtual-to-physical memory mapping. Let us suppose that the
protected application runs on virtual pages 1 and 2 (VP1 and
VP2), which are mapped to physical pages 1 and 2 (PP1
and PP2). When application code is loaded to PP1 and PP2,
their integrity metric is measured. If the operating system
changes the mapping of VP2 to another physical page (in
this example, PP4) after attestation, the protected application
does not execute the attested instructions in PP1 and PP2.
The compromised operating system may map a virtual page
of a malicious application to the physical page used by
the protected application. For example (on the right side of
Figure 2), if VP1’ of a malicious application is mapped to
PP1, which is used by the protected application, the malicious
application may modify PP1. A more sophisticated attack
could be based on the TLB. It is the operating system that
is responsible for invalidating the TLB when the context is
switched. By delaying invalidation on purpose, the protected
application may access a wrong physical page.

C. KEY MOTIVATING IDEA
To prevent those attack scenarios under existing techniques,
certain invariants are enforced by hardware [2], or by trusted
software [58].

Intel’s SGX requires the physical pages assigned to the
protected application must be in the Enclave Page Cache
(EPC). EPC is in the Processor Reserved Memory (PRM)
whose physical address space is fixed at boot time. AMD’s
SEV-SNP [1] relaxes this constraint by employing an inverted
page table, which is called a Reverse Map Table (RMT).
Since RMT keeps track of which physical page belongs to
which application, it can detect if the compromised operating
system maps a virtual page of another application to the
physical page of the protected application (the attack scenario
illustrated on the right side of Figure 2). To prevent the illegal
change of the mapping (the left side of Figure 2), it introduces
a new instruction, PVALIDATE. The protected application
is supposed to call PVALIDATE only once per virtual page.
When it is called, it validates and locks the virtual-to-physical
mapping. The mapping cannot be changed thereafter. The
physical pagemay be swapped out to the disk, but it should be
swapped in to the same physical page, because the mapping
cannot be changed.

Those approaches inevitably limit the capability of the
operating system and require modifications to it. Even though
the operating system is untrusted, its cooperation is still
required. Since the operating system is untrusted, a good
amount of complexity is added to prevent its misbehavior [2].
In the proposed CEEv2, this contraint is relaxed further

by exploiting the integrity metric. For the physical page
belonging to the protected application, its integrity metric
needs to be computed when it is swapped out to the disk to
prevent illegal modification to it while it is residing in the
disk.When it is swapped in, it is now permitted to be allocated
to a different physical page, as long as its integrity metric
matches.

As for TLB-based attacks, in the proposed technique
the memory requests for the integrity metric are issued
through the load/store queue in the processor core where
the protected application runs. Hence, the memory accesses
for the integrity metric are exactly the same as those in
the protected application. Furthermore, since the hardware is
aware of when the protected application is scheduled in and
out, the hardware itself can enforce TLB invalidation.

The operating system maintains its freedom to manage the
mapping in the same way the pages of other applications
are managed, but the integrity metric will not match if
the management is done in an unexpected way. If the
operating system changes the mapping to run different code,
or maps a physical page of the protected application to a
different application, the verifier can detect it by checking the
integrity metric. As a result, the proposed technique requires
minimal modifications to the operating system, thus enabling
easier deployment and smaller attack surface than existing
hardware-only approaches.

In addition, we use context tracking to identify the
current application, instead of using the program counter.
As long as the context (registers) is maintained, the hardware
assumes that the same application keeps running. When the
hardware is informed that the protected application begins,
the hardware can keep track of that application by tracking
its context.

Intel’s SGX provides special instructions to enter and leave
the protected application. To check whether the context is
correctly restored or not, previous state information is stored
in the State Save Area (SSA) [2]. Thus, even if special
instructions are provided, context tracking is still required.
To minimize modifications to the software, we only employ
context tracking to identify whether the protected application
is running or not.

IV. THE PROPOSED CEEv2
In this section, we formally define the proposed CEEv2.

A. INPUTS AND OUTPUTS
The proposed hardware-based CEEv2 takes the following
inputs from the operating system, which are originally from
the verifier.

114012 VOLUME 12, 2024

D. Lee et al.: Hardware-Based Correct Execution Environment Supporting Virtual Memory

• F , the code of the protected application. The verifier does
not have to send it every time, as it can be stored by the
prover.

• x, the input data.
• L, the memory layout of the protected application, which
indicates the regions for the code, input, output, and
dynamic area (stack and heap).

The CEEv2 generates the following outputs, which are sent
to the verifier.

• y, the output of the computation, y = F(x).
• π , the proof of the computation.

π = Sig(H (F)||H (x)||H (L)||H (y),Ks), where Sig is a
digital signature scheme,H is the secure hash function, and
Ks is the private key of the CEEv2.

After loading the application code (F) and the input (x)
to the memory, the operating system notifies the hardware
CEEv2 of the start of the protected application with the
memory layout information (L). Before starting the protected
application, the CEEv2 computes hashes of F , x and L. After
completing the protected application, it computes the hash of
y and generates π . During the execution, the state is preserved
by the mechanism explained in the following subsection.

B. STATE PRESERVATION
For state preservation, the proposed technique maintains the
following data structures:

• a, a flag that indicates whether the protected application is
running or not.

• R, a set of registers that are backed up when the protected
application is scheduled out. R includes all registers,
such as general-purpose registers, program counter, stack
pointer, link register, and status register. All registers are
compared toRwhen the protected application is scheduled
in to make sure that the context is restored correctly.

• D: V → {0, 1}, a set of valid flags. D is a function where
v ∈ V must appear only once in the set. V is a set of
virtual pages. When v is accessed for the first time, its flag
is turned on, and the pair of v and its mapped physical page
is added to T defined below. D plays a similar role with
PVALIDATE of SEV-SNP [1]. Unlike SEV-SNP, however,
the validity is recorded per virtual page (instead of physical
page), and it is done automatically by the MMU (instead
of introducing a new instruction). The valid flag of v in D
is denoted by D[v].

• M: V → H = {(v, h) | v ∈ V}, a set of integrity metrics
of the swapped pages. M is a function where v ∈ V must
appear only once in the set. h is an integrity metric of one
page, which is the hash value of page v, i.e. h = H (v), and
if v is mapped to p, h = H (v) = H (p). The hash h of a
virtual page v in M is denoted by h = M[v].

• T: P → V = {(p, v) | p ∈ P and v ∈ V}, an inverted
page table. T is a function where p ∈ P must appear only
once in the set. P is a set of physical pages. Existence of
a mapping indicates its validity. If a particular p cannot be

found in T, it means p does not have any valid mapping
with a virtual page. For implementation, a valid bit can be
used. The virtual page v of a physical page p inT is denoted
by v = T[p].
In this paper, we explain the state preservation mech-

anism that protects one application at a time for
simplicity. It is straightforward to extend the mech-
anism for multiple applications by tracking multiple
contexts and using a combination of v with its owner
application.
a andR are used for context tracking. The only information

needed from the operating system is the start and end of
the protected application. Once the protected application
gets started, the proposed mechanism keeps track of the
running status of the protected application until it ends.
Even if the operating system invokes a wrong application
intentionally, or accidentally, the verifier can notice it by
the proof. D indicates the validity of the virtual-to-physical
address mappings. The reason why D is needed is explained
below. M is the integrity metric of those pages that have
been swapped out to the disk. T is used to detect a change
of mapping. Unlike previous approaches, we allow such
changes. An exception is raised only if the integrity metric
does not match.

The following two tasks are carried out for context
tracking, i.e., maintaining a:

• SwitchOut: While the protected application is running,
if any exception occurs, including both hardware and
software interrupts, a is turned off, all registers are stored
in R, and the TLB is invalidated by hardware.

• SwitchIn: When the context is restored, all registers are
compared with R. If they match, a is turned on and the
TLB is invalidated by hardware.

The integrity metric is maintained whenever a virtual-
to-physical address translation, v to p, occurs. While the
protected application is not active (scheduled out), CheckIn-
active is executed, while CheckActive is executed otherwise.
Their pseudocode is given in Algorithm 1.

• CheckInactive: If p is found in T, it means p used to
be mapped to T[p] and now it is swapped to the disk.
Thus, its integrity metric is measured and stored in M,
if it is not there yet. Then, p is removed from the inverted
page table. Note that it could be the operating system that
accesses p for page swapping to load a new page. It is also
possible that p is assigned to the protected application for
a different virtual page v′. In this case, the inverted page
table is updated when the protected application accesses p
through v′.

• CheckActive: If D[v] is 0, it means the virtual page is
accessed for the first time. In this case, D[v] is turned on
and the inverted page table is updated to the new virtual
address, T[p] = v.
If D[v] is 1 and T[p] matches with v, it means the mapping
has not changed. Nothing is done for this case.

VOLUME 12, 2024 114013

D. Lee et al.: Hardware-Based Correct Execution Environment Supporting Virtual Memory

Algorithm 1 The Pseudo Code for State Preservation
1: procedure CheckInactive(v, p)
2: if p is found in T then
3: Compute H (p)
4: Add (T[p], H (p)) to M
5: Remove p from T
6: end if
7: end procedure
8:
9: procedure CheckActive(v, p)

10: if D[v] is 0 then
11: Update D[v] = 1
12: Update T[p] = v
13: else
14: if T[p] is v then
15: Pass
16: else
17: if v is not found in M then
18: Search for p′ in T where T[p′] = v
19: Abort if p′ is not found
20: Add (v, H (p′)) to M
21: Remove p′ from T
22: end if
23: Compute H (p)
24: Abort if H (p) does not match with M[v]
25: Remove v from M
26: Update T[p] = v
27: end if
28: end if
29: end procedure

If T[p] does not match, it means the mapping has changed.
To check its integrity, the integrity metric is looked up in
M. If it is not found, it means the mapping has changed,
but the previous physical page p′ has never been accessed.
Thus, the previous physical page must have remained the
same. By exhaustive search, the previous physical page is
searched for. If it is not found, the application aborts. The
hash of the previous physical page p′ is added to M and
p′ is removed from T. The hash of the new physical page
is computed and compared against the previous hash in
M. If they match, the application proceeds and the hash
is removed from M, because the page is no longer on the
disk. The inverted page table is also updated accordingly.
If the hash does not match, the application aborts.
If D[v] = 1 and T[p] ̸= v and v is not found M, the
previous physical page p′ is searched for. If p′ is not found,
the application aborts, because D[v] = 1 indicates that
there must be a previous physical page. In fact, D is not
essential, because it can be determined by the existence
of p′. If T[p] ̸= v and v is not found M, and p′ is not
found, it means this is the first access to v. However,
without D, the CEEv2 has to search for p′ exhaustively
whenever the protected application first accesses a virtual
page. To reduce its overhead, we employ D.

C. ILLUSTRATIVE EXAMPLE
Let us take Figure 2 as an example to illustrate how the
proposed CEEv2 prevents attack scenarios.

FIGURE 3. Illustration of how the proposed CEEv2 thwarts
virtual-to-physical mapping attacks.

When the protected application accesses VP2 for the
first time, D[VP2] = 1, and T[PP2] = VP2, as illustrated
in Figure 3(a). While the protected application is inactive
(scheduled out), let us suppose the compromised operating
system changes the mapping of VP2 to PP4. When the
proposed application becomes active (scheduled in), if it
accesses VP2 again, PP4 is not found in T and VP2 is not
found in M (Figure 3(a)). Thus, the CEEv2 searches for the
previous physical page in T and finds T[PP2] = VP2. (VP2,
H (PP2)) is added to M, as shown in Figure 3(b). M[VP2]
is compared against H (PP4). If the mapping has changed
by benign page swapping, H (PP2) must be the same as
H (PP4), and the application proceeds as shown in Figure 3(c).
If they do not match, it means the compromised operating
system tried to make an illegal modification to the state of
the protected application by changing the state stored in VP2
from PP2 to PP4.

Let us suppose that VP1’ of the malicious application is
mapped to PP1. The compromised operating system maps
VP1 of the protected application to PP1 as well. When
the protected application accesses VP1 for the first time,
D[VP1] = 1, and T[PP1] = VP1, as shown in Figure 3(d).
While the protected application is inactive, let us suppose the
malicious application accesses PP1 through VP1’. Since PP1
is found in T, (VP1, H (PP1)) is added to M. PP1 is removed
from T, as illustrated in (Figure 3(e)). When the protected
application is active and accesses VP1, PP1 is not found in
T, but VP1 is found in M. Thus, H (PP1) is computed and
compared against M[VP1]. If the mapping were changed by
benign page swapping, the hash must match (Figure 3(f)),
or VP1 should have been mapped to another physical page
whose hash matches with M[VP1]. If PP1 has been modified

114014 VOLUME 12, 2024

D. Lee et al.: Hardware-Based Correct Execution Environment Supporting Virtual Memory

FIGURE 4. The sequence diagram of the verifiable computation scheme
when the proposed CEEv2 is employed.

by a malicious application, H (PP1) does not match with
M[VP1], and the application aborts.

D. PROTOCOL
An overview of the verifiable computation scheme employed
in the proposed CEEv2 is depicted in Figure 4. The protocol
consists of the following algorithms:

• Setup: The hardware manufacturer programs a random
number to the hardware and the hardware derives a pair
of public and private keys from the random number. The
hardware keeps the private key (Ks) and publishes the
public key (Kp). The manufacturer issues a certificate of
the public key.

• Request: The verifier sends the program code (F), input
data (x), and the memory layout (L) to the prover. The
verifier computes and keeps H (F), H (x), and H (L) to
verify the response from the prover.

• Exec: The prover executes the application with a request
of protection to the operating system.

• Initialize: The operating system loads F and x to the
main memory and informs the hardware of the start of
the protected application. It also sends L to the hardware.
As soon as the protected application starts, a is turned on
and the protection begins.

• OnActive: While the protected application is running,
CheckActive is executed.

• ScheduleOut: If an exception occurs, SwitchOut is
executed.

• OnInactive: While the protected application is scheduled
out, CheckInactive is executed.

• ScheduleIn: When the context is restored, SwitchIn is
executed.

FIGURE 5. The micro-architecture to implement the proposed technique.
The new additional modules required are highlighted in dark grey.

• Exit:When the application finishes, it requests termination
of protection.

• Terminate: The operating system terminates the protection
by the hardware. The hardware returns the output (y) and
a proof, which is the concatenation of H (F), H (x), H (L)
and H (y), signed by the private key (Ks) of the hardware.

• Response: The prover sends the return value (y) of the
outsourced application and the proof (π) to the verifier.

• Verify: The verifier computes H (F)||H (x)||H (L)||H (y)
and verifies the proof with the public key of the CEEv2.

E. LIMITATIONS
The proposed scheme does not allow any interaction with
other applications, including the operating system. It does not
support file access and I/O, which need to be serviced by the
operating system. The only allowed interaction is the primary
inputs and outputs from/to the verifier.

File access and I/O can be supported by splitting the
protected application. For example, if an application needs to
access a file, the application can be split into two: one before
the access and another after. The verifier should verify the two
applications separately, and forward the output from the first
application to the input of the second application. However,
if the application needs frequent file accesses and I/O, the
performance overhead could be significant.

The proposed scheme does not support confidentiality
of the protected application. To support confidentiality, the
straightforward way is to encrypt the physical pages of the
protected application. However, over the past years, it has
been known that memory encryption alone is not enough to
guarantee confidentiality. For example, side-channel attacks
may reveal the access patterns of the protected application,
which may lead to leaking sensitive information [58].
The limitations discussed above stem from the current state

of verifiable computation, i.e., they are not supported by
existing verifiable computation schemes. If the theoretical
framework of verifiable computation is extended to solve

VOLUME 12, 2024 114015

D. Lee et al.: Hardware-Based Correct Execution Environment Supporting Virtual Memory

TABLE 1. Comparison of SGX, SEV-SNP, TrustZone, CEEv1 and CEEv2.

those issues, the CEEv2 concept can also be extended
accordingly.

Table 1 illustrates how SGX, SEV-SNP, TrustZone,
CEEv1 and CEEv2 compare across several key features.
The proposed CEEv2 supports virtual memory and main-
tains minimal modifications to the system software, while
providing formal security property guarantees that other
state-of-the-art designs lack.

This study supports virtual memory, which was not
supported by the previously proposed CEEv1, while main-
taining the formally proven properties guaranteed by CEEv1.
By doing so, CEEv2 ensures the security properties provided
by traditional TEEs, while requiring minimal software
modifications to use the existing TEE. This is the core of the
CEEv2 design.

V. IMPLEMENTATION
The implementation of the proposed CEEv2 requires mod-
ifications to the micro-architecture of the processor and
minor changes to the operating system. We explain these
modifications in this section.

A. MICRO-ARCHITECTURE
The proposed CEEv2 is implemented through the use of new
modules added to the MMU and the load/store queue in the
processor core. Figure 5 shows the micro-architecture, where
the new additional modules required are highlighted in dark
grey.

The proposed CEEv2 requires storage for the measurer in
the MMU. It stores the valid flags (D), the integrity metric
(M), and the inverted page table (T). Since SRAM is known to
be safer than external memory (e.g., DRAM), we implement
the storage in SRAM. The SRAM can be accessed only by the
hardware measurer, and not by the software.

The measurer executes CheckInactive and CheckActive,
while a virtual address is being translated by the MMU.
It is informed by the tracker in the processor core about the
running state of the protected application. When it computes
the hash value of a memory page, it puts memory access
requests to the hash queue in the load/store queue.

The tracker in the processor core executes SwitchOut and
SwitchIn, which keeps track of the running state of the
protected application. When context switching occurs, the
hardware enforces TLB invalidation.

The SRAM requests for hash computation are put into the
hash queue. The load/store queue processes the requests in the
hash queue. The requested address given to the hash queue is

a virtual address. It makes sure that the address space seen
by the measurer is exactly the same as that of the protected
application.

The hash computation is triggered by a virtual-to-physical
address translation, which is triggered by a memory access.
While the hash computation is being performed, the trigger-
ing memory access is delayed.

B. DIRECT MEMORY ACCESS CONTROLLER
If a Direct Memory Access (DMA) controller is employed
in the system, it may access the physical memory pages
without going through the MMU. To handle this, the external
memory controller needs to be modified. As Intel’s SGX
does, we assume that the memory controller is integrated
with the processor core and the DMA controller must access
the main memory through the memory controller in the
processor.

The memory controller prevents any access to the reserved
region and interacts with the measurer. It is informed by
the measurer about the physical pages used by the protected
application. If any attempt is made to access those physical
pages, it is reported to the measurer, so that the pair of the
affected pages can be removed from the inverted page table.

C. OPERATING SYSTEM
The hardware needs to be informed by the operating
system when the protected application starts and ends. Two
system calls, which are for launching and terminating an
application, are modified. When an application is launched,
the operating system notifies the hardware. A compromised
operating system may launch a wrong application. However,
if a wrong application is launched and executed under
protection, the proof cannot match. The verifier can detect
it. When the application is terminated, the operating system
reads the result and proof from the hardware.

Other than the BIOS and the two system calls, the other
parts of the operating system do not need to be modified.
Existing algorithms, such as the scheduling algorithm, page
management algorithm, and the page-fault handler can be
used without modification.

VI. EXPERIMENTAL EVALUATION
In this section, we present experimental results with our
prototype implemented on a Field Programmable Gate Array
(FPGA). We evaluate the performance overhead of the
proposed technique, verify that the proposed technique can

114016 VOLUME 12, 2024

D. Lee et al.: Hardware-Based Correct Execution Environment Supporting Virtual Memory

TABLE 2. System parameters of the prototype.

thwart attacks of the virtual-to-physical mapping, and analyze
the hardware cost.

A. PROTOTYPE
For proof-of-concept, we implemented our scheme by
modifying the Rocket chip project, which is based on an
open-source RISC-V processor. It was implemented on a
Genesys 2 FPGA. The employed operating system is a Linux
distribution using Linux kernel version 5.15.4. The system
parameters are summarized in Table 2.

The size of SRAM depends on the number of virtual and
physical pages that must be supported. The SRAM storage
is used to store the integrity metric (M), valid flags (D), and
inverted page table (T). The size of M depends on the size
of the virtual memory space to be supported. For example,
if we want to support 4 GB (232) of virtual memory space, the
number of necessary virtual pages is 220, assuming one page
has a size of 4 KB (212). Thus, the number of entries in M is
220. The size of each entry is 256 bits (25 B), as we employ
SHA-256 for hashing. The size of (M) is 225 B (32 MB). The
Linux kernel used for experiments supports up to 512 GB of
virtual memory space [59]. However, the benchmarks usually
do not use all available space. After extensive profiling of
the benchmarks used in the presented experiments, we have
identified that 213 entries is sufficient for all benchmarks.
In this case, the size of M is 218 B (256 KB).
We need a 1-bit valid flag for each entry of M. Since we

have 213 entries, the size of (D) is 1 KB. The size ofT depends
on the number of virtual and physical pages. The number
of entries is the number of physical pages available in the
physical memory. In our prototype, the FPGA board has 1 GB
(230) of main memory. The number of physical pages is 218,
as the page size is 4 KB (212). An entry of T stores a virtual
page number (13 bits). One more valid bit is also needed.
In our prototype, for byte alignment, one entry takes 16 bits
(22B). The size of T is 220 B (1 MB). In total, the SRAM size
of our prototype is 1,257 KB (256 KB + 1 KB + 1 MB).
For cryptographic computation, we employ SHA-256

for hash and RSA for digital signature. Our proposed
technique does not dictate specific hash and digital signature
algorithms.We employ these particular ones because they are
available from open-source projects [60], [61], but any hash
and digital signature algorithms can be used.

TABLE 3. Execution time of benchmarks with and without the proposed
scheme.

TABLE 4. Execution time of benchmark 600 under protection, with the
other benchmarks running concurrently without protection.

The source code of our prototype is open to the public at
https://github.com/msms1009/genesys_riscv.git.

B. BENCHMARK APPLICATIONS
We use the SPECspeed Integer benchmarks of the SPEC
CPU 2017 suite for evaluation. For the descriptions of the
benchmarks, refer to the SPEC website [62].

Due to the limitations of our approach (discussed in
Section IV-E), we made the following modifications to the
benchmarks. Our approach does not allow the protected
application to interact with the kernel. Thus, we load the
primary inputs, which are provided by the verifier, to the
memory before the application starts, instead of reading
them from files. Dynamic memory allocation is replaced by
static allocation. Printing messages and writing to files are
disabled. Since SPECspeed Integer benchmarks are intended
for compute-intensive workloads, they do not frequently
interact with the kernel.

In our evaluation, the primary inputs are provided by
the verifier. The prover has the executable of the protected
application and the verifier has its integrity metric. When
the primary inputs are received from the verifier, the prover
launches the protected application with the inputs and sends
the proof and the output to the verifier.

C. PERFORMANCE EVALUATION
The execution times of the benchmarks with and without
the proposed scheme are summarized in Table 3. The
benchmarks cover a wide range of execution times, from
1 minute to 853 minutes. The overhead is incurred by
interference of memory accesses. The memory accesses of
the protected application may be delayed by the access for
hash computation. The hash computation itself does not
affect the execution time, because it is performed by a

VOLUME 12, 2024 114017

D. Lee et al.: Hardware-Based Correct Execution Environment Supporting Virtual Memory

separate hardware module in parallel. Most importantly, the
experimental results demonstrate that the overall interference
(i.e., the cause of the overhead) is minimal.On average, the
performance overhead incurred by the proposed attestation
and isolation technique is a near-negligible 0.85%.

The proposed scheme may incur more overhead if
page swapping occurs more frequently, because swapping
incurs additional hash computation. To test this, we run
multiple benchmarks simultaneously. In this experiment, only
benchmark 600 is protected, while the other benchmarks
run without protection. The execution time of benchmark
600 is compared with the increasing number of unprotected
benchmarks. With increasing benchmarks, page swapping is
more likely to occur. The results are given in Table 4 and they
show that page swapping does not have significant impact on
the overhead. This is because, when a page is loaded from the
disk to the memory, it is likely to remain in the cache when
its hash is computed.

D. SECURITY EVALUATION
We verify that the proposed scheme successfully thwarts the
three attack scenarios discussed in Section III pertaining to
the virtual-to-physical mapping.

1) ILLEGAL MODIFICATION TO THE MAPPING OF THE
PROTECTED APPLICATION
This scenario modifies the protected application’s page
mapping by modifying the page table such that the virtual
page of the protected application is mapped to another
physical page.

We added a new system call by modifying the kernel for
this scenario. The new system call identifies the process
with a pid and uses the set_pte() function to map the
virtual page of the identified process to another physical page
specified by the caller.

The application victim repeatedly prints ‘‘Secret Mes-
sage’’. Since our prototype does not allow to print
messages, we only store the message in a buffer. Sub-
sequently, the attacker application calls the new system
function to modify the virtual page mapping that contains
‘‘Secret Message’’ of the victim to the physical page
that contains ‘‘Hacked Message’’. When the attack in
the corresponding scenario is successfully performed, the
victim prints (stores) ‘‘Hacked Message’’ instead of ‘‘Secret
Message’’.

This scenario is detected by the second condition of
CheckActive, assuming the victim is under the protection
of the proposed scheme. The compromised OS modifies the
page table of the victim while the victim is scheduled out.
When the victim resumes, and if it accesses the virtual page
that is now mapped to a different physical page, the virtual
page is found in M, but the new mapping cannot be found
in T. Thus, the hash of the new physical page is measured
again and the new hash does not match the previous one.
We confirm that an error is reported to the verifier when this
attack scenario is executed.

2) ACCESS ATTEMPT TO PHYSICAL PAGES BEING USED BY
PROTECTED APPLICATION
This scenario allows the attacker to modify memory by
mapping its virtual page to the physical page of the protected
application through an attacker’s page table modification.

The attacker modifies its page table using the new system
call added in the previous scenario. If the modification is
successfully completed, the virtual page of the attacker is
mapped to the physical page of the victim, allowing an
attacker to modify the memory of the victim.

The scenario assumes the same situation as the previous
one. If the attack in the corresponding scenario is successfully
performed, the attacker modifies the physical page of
the victim and the victim prints the ‘‘Hacked Message’’
repeatedly instead of ‘‘Secret Message’’.

This scenario is detected by the combination of Check-
Inactive and CheckActive. While the victim is scheduled
out, if the attacker accesses the physical page of the victim,
CheckInactive finds that the physical address is found in T
and removes the entry from it. When the victim resumes and
accesses the virtual page, it cannot be found in T, because it
has been removed. Measuring its hash again and finding that
it does not match, an error is reported to the verifier.

3) DELAYED INVALIDATION OF TLB
This scenario modifies the applications’ page mapping
by delaying the TLB invalidation performed during con-
text switching. We implemented the scenario through a
modified kernel, two target applications, and the other
two applications each notifying the start and end of
the attack to the kernel. The kernel is modified by
identifying the process name and commenting out the
local_flush_tlb_all() function executed during
context switching between application attack_target1
and application attack_target2. The applications
attack_target1 and attack_target2 allocate
memory to the same virtual address and write the values
0xdeadbeef and 0xcafebabe to the corresponding memory,
respectively. This process is repeated within an infinite
loop. When the attack in the corresponding scenario
is successfully performed, TLB invalidation is delayed
when the context switch between attack_target1
and attack_target2 happens, resulting in storing an
unexpected value to the memory.

This scenario is prevented by the hardware. Recall that the
hardware enforces TLB invalidation when the context of the
protected application is switched in and out.

E. HARDWARE COST
The hardware cost of our prototype is presented in Table 5.
The results are measured by Vivado, the development tool
for the FPGA. In total, the number of lookup tables (LUTs)
is increased by 153.56%, the registers by 124.36%, and the
LUTRAM by 580.42%.

Even though the total overhead is quite high, it is, in fact,
largely dominated by the valid flags (D), the integrity metric

114018 VOLUME 12, 2024

D. Lee et al.: Hardware-Based Correct Execution Environment Supporting Virtual Memory

TABLE 5. Hardware cost analysis.

FIGURE 6. Hardware cost breakdown of the proposed architecture.

(M), and the inverted page table (T), as shown in the cost
breakdown in Figure 6. These three items take up 31.06%
of the lookup tables, 10.14% of the registers, and 84.00% of
the LUTRAM. Recall that the storage for the measurer (to
store the valid flags, the integrity metric, and the inverted
page table) was implemented in SRAM for performance.
If, instead, it is implemented in DRAM, the performance
would degrade, but the cost could be lowered significantly.
Specifically, when the storage is implemented in DRAM, the
hardware overhead is reduced to 43.72%, 37.94%, and 8.00%
for lookup tables, registers, and LUTRAM, respectively.

Furthermore, we employ publicly available SHA and RSA
modules for the digital signature. If one employs more
optimized hardware implementations, their cost could be
reduced as well.

Most importantly, this hardware overhead is over a baseline
processor that provides no security features whatsoever.
Obviously, converting a baseline CPU into an environ-
ment that provides extensive security guarantees would –
inevitably and justifiably – incur a significant hardware cost.
This is the trade-off for providing security guarantees that are
mandatory in some domains/sectors.

The proposed CEEv2 has a negligible impact on the overall
system overhead except for the hardware cost reported above.
One of key benefits of CEEv2 is minimal changes to both the
OS and application software. Thus, the impact on the CPU
utilization is negligible. The data structures used by CEEv2
could be implemented on the SRAM in the FPGA. The main
memory is not affected in terms of bandwidth and space.

VII. DISCUSSION
In this section, we discuss how the proposed CEEv2 in this
study can be applied in real situations.

A. POTENTIAL APPLICATIONS
We believe that potential applications for CEEv2 include
cloud computing, edge computing, Internet of Things (IoT)
devices, and enterprise applications. First, in the case of cloud
computing, CEEv2 can be used to ensure the integrity of
outsourced computations for cloud service providers. This
would be particularly appropriate for processing sensitive
data in fields such as healthcare and finance, where data
privacy and accuracy are crucial. Second, in the case of
edge computing, in scenarios where computing resources are
distributed and operate in less secure environments, CEEv2
can provide a robust mechanism to ensure the accuracy
of computations performed on edge devices. Third, in the
case of IoT devices, IoT often lacks the computational
power to perform complex security checks. CEEv2 can
offload these tasks to more powerful devices while ensuring
the trustworthiness of the results, thereby enhancing the
overall security of the IoT system. Lastly, in the case
of enterprise applications, within enterprises, CEEv2 can
protect computations involving proprietary algorithms and
sensitive business data, adhering to data integrity standards
and mitigating internal threats.

One of the major challenges is integrating CEEv2 with
existing software and hardware systems. Although the
proposed CEEv2 requires minimal software modifications,
additional effort is needed to ensure compatibility with
various and legacy systems. Developing standardized APIs
and integration guidelines can facilitate the seamless adoption
and integration of CEEv2 with existing systems. CEEv2
relies on trust in chip vendors for its attestation mechanisms.
Establishing and maintaining this trust across diverse global
supply chains can be challenging. Ensuring hardware trans-
parency and conducting rigorous third-party audits can help
mitigate these concerns.

In conclusion, while the proposed CEEv2 offers signif-
icant advantages in ensuring the integrity of outsourced
computations, several challenges need to be addressed for

VOLUME 12, 2024 114019

D. Lee et al.: Hardware-Based Correct Execution Environment Supporting Virtual Memory

successful deployment. By focusing on integration, trust, and
scalability, we can promote the widespread adoption and
effective utilization of CEEv2.

B. USE CASE
The proposed CEEv2 can be integrated into cloud computing
environments as a security layer within hypervisors or
container runtimes. For instance, embedding CEEv2 into
a Virtual Machine Monitor (VMM) or Docker Engine can
provide integrity guarantees for computational tasks executed
within virtual machines or containers. Integrating CEEv2 into
cloud-based data processing services that handle sensitive
customer data ensures that data processing tasks are per-
formed securely, preventing unauthorized modifications or
tampering. CEEv2 enhances trust in cloud service providers
by assuring customers that their data processing tasks are
executed correctly.

For IoT devices, the lightweight implementation of CEEv2
is crucial due to their limited resources. This involves
optimizing CEEv2’s hardware and software components to
fit the constrained computational and memory capabilities
of typical IoT devices. In a smart home environment,
IoT devices such as thermostats, security cameras, and
smart locks process sensitive user data and control critical
functions. Integrating CEEv2 into these devices ensures that
remote updates or commands are verified and authenticated,
providing users with assurance of the integrity and security
of their smart home systems.

Exploring these integration strategies highlights the practi-
cal applicability of the proposed CEEv2 in enhancing security
within cloud computing and IoT device environments.

VIII. CONCLUSION
In this paper, we propose a new CEE (CEEv2) that supports
virtual memory. The proposed implementation meets all
the pertinent design goals presented in Section II-C. The
state of the protected application is preserved by checking
for changes in the virtual-to-physical mappings through the
inverted page table. Measuring and checking the integrity
metric of individual memory pages enables state preservation
and allows the existing page-fault handler to be used without
any modification. The proposed technique requires modifi-
cation to only two system calls of the operating system and
none to the protected application. The experimental results
demonstrate that it incurs a minimal 0.85% performance
overhead, while fully supporting virtual memory.

REFERENCES
[1] AMD SEV-SNP: Strengthening VM Isolation With Integrity Protection and

More, AMD, Santa Clara, CA, USA, 2020.
[2] V. Costan and S. Devadas, ‘‘Intel SGX explained,’’ IACR Cryp-

tol. ePrint Arch., Tech. Rep. 2016/086, 2016. [Online]. Available:
http://eprint.iacr.org/2016/086

[3] I. De Oliveira Nunes, S. Jakkamsetti, N. Rattanavipanon, and
G. Tsudik, ‘‘On the TOCTOU problem in remote attestation,’’ 2020,
arXiv:2005.03873.

[4] Z. Shan, K. Ren, M. Blanton, and C. Wang, ‘‘Practical secure computation
outsourcing: A survey,’’ ACM Comput. Surv., vol. 51, no. 2, pp. 1–40,
Mar. 2019.

[5] A. Kosba, C. Papamanthou, and E. Shi, ‘‘XJsnark: A framework for
efficient verifiable computation,’’ inProc. IEEE Symp. Secur. Privacy (SP),
May 2018, pp. 944–961.

[6] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, ‘‘Succinct non-
interactive zero knowledge for a von Neumann architecture,’’ in Proc. 23rd
USENIX Secur. Symp. (USENIX Secur.). Berkeley, CA, USA: USENIX
Association, 2014, pp. 781–796.

[7] J. Lee, C. Nicopoulos, G. Jeong, J. Kim, and H. Oh, ‘‘Practical verifiable
computation by using a hardware-based correct execution environment,’’
IEEE Access, vol. 8, pp. 216689–216706, 2020.

[8] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, ‘‘SWATT: Software-
based attestation for embedded devices,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2004, pp. 272–282.

[9] X. Carpent, N. Rattanavipanon, and G. Tsudik, ‘‘Remote attestation of IoT
devices via SMARM: Shuffled measurements against roving malware,’’ in
Proc. IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST), Apr. 2018,
pp. 9–16.

[10] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla, ‘‘SCUBA:
Secure code update by attestation in sensor networks,’’ in Proc. 5th
ACM Workshop Wireless Secur. New York, NY, USA: Association for
Computing Machinery, Sep. 2006, pp. 85–94.

[11] Y. Li, J. M. McCune, and A. Perrig, ‘‘VIPER: Verifying the integrity of
PERipherals’ firmware,’’ in Proc. 18th ACM Conf. Comput. Commun.
Secur. New York, NY, USA: Association for Computing Machinery,
Oct. 2011, pp. 3–16.

[12] J. Hu, D. Huo, M. Wang, Y. Wang, Y. Zhang, and Y. Li, ‘‘A probability
prediction based mutable control-flow attestation scheme on embedded
platforms,’’ in Proc. 18th IEEE Int. Conf. Trust, Secur. Privacy Comput.
Commun./13th IEEE Int. Conf. Big Data Sci. Eng. (TrustCom/BigDataSE),
Aug. 2019, pp. 530–537.

[13] N. Koutroumpouchos, C. Ntantogian, S.-A. Menesidou, K. Liang,
P. Gouvas, C. Xenakis, and T. Giannetsos, ‘‘Secure edge computing with
lightweight control-flow property-based attestation,’’ in Proc. IEEE Conf.
Netw. Softwarization (NetSoft), Jun. 2019, pp. 84–92.

[14] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl,
N. Asokan, and A.-R. Sadeghi, ‘‘LO-FAT: Low-overhead control flow
ATtestation in hardware,’’ in Proc. 54th ACM/EDAC/IEEE Design Autom.
Conf. (DAC), Jun. 2017, pp. 1–6.

[15] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, ‘‘LiteHAX:
Lightweight hardware-assisted attestation of program execution,’’ in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2018,
pp. 1–8.

[16] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, ‘‘Preventing
memory error exploits with WIT,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), May 2008, pp. 263–277.

[17] S. A. Carr and M. Payer, ‘‘DataShield: Configurable data confidentiality
and integrity,’’ in Proc. ACM Asia Conf. Comput. Commun. Secur.,
Apr. 2017, pp. 193–204.

[18] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M. McCune,
‘‘Memoir: Practical state continuity for protected modules,’’ in Proc. IEEE
Symp. Secur. Privacy, May 2011, pp. 379–394.

[19] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and
P. Koeberl, ‘‘TyTAN: Tiny trust anchor for tiny devices,’’ in Proc. 52nd
ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2015, pp. 1–6.

[20] K. M. E. Defrawy, G. Tsudik, A. Francillon, and D. Perito, ‘‘SMART:
Secure and minimal architecture for (establishing dynamic) root of trust,’’
in Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS), vol. 12, 2012, pp. 1–15.

[21] X. Carpent, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, ‘‘Tem-
poral consistency of integrity-ensuring computations and applications to
embedded systems security,’’ inProc. Asia Conf. Comput. Commun. Secur.,
May 2018, pp. 313–327.

[22] A. Ibrahim, A.-R. Sadeghi, and S. Zeitouni, ‘‘SeED: Secure non-interactive
attestation for embedded devices,’’ in Proc. 10th ACMConf. Secur. Privacy
Wireless Mobile Netw., 2017, pp. 64–74.

[23] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, ‘‘TrustLite: A
security architecture for tiny embedded devices,’’ in Proc. 9th Eur. Conf.
Comput. Syst., Apr. 2014, pp. 1–14.

[24] J. Noorman, J. V. Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel,
I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling, ‘‘Sancus 2.0:
A low-cost security architecture for IoT devices,’’ ACM Trans. Privacy
Secur., vol. 20, no. 3, pp. 1–33, Jul. 2017.

114020 VOLUME 12, 2024

D. Lee et al.: Hardware-Based Correct Execution Environment Supporting Virtual Memory

[25] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek,
‘‘HDFI: Hardware-assisted data-flow isolation,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), May 2016, pp. 1–17.

[26] J. Jang, C. Choi, J. Lee, N.Kwak, S. Lee, Y. Choi, andB. B.Kang, ‘‘Private-
Zone: Providing a private execution environment using ARM TrustZone,’’
IEEE Trans. Depend. Sec. Comput., vol. 15, no. 5, pp. 797–810, Sep. 2018.

[27] A. Sensaoui, D. Hely, and O.-E.-K. Aktouf, ‘‘Toubkal: A flexible and
efficient hardware isolation module for secure lightweight devices,’’ in
Proc. 15th Eur. Dependable Comput. Conf. (EDCC), Sep. 2019, pp. 31–38.

[28] H. Dai and K. Chen, ‘‘OPTZ: A hardware isolation architecture of
multi-tasks based on TrustZone support,’’ inProc. IEEE Int. Symp. Parallel
Distrib. Process. Appl. IEEE Int. Conf. Ubiquitous Comput. Commun.
(ISPA/IUCC), Dec. 2017, pp. 391–395.

[29] M. Ye, X. Feng, and S. Wei, ‘‘HISA: Hardware isolation-based secure
architecture for CPU-FPGA embedded systems,’’ in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD). New York, NY, USA: Association
for Computing Machinery, Nov. 2018, pp. 1–8.

[30] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, ‘‘Quadratic span
programs and succinct NIZKs without PCPs,’’ in Proc. Annu. Int. Conf.
Theory Appl. Cryptograph. Techn., Athens, Greece. Springer, May 2013,
pp. 626–645.

[31] S. Chatel, A. Pyrgelis, J. R. Troncoso-Pastoriza, and J.-P. Hubaux, ‘‘Privacy
and integrity preserving computations with CRISP,’’ in Proc. 30th USENIX
Secur. Symp. (USENIX Security), 2021, pp. 2111–2128.

[32] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and
G. Tsudik, ‘‘VRASED: A verified hardware/software co-design for remote
attestation,’’ in Proc. 28th USENIX Secur. Symp. (USENIX Security), 2019,
pp. 1429–1446.

[33] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. Setty, and L. Thompson, ‘‘Vale: Verifying
high-performance cryptographic assembly code,’’ in Proc. 26th USENIX
Secur. Symp. (USENIX Security), 2017, pp. 917–934.

[34] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi,
and N. Triandopoulos, ‘‘TRUESET: Faster Verifiable set computations,’’ in
Proc. 23rd USENIX Secur. Symp. (USENIX Security), 2014, pp. 765–780.

[35] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, ‘‘Sancus: Low-
cost trustworthy extensible networked devices with a zero-software trusted
computing base,’’ in Proc. 22nd USENIX Secur. Symp. (USENIX Security),
2013, pp. 479–498.

[36] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish,
‘‘Taking proof-based verified computation a few steps closer to practi-
cality,’’ in Proc. 21st USENIX Secur. Symp. (USENIX Security), 2012,
pp. 253–268.

[37] L. F. Zhang and H. Wang, ‘‘Multi-server verifiable computation of low-
degree polynomials,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2022,
pp. 596–613.

[38] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova,
K. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-Lavaud,
C. Fournet, N. Kulatova, T. Ramananandro, A. Rastogi, N. Swamy,
C. M. Wintersteiger, and S. Zanella-Beguelin, ‘‘EverCrypt: A fast,
verified, cross-platform cryptographic provider,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), May 2020, pp. 983–1002.

[39] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig,
B. Parno, and S. Zahur, ‘‘Geppetto: Versatile verifiable computation,’’ in
Proc. IEEE Symp. Secur. Privacy, May 2015, pp. 253–270.

[40] V. Vu, S. Setty, A. J. Blumberg, and M.Walfish, ‘‘A hybrid architecture for
interactive verifiable computation,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2013, pp. 223–237.

[41] R. S. Wahby, Y. Ji, A. J. Blumberg, A. Shelat, J. Thaler, M. Walfish,
and T. Wies, ‘‘Full accounting for verifiable outsourcing,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 2071–2086.

[42] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, B. Grégoire,
V. Laporte, and V. Pereira, ‘‘A fast and verified software stack for secure
function evaluation,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2017, pp. 1989–2006.

[43] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko, and
B. Parno, ‘‘Hash first, argue later: Adaptive verifiable computations on
outsourced data,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2016, pp. 1304–1316.

[44] M. Backes, D. Fiore, and R. M. Reischuk, ‘‘Verifiable delegation of
computation on outsourced data,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2013, pp. 863–874.

[45] R. Canetti, B. Riva, and G. N. Rothblum, ‘‘Practical delegation of
computation using multiple servers,’’ in Proc. 18th ACM Conf. Comput.
Commun. Secur., Oct. 2011, pp. 445–454.

[46] D. Liu, Z. Yan, W. Ding, and M. Atiquzzaman, ‘‘A survey on secure
data analytics in edge computing,’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 4946–4967, Jun. 2019.

[47] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
‘‘A survey on the edge computing for the Internet of Things,’’ IEEE Access,
vol. 6, pp. 6900–6919, 2018.

[48] J. Ni, K. Zhang, X. Lin, and X. Shen, ‘‘Securing fog computing for Internet
of Things applications: Challenges and solutions,’’ IEEECommun. Surveys
Tuts., vol. 20, no. 1, pp. 601–628, 1st Quart., 2018.

[49] S. Yi, Z. Qin, and Q. Li, ‘‘Security and privacy issues of fog computing:
A survey,’’ in Proc. 10th Int. Conf. Wireless Algorithms Syst. Appl., Qufu,
China. Cham, Switzerland: Springer, Aug. 2015, pp. 685–695.

[50] Y. L. Simmhan, B. Plale, and D. Gannon, ‘‘A survey of data provenance in
e-science,’’ ACM SIGMOD Rec., vol. 34, no. 3, pp. 31–36, Sep. 2005.

[51] R. Gennaro, C. Gentry, and B. Parno, ‘‘Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,’’ in Proc. 30th
Annu. Cryptol. Conf. Adv. Cryptol. (CRYPTO), Santa Barbara, CA, USA.
Berlin, Germany: Springer, Aug. 2010, pp. 465–482.

[52] F. Tramèr, F. Zhang, H. Lin, J.-P. Hubaux, A. Juels, and E. Shi, ‘‘Sealed-
glass proofs: Using transparent enclaves to prove and sell knowledge,’’ in
Proc. IEEE Eur. Symp. Secur. Privacy (EuroS P), Apr. 2017, pp. 19–34.

[53] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, ‘‘Scalable zero
knowledge via cycles of elliptic curves,’’ Algorithmica, vol. 79, no. 4,
pp. 1102–1160, Dec. 2017.

[54] N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi, M. Schunter, G. Tsudik,
and C. Wachsmann, ‘‘SEDA: Scalable embedded device attestation,’’ in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2015,
pp. 964–975.

[55] M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A.-R. Sadeghi, and
M. Schunter, ‘‘SANA: Secure and scalable aggregate network attestation,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2016,
pp. 731–742.

[56] A. Ibrahim, A.-R. Sadeghi, G. Tsudik, and S. Zeitouni, ‘‘DARPA: Device
attestation resilient to physical attacks,’’ in Proc. 9th ACM Conf. Secur.
Privacy Wireless Mobile Netw., Jul. 2016, pp. 171–182.

[57] F. Kohnhäuser, N. Büscher, and S. Katzenbeisser, ‘‘SALAD: Secure and
lightweight attestation of highly dynamic and disruptive networks,’’ in
Proc. Asia Conf. Comput. Commun. Secur., May 2018, pp. 329–342.

[58] V. Costan, I. Lebedev, and S. Devadas, ‘‘Sanctum: Minimal hardware
extensions for strong software isolation,’’ in Proc. 25th USENIX Secur.
Symp. (USENIX Security), 2016, pp. 857–874.

[59] Linux Foundation. Operating System Interface. Accessed: Jun. 5, 2023.
[Online]. Available: https://refspecs.linuxfoundation.org/ELF/zSeries/
lzsabi0_zSeries/x791.html

[60] N. Iani. (2021). Sha256 Implementation in Verilog. [Online]. Available:
http://5.9.10.113/67472212/sha256-implementation-in-verilog

[61] R. Singh. (2016). RSA Cryptosystem Implementation in Verilog. [Online].
Available: https://github.com/Rajandeep/RSA-CRYPTOSYSTEM-using-
verilog

[62] (2017). SPEC CPU 2017. [Online]. Available: https://www.spec.
org/cpu2017/

DAEHYEON LEE received the B.S. degree from
the Department of Cybersecurity, Korea Uni-
versity, Seoul, South Korea, where he is cur-
rently pursuing the Ph.D. degree. His current
research interests include architecture security and
hardware trojan detection. His research interests
include computer architecture, microprocessor
and computer system design, secure design or
hardware-assisted security of processor, non-
volatile memory, storage, and hardware trojan
detection.

VOLUME 12, 2024 114021

D. Lee et al.: Hardware-Based Correct Execution Environment Supporting Virtual Memory

OHSUK SHIN is currently pursuing the integrated
M.S./Ph.D. degree with the School of Cyber
Security, Korea University, South Korea. His
research interests include security of hardware,
based on trusted environment.

YEONGHYEON CHA received the B.S. degree
from the Department of Cyber Defense, Korea
University, Seoul, South Korea. He is currently
pursuing the Ph.D. degree with the Department
of Cybersecurity, Korea University. His current
research interests include privacy preserving tech-
nology on cloud infrastructure and confiden-
tial computing. His research interests include
computer architecture, microprocessor, hardware-
assisted security of processor, cloud security, and
confidential computing.

JUNGHEE LEE (Member, IEEE) received the
B.S. and M.S. degrees in computer engineering
from Seoul National University, in 2000 and 2003,
respectively, and the Ph.D. degree in electrical
and computer engineering from Georgia Institute
of Technology, in 2013. From 2003 to 2008,
he was with Samsung Electronics on electronic
system level design of mobile system-on-chip.
From 2014 to 2019, he was with the Department of
Electrical and Computer Engineering, University

of Texas at San Antonio, as an Assistant Professor. He has been with
the School of Cybersecurity, Korea University, since 2019. His research
interests include secure design or hardware-assisted security of processor,
non-volatile memory, storage, and dedicated hardware.

TAISIC YUN received the B.S. degree from the
Department of Cyber Defense, Korea University,
South Korea, in 2022. He is currently pursuing
the M.S. degree with the Graduate School of
Information Security, KAIST, South Korea. His
research interests include system security and
software hacking.

JIHYE KIM (Member, IEEE) received the B.S.
and M.S. degrees from the School of Computer
Science and Engineering, Seoul National Univer-
sity, South Korea, in 1999 and 2003, respectively,
and the Ph.D. degree in computer science from
the University of California at Irvine, Irvine,
in 2008. She is currently a Professor with the
Department of Electrical Engineering, Kookmin
University. Her research interests include network
security, applied cryptography and fault-tolerant,
and distributed computing.

HYUNOK OH (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in computer engi-
neering from Seoul National University, Seoul,
South Korea, in 1996, 1998, and 2003, respec-
tively. He is currently a Professor with the
Department of Information Systems, Hanyang
University, Seoul. His research interests include
applied cryptography, zero-knowledge proof, and
blockchain.

CHRYSOSTOMOS NICOPOULOS (Member,
IEEE) received the B.S. and Ph.D. degrees
in electrical engineering with a specialization
in computer engineering from Pennsylvania
State University, State College, PA, USA, in
2003 and 2007, respectively. From 2007 to 2008,
he was a Postdoctoral Research Associate with
the Processor Architecture Laboratory, Ecole
Polytechnique Federale de Lausanne (EPFL),
Switzerland. He is currently an Associate Pro-

fessor with the Department of Electrical and Computer Engineering,
University of Cyprus, Nicosia, Cyprus, where he leads the multicore
Computer Architecture Laboratory (multiCAL). His research interests
include computer architecture, microprocessor and computer system design,
and networks-on-chip.

SANG SU LEE received the B.S. and M.S.
degrees in electronic engineering fromKyungpook
National University, South Korea, in 1999 and
2001, respectively. Since 2001, he has been
with the Electronics and Telecommunications
Research Institute, Daejeon, South Korea, where
he is currently a Researcher with the Cyber
Security Research Division. His recent research
interests include cryptography, protocol analysis,
and supply-chain cyber security.

114022 VOLUME 12, 2024

