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ABSTRACT Leveraging network information for predictive modeling has become widespread in many
domains. Within the realm of referral and targeted marketing, influencer detection stands out as an area
that could greatly benefit from the incorporation of dynamic network representation due to the continuous
evolution of customer-brand relationships. In this paper, we present INFLECT-DGNN, a new method for
profit-driven INFLuencer prEdiCTion with Dynamic Graph Neural Networks that innovatively combines
Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) with weighted loss functions,
synthetic minority oversampling adapted to graph data, and a carefully crafted rolling-window strategy.
We introduce a novel profit-driven framework that supports decision-making based on model predictions.
To test the framework, we use a unique corporate dataset with diverse networks, capturing the customer
interactions across three cities with different socioeconomic and demographic characteristics. Our results
show how using RNNs to encode temporal attributes alongside GNNs significantly improves predictive
performance, while the profit-driven framework determines the optimal classification threshold for profit
maximization. We compare the results of different models to demonstrate the importance of capturing network
representation, temporal dependencies, and using a profit-driven evaluation. Our research has significant
implications for the fields of referral and targeted marketing, expanding the technical use of deep graph
learning within corporate environments.

INDEX TERMS Dynamic graph neural networks, graph isomorphism networks (GINs), graph attention
networks (GATs), referral marketing, influencer prediction.

I. INTRODUCTION
Advances in analytics have enabled organizations to leverage
data for effective decision-making and increased value
creation [1]. A growing number of social interactions have
become a valuable source for constructing networks that
provide useful insights into interconnectivity patterns between
individuals and can serve as a data source for real-world
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approving it for publication was Xianzhi Wang .

applications such as fraud detection [2], recommender
systems [3], fake news detection [4] and marketing [5].
Word of Mouth (WOM) has long been recognized as a
powerful tool for customer influence in marketing to spread
information effectively in customer networks [6]. Customers
who are able to persuade others within their network can
be considered influencers or opinion leaders [6]. Identifying
and incentivizing them early helps to engage more customers
in profitable initiatives by effectively spreading information
across the network.
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Typically, the technique used to incentivize customers who
are considered influencers falls within the context of referral
marketing, which leverages social connections to promote a
product or service [7]. In this context, the topology of social
networks is considered a major factor in the dissemination
of information, with influencers being the best candidates
to make referrals. To harness the power of social networks,
it is essential to go beyond simply identifying opinion
leaders. Anticipating the rise of potential influencers prior to
their network enrollment, while also enabling re-influencing
actions from past influencers who could repeatedly refer new
customers, can serve as a significant competitive accelerator.
Moreover, the value of predictive models depends heavily
on the profit generated when the model’s predictions are
used in real marketing campaigns. Cost-sensitive decision
making based on instance-dependent threshold tuning has
proven to result in the highest savings [8]. This is achieved by
complimeting a cost-insensitive classifier with cost-sensitive
threshold optimization, which is known as the ‘‘predict-then-
optimize’’ approach [8]. As a result, the use of influencer
prediction models should not only be based on predictive
performance, but also integrate a business view and evaluate
the potential profit of the action, a property that is often
overlooked in the existing studies. By doing so, businesses
can effectively leverage the power of social networks to both
expand their reach and drive financial growth, as well as
more effectively target customers, reducing unnecessary spam
and providing both a more nuanced approach to customer
incentivizing and a better customer experience.
Network data is non-linear because it cannot be readily

represented in Euclidean space. Therefore, the network
topology should be extracted first to be used for downstream
tasks. There are standard approaches for encoding network
topology, such as neighborhood and centrality metrics,
as well as collective inference algorithms [9]. With advances
in computing power and deep learning, Graph Neural
Networks (GNNs) have become a popular neural network
architecture for learning from graph data [10]. GNNs
have been successfully leveraged in different domains,
including influencer detection [11], [12]. To account for
dynamic networks, i.e. networks that change over time,
Dynamic GNNs (DGNNs) came to the forefront of network
analysis [13]. Òskarsdòttir et al. showed that incorporating
the temporal component of the network improves predictive
performance [14]. Therefore, GNNs can be used as the
primary network representation learning technique and further
complemented with the temporal component (e.g., recurrent
neural networks (RNNs)) to account for the dynamic nature
of social networks.
This paper presents INFLECT-DGNN, a novel method

designed for influencer prediction in growing customer
networks in a profit-driven manner. By leveraging the power
of DGNNs to effectively learn from evolving network
data, we solve a complex influencer prediction problem
in dynamic networks with multiple relationships using

edge coloring, i.e., attributing specific characteristics to
edges. Our method integrates two types of GNNs (Graph
Attention Network (GAT) and Graph Isomorphism Network
(GIN)) and Recurrent Neural Networks (RNNs). To learn
from imbalanced data, INFLECT incorporates weighted
loss functions and the Synthetic Minority Oversampling
TEchnique (SMOTE) adapted for graphs [15]. INFLECT-
DGNN also introduces a new profit-driven formula to enhance
its practical applicability for decisionmaking. Hence, wemake
the following contributions:

1) We present a new method for constructing dynamic
attributed edge-colored customer networks with a label-
ing intuition that allows for re-influencing prediction.

2) We develop DGNN models by combining GNNs and
RNNs, i.e., GATs and GINs with Long-Short Term
Memory (LSTM) and Gated Recurrent Unit (GRU)
models. We rigorously evaluate the performance of
different model combinations to suggest an optimal
architecture for deploying our solution.

3) We present a new method of inductive learning
from imbalanced data by incorporating weighted loss
functions, GraphSMOTE, and a rolling-window strategy
in a creative way.

4) We thoroughly evaluate our method against baseline
static GNNs and dynamic non-GNN approaches based
on their predictive performance as well as ecological
footprint.1

5) We introduce a new profit framework for influencer
prediction to decide on the optimal classification
threshold and evaluate models in a profit-driven manner.

The novelty of our research is that we address influencer
prediction on dynamic attributed edge-colored customer
networks with cost-sensitive decision making using DGNNs,
something that has not been done in prior research.
This paper is organized as follows. Section II provides an

overview of the related studies. In Section III, the methodology
is defined. The experimental setup is outlined in Section IV.
We present the results of the experiments in Sections V and
the profit framework in Section VI. Section VII discusses the
implications of the results. Finally, Section VIII concludes
the research by addressing its limitations and suggestions for
future research.

II. RELATED WORK
A. GRAPH NEURAL NETWORKS
Deep learning’s increasing popularity has brought GNNs to
the forefront of representational learning for networks [16].
With their versatility, GNNs can solve node-, edge-, and
graph-level tasks using supervised, semi-supervised, and
unsupervised learning. GNNs can be categorized into several
types based on their learning approach, task level, and
complexity. Recurrent GNNs, the pioneers in this field, use
the same set of parameters recurrently to learn high-level node

1The source code and online appendices can be found at
https://github.com/Banking-Analytics-Lab/INFLECT
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representations [16]. Convolutional GNNs, a more advanced
type, generalize the fixed grid structure of Convolutional
Neural Networks (CNN) and use either spectral-based or
spatial-based graph convolution to aggregate neighbor features
and learn node representations [16]. Graph Autoencoders
learn node embeddings in an unsupervised manner by
reconstructing the adjacency matrix, while Spatial–Temporal
GNNs enable dynamic network analysis by incorporating the
time dimension [16].

Although there are numerous GNNs available, they share a
similar design pipeline [10]. It includes the steps of identifying
network structure and type, designing the loss function,
and building the model using computational modules [10].
Network structure can be either explicit, where the network
is given upfront, or implicit, where the network is to be built
from the task at hand. The main network types are directed
or undirected, homogeneous or heterogeneous, and static or
dynamic networks. Loss functions are dependent on the task
type, including its level and the type of supervision [10].
Computational modules can be classified into propagation,
sampling, and pooling modules. A propagation module is used
to propagate feature and topological information between
nodes and can include convolution operators, recurrent
operators, or skip connections. A sampling module can be
utilized to sample large networks, while a pooling module is
used to extract information from nodes [10].

B. DYNAMIC GRAPH NEURAL NETWORKS
Anetwork that changes over time, with appearing/disappearing
nodes and edges, is called a dynamic network [13].
Research shows that incorporating the temporal component
of networks into the prediction task enhances the models’
performance [14]. Dynamic GNNs are often represented using
the encoder-decoder structure, where the encoder focuses
on learning node embeddings and the decoder is used to
solve prediction tasks such as node or edge classification.
Zhu et al. examined different encoder-decoder architectures
for supervised dynamic network learning, with techniques
categorized as either Discrete Time Dynamic Graph (DTDG)
or Continuous Time Dynamic Graph (CTDG) learning [17].
The difference between DTDG and CTDG learning is in how
they handle time, with DTDGmodels using network snapshots
that capture the topology at a point in time, and CTDGmodels
considering networks as an event stream that updates over
time. A further distinction can be made within DTDG based
on how structural and temporal patterns are captured by the
encoder-decoder composition [13]. Stacked DTDG models
capture structural and temporal information in separate layers,
while integrated DTDG models combine them in one layer.
The former deals with combining existing layers in new ways
(as in [18]), while the latter requires a design of new layers
(e.g., [19]).

C. REFERRAL MARKETING
Unlike the business-to-customer (B2C) relationships lever-
aged by traditional marketing techniques, referral marketing

leverages customer-to-customer (C2C) relationships to pro-
mote products or services. Referral programs create additional
motivation for customers to refer other potential customers
in exchange for a reward. The reward can be a coupon,
cash, bonus points, bonus products, etc. Targeted and referral
marketing programs catalyze WOM effects by reaching
influential customers to encourage them to make product
recommendations [20]. Ryu and Feick found that the offer of
a reward increases the likelihood of a referral, regardless of
the size of the reward offered [20]. In particular, this effect
is stronger for weak ties between a referrer and a potential
customer, i.e., exchange relationships, as well as for weaker
brands. Thus, referrals require more encouragement in the
absence of strong ties or high brand recognition. However,
even for stronger ties and brands, the reward should be
present (non-zero) to reduce the level of inequity for existing
customers. Therefore, firms need to balance the marginal
revenue impact with the size of the reward and the change
in the likelihood of referrals [20]. Armelini et al. found
that referred customers are more loyal than non-referred
customers [21]. In addition, they also found that referred
customers are more valuable when the referring customer
has a high customer lifetime value. This means that referral
marketing is most successful when the targeted customers
are not only influential, but also profitable. Also, referred
customers have a longer customer lifetime than non-referred
customers [7].

D. INFLUENCER DETECTION IN NETWORKS
Influencer detection has been extensively researched in the
social network domain. Valuable insights into a user’s network
influence can be gleaned from their personal information,
platform interactions, and the dynamics of user interactions.
Early research focused on different approaches to detect
influential network nodes, including network centrality
measures, prestige ranking algorithms, and information
diffusion methods [6]. Influential nodes can also be discovered
by following the graph-driven branching process, which
generalizes network centrality metrics [22]. Text data, such
as online forums or tweets, can serve as a source for semantic
analysis, which has been shown to be useful for filtering out
irrelevant network interactions and identifying key nodes using
classical authority discovery algorithms [23]. Considering
different types of nodes and their interactions can also be
advantageous for influencer detection, as in the case of the
SNet model [24]: by examining relationships not only among
users, but also between users and posts, influence can be
estimated, and detected influencers can be leveraged for
influencer marketing. In addition, the scope extends beyond
different user categories to heterogeneous social connections
that manifest as multi-layered networks. Combined with
a heterogeneous degree ranking algorithm, they provide a
powerful framework that allows for a better overview of the
influential nodes [5].

Influencer detection can also borrow the insights from game
theory and deep learning. The former is illustrated by the
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EDGly model, which goes beyond basic centrality metrics by
using the ensemble clustering for graphs to identify important
partitioned communities and Shapley value games to uncover
influential nodes within these communities [25]. The latter is
represented by a growing adoption of GNNs in the influencer
detection domain.
A recent systematic literature review by Seyfosadat and

Ravanmehr [26] outlines the studies on identifying influencers
in social networks. Among the machine learning-based and
graph-based approaches reviewed by [26], the studies that
use GNNs to detect influencers are mentioned, including the
studies by [11], [27], and [28]. In addition, Graph Influence
Networks have emerged as a specialized GNN technique
tailored for influencer discovery by exploiting the inherent
local graph structures to identify influential neighbors of
a node [12]. Table 1 provides an overview of the studies
mentioned above.

E. RESEARCH GAP
The current literature reviewed in section II-D has extensively
studied the problem of influencer detection using various
economic, statistical and machine learning techniques.
However, the majority of these studies consider influencer
detection in the online social media platforms and do not
cover other domains such as corporate customer networks,
which are dynamically changing. Moreover, the research on
influencer detection with GNNs is limited because it lacks the
incorporation of more powerful and recent techniques.
In our previous work [29], we introduced an influencer

detection task in dynamic customer networks, which are
conceptually different from social media networks, and
defined influencers as customers who have at least once
referred other customers, with the influencing behavior being
propagated to the future: ‘‘once an influencer - always an
influencer’’. In this study, we reformulate the transductive
influencer detection into the inductive influencer prediction
problem for imbalanced customer networks to allow for re-
influencingwithin the existing network nodes and generalizing
towards nodes not seen by the model. We also extend the
analysis by incorporating a more sophisticated GNN encoder,
i.e., Graph Isomorphism Network, employing focal loss, and
performing a profit-driven model evaluation, which has not
been previously explored for influencer prediction.

III. METHODOLOGY
A. PROBLEM DEFINITION
Following the pipeline developed by Zhu et al. [17], we define
influencer prediction as a supervised node-level learning on
a dynamic heterogeneous undirected network following the
stacked DTDG approach. We consider a dynamic network
as an ordered sequence of T network snapshots G =

⟨G1,G2, . . . ,GT ⟩, Gt = (Vt ,Et ) where Vt is the set of nodes
at time t , |Vt | = n, and Et ⊆ Vt ×Vt is the set of edges at time
t , representing the connections between nodes, t ∈ {1, . . . , T }.
Each node is labelled with a vector ltv at time t with values

in {0, 1}, an influencer is labelled as 1, and vice versa. Each
node v ∈ Vt is attributed with node features xtv at time t . Each
edge (u, v) ∈ Et between nodes u, v ∈ Vt is characterized by
edge features etu,v at time t with values in {0, 1}. For the static
problem formulation (i.e., GNN specification), t is omitted.
The task is node classification, i.e., predicting a label lT+k

v for
a node v ∈ VT+k at time T + k .

B. GNN-RNN CONFIGURATIONS
Introduced by Veličković et al., GATs consist of layers
in which nodes use attention mechanism to emphasize
connections with neighbors [30]. Stacking these layers gives
implicit weights to neighboring nodes without requiring
full knowledge of the graph. Brody et al. proposed a more
expressive version, GATv2, which employs dynamic graph
attention [31]. In GATv2, the attention ranking depends on
the query node, allowing all nodes to attend to each other. In a
single layer of GATv2, node features as well as edge features
(if any), are taken as input, and a set of node embeddings is
produced as an output. To accomplish this, each node attends to
its one-hop neighbors, including itself, by calculating attention
coefficients αi,j and the final node embeddings x′

i as follows:

αi,j =
exp

(
a⊤LeakyReLU

(
2[xi ∥ xj ∥ ei,j]

))∑
k∈N (i)∪{i} exp

(
a⊤LeakyReLU

(
2[xi ∥ xk ∥ ei,k ]

))
(1)

x′
i =

K∥∥∥
m=1

σ (αmi,i2
mxi +

∑
j∈N (i)

αmi,j2
mxj) (2)

whereN (i) is a set of nodes adjacent to i, 2 is a weight matrix,
αmi,i is an attention coefficient computed by the m-th attention
mechanism, a⊤ is a weight vector of the attention mechanism
network, ∥ is concatenation, xi are the features of a node i and
ei,j are the features of an edge between nodes i and j.
Recent research on GNNs has focused on maximizing

the representational power of learned embeddings. GINs,
introduced by Xu et al. [32], have been shown to be as
powerful as the Weisfeiler-Lehman graph isomorphism test
(WL test) [33]. GINs are thus considered to be among the most
powerful GNNs in terms of discriminative and representational
power [32]. Graph isomorphism is closely related to graph
learning: isomorphic graphs should be mapped to the same
representation, and vice versa. To achieve the same power
as the WL test, a GNN’s neighbor aggregation must be
injective. GINs employ a Multi-Layer Perceptron (MLP)
to model and learn these injective functions [32]. We use
the modified GIN operator [34] which can incorporate edge
features into the aggregation procedure, contrary to the original
GIN operator [32] that can only deal with node features,
as follows:

x′
i = h2((1 + ϵ) · xi +

∑
j∈N (i)

ReLU(xj + ej,i)) (3)

where h2 is an MLP, xi is a feature vector of node i, xj is a
feature vector of node j from a set of nodes N (i) adjacent to
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TABLE 1. Related work on GNNs for influencer detection.

i, ej,i is an edge features vector. ϵ determines the importance
of the target node compared to its neighbors and is set to
0 following the findings of Xu et al. where learning ϵ yielded
no gain in fitting training data [32].
While the aforementioned GNNs proved effective, they

are static and cannot capture changes that occur over time.
To address this, we incorporate RNNs into the decoder
component of our framework, specifically the Long Short-
Term Memory (LSTM) and Gated Recurrent Units (GRUs)
models [35], [36]. The LSTM model aims to learn long-term
dependencies with an LSTM cell consisting of several gates,
including the input gate it , the forget gate ft , the cell gate gt ,
and the output gate ot [35]. The forget gate is used to decide
which information to keep and which to discard, while the
input and cell gates use the input and previous hidden state
to update the cell state. The cell state ct can then be updated
with the outputs of the input, cell, and forget gates as follows:

it = σ (Wiix′t
+ bii +Whiht−1 + bhi)

ft = σ (Wif x′t
+ bif +Whf ht−1 + bhf )

ot = σ (Wiox′t
+ bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wigx′t
+ big +Whght−1 + bhg)

ht = ot ⊙ tanh(ct ) (4)

where x′t is the output embeddings of a GNN model at time t ,
ht−1 is the hidden state at time t − 1, nt is the new gate used
to update a hidden state using a reset gate, W are learnable
weights, b are bias variables, σ is the sigmoid function, tanh is
the hyperbolic tangent function, ⊙ is the Hadamard product.

Finally, the output gate, together with the cell state, is used to
update the hidden state received from the previous timestamp
t − 1, as can be seen from (4). These gates allow the cell
state, which can be thought of as the long-term memory of the
network, to be modified at each timestamp t . By leveraging
these operations, the LSTM can effectively capture and learn
from long-term patterns.

The GRU model, which is a simpler version of the LSTM,
consists of two primary gates: the reset gate rt and the update
gate zt . The update gate operates similarly to the input gate
in LSTM models, and the reset gate functions in a manner
comparable to the forget gate. Unlike the LSTM, the GRU
does not have a cell state and stores long-termmemory directly

in the hidden states. Each hidden state is updated with the
previous hidden state values and the new gate value obtained
from the reset gate output as follows:

rt = σ (Wirx′t
+ bir +Whrht−1 + bhr

zt = σ (Wizx′t
+ biz +Whzht−1 + bhz)

nt = tanh(Winx′t
+ bin + rt ⊙ (Whnht−1 + bhn))

ht = (1 − zt ) ⊙ nt + zt ⊙ ht−1 (5)

where x′t is the output embeddings of a GNN model at time t ,
ht−1 is the hidden state at time t − 1, nt is the new gate used
to update a hidden state using a reset gate, W are learnable
weights, b are bias variables, σ is the sigmoid function, tanh is
the hyperbolic tangent function, ⊙ is the Hadamard product.

As can be seen from (4) and (5), the input to both the LSTM
and GRU models are the output embeddings x′t

i of a GNN
encoder produced at time t for each node i ∈ Vt , with the
subscript i omitted for simplicity.
To obtain final predictions, we require an additional

Fully Connected Network (FCN) on top of the GNN-RNN
configuration. The FCN consists of two linear layers followed
by ReLU and sigmoid activation functions, respectively.
It takes as input the node embeddings, i.e., the hidden states
of the last output layer of the RNN model, and outputs the
probability of a node being an influencer. The architecture is
shown in Figure 1.

C. BASELINE CONFIGURATIONS
a: FEATURES(+PR)-RNN
Following the strategy of Òskarsdòttir et al. [37], we can enrich
non-relational classifiers with network features. One such
network feature that can summarize the importance of a node
is PageRank (PR) [38]. Originally developed to measure the
importance of web pages, PR can be used to measure the
importance of nodes based on the number of incoming edges
and their importance. The PageRank measure and its variants
have been shown to boost predictive models [2]. The non-
personalized PR values can be calculated for each node as
PR(u) = (1 − d) + d

∑
v∈Bu

PR(v)
C(v) where Bu is a set of nodes

linked to u, d is a damping factor set to 0.85, C(v) is an out-
degree of a node v.
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FIGURE 1. Model architectures. (a) For each time point, the model takes the network as input, i.e., network connectivity, node & edge features.
This input is first passed through GNN layer(s), which generate network embeddings in Euclidean space. These embeddings, together with the
hidden state from the previous step (initially a tensor of ones), are then fed into RNN layer(s). This process is repeated for each time point.
At the last time point, the output of the RNN model is fed into a fully connected layer to produce the final probabilities of a node being an
influencer. The weights of these layers are learned by optimizing a loss function, using either class-balanced binary cross-entropy loss or
class-balanced focal loss (see Section IV-C). (b) For each time point, the model takes node features as input (with the PageRank feature added as
well in the corresponding configurations). These features, along with the hidden state from the previous step (initially a tensor of ones), are then
fed into the RNN layer(s). This process is repeated for each time point. At the final time point, the output of the RNN model is fed into a fully
connected layer to produce the final probabilities of a node being an influencer. The weights of these layers are learned by optimizing a loss
function, using either class-balanced binary cross-entropy loss or class-balanced focal loss (see Section IV-C). (c) For each time point, the model
takes the network as input, i.e., network connectivity, node & edge features. This input is passed through GNN layer(s) that generate network
embeddings in Euclidean space. The embeddings are then passed to a Fully Connected Layer to produce the final probabilities of a node being
an influencer. The weights of these layers are learned by optimizing a loss function, using either class-balanced binary cross-entropy loss or
class-balanced focal loss (see Section IV-C). There is no temporal component in this configuration, and time points are used in a batch manner.

Since the PR value represents the relative importance of a
node within one component, we calculate its value separately
within each of the components and scale the value with the size
of the component. Since the network is attributed, PR values
can be seen as an additional feature of the node, and this
enriched feature set can be seen as an encoder part and can
be subsequently used for dynamic node classification with
RNNs. Static node features together with PR are used as
input to the RNN models, i.e., LSTM and GRU models. The
aforementioned architecture is shown in Figure 1b.

b: STATIC GNN
This configuration consists of a GNN encoder similar to
the GNN-RNN configuration described in Section III-B,
while its decoder contains only an FCN network that is fed
with the embeddings produced by the GNN model. For the
GNN encoder, we use GAT and GIN models described in
Section III-B. The aforementioned architecture is shown in
Figure 1c.

IV. EXPERIMENTAL SETUP
A. NETWORKS
The data used in this study is sourced from a Super-App
company operating in Latin America that offers both a delivery
app and credit card services. The data covers a period of nine
months, during which aggregated information on delivery app
usage was used to create monthly snapshots of the network,

while credit card usage data was used to construct node
features (see Appendix A, Table 6). Numerical features are
normalized using min-max normalization to stabilize learning
and speed up convergence. Categorical features are one-hot
encoded. To account for new nodes appearing in the network
over time, we add artificial node features for the future nodes
(not used in the backpropagation process during training) with
features that are zeroed out. The network only includes credit
card customers who use the delivery app, with three types of
connections based on the app usage, as described in Table 2.
To account for these types of connections, edge features
are one-hot encoded with information about the connection
type(s), allowing multiple connection types to be represented
per edge. The network is dynamic, with new nodes and edges
appearing over time, while existing nodes and connections
persist, leading to its continuous growth.

TABLE 2. Edge types.

Our analysis is based on data from three different cities, each
represented by a separate network (network characteristics
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are provided in Appendix B, Figure 7). The cities are diverse
in terms of population size and income, representing both
middle-income and high-income cities, with Purchase Power
Parity-adjusted Gross Domestic Products (PPP GDP) per
capita ranging from $10,000 to $35,000.2 The networks vary
in size, with City 1 having the smallest network and City
3 having the largest. Over time, all three networks have grown
in terms of both the number of nodes and the number of edges.
However, the data is heavily imbalanced as the proportion of
influencers among the nodes is relatively low, ranging from
about 1.5% in the last month to about 5% in the first month.
To address this issue, we use the synthetic node generation
method of GraphSMOTE, which performs oversampling
on top of the embedding space constructed by the feature
extractor [15]. The original GraphSMOTE constructs an
embedding space to encode the similarity between the nodes,
and uses this space to generate new samples, while also
generating edges to model the relationship information for
these new samples [15]. We use a part of GraphSMOTE that
interpolates the generated embeddings of the minority class
to create new synthetic embeddings of that class. In particular,
we oversample the final embeddings generated by the RNN
model for the GNN-RNNmodel configurations or by the GNN
encoder in static GNN configurations with an oversampling
scale of 0.5, as scales below 0.8 typically lead to better GNN
performance [15]. In particular, we have included a positive
oversampling ratio as a hyperparameter specification, while
also allowing for a non-oversampling strategy with a ratio
of 0.

B. INFLUENCER DEFINITION
An influencer is defined as a super-app user with a credit card
who successfully refers another super-app user without a credit
card, resulting in the referred person obtaining a credit card.
In particular, we use the following intuition for node labeling.
Node labels are determined based on referral information
from credit card applications. A referrer is always a node
in the network, while the referred person may or may not
be in the network, depending on when they obtain a credit
card. A node is labeled as an influencer at the time of the
actual referral and remains labeled as such until the referred
person obtains a credit card, which is the point at which the
company has access to their usage data, up to amaximum of six
months. At that point, the influencer label is changed to a non-
influencer label, unless the customer has made other referrals
in the past six months, as obtaining a credit card is no longer
influenced solely by a referral, but by other factors as well,
and the information asymmetry between referred and non-
referred customers vanishes over time [39]. To maintain the
connectivity expressed by a referral, an edge of type ‘‘Contact’’
is created between the referrer and the referred person by
adding the referred person as a node with an edge to the
referrer. Figure 2 illustrates the labeling process. We do not
distinguish between the influencing strength (e.g., whether

2For privacy reasons, we cannot disclose the names of the cities.

one node is considered more influential than another one) as
we are dealing with binary classification.

C. LOSS FUNCTIONS
As part of our model optimization, we explore two loss
function configurations: weighted binary cross-entropy and
class-balanced focal loss. A traditional binary cross-entropy
(BCE) loss is not suitable for handling class imbalance, since
it treats both classes equally and prioritizes overall accuracy
rather than class-specific performance. Therefore, a custom
binary cross-entropy loss function is needed to handle class
imbalance and weight minority examples accordingly to
balance the trade-off between recall and precision, as follows:

ℓc(x, y) =

n∑
i=1

(
−wn,c[ pcyn,c · log(σ (xn,c))

+ (1 − yn,c) · log(1 − σ (xn,c))]
)
(6)

where c = 1 for single-label binary classification, n is the
number of samples, pc =

nneg
npos

is the weight of the positive
class, nneg (npos) is the number of samples in the negative
(positive) class, σ is a sigmoid function.

To go beyond simple inverse sample weighting, Cui et al.
[40] proposed a class-balanced focal loss, which addresses
the challenge of class imbalance in a more sophisticated way
by considering both the effective number of samples and the
relative loss for well-classified samples [40], [41], as follows:

ℓc(x, y) =

n∑
i=1

(
−

1 − β

1 − βnc

C∑
i=1

(1 − σ (xn,c))γ log(σ (xn,c))

)
(7)

where C is the total number of classes, nc is the number
of samples in the ground-truth class c, β ∈ [ 0, 1) is a
hyperparameter from the effective number of samples for class
term, γ is a focusing hyperparameter.

By adjusting a class-balanced term between no reweighting
and reweighting by inverse class frequency, the class-
balanced focal loss is able to handle class imbalance more
effectively [40].

D. HYPERPARAMETER TUNING
The best model configuration is found by an exhaustive grid
search over the hyperparameter space (Table 3). We select
the best model based on the average AUPRC value calculated
on seen and unseen nodes from the validation set as well
as based on stability of the training process, i.e., we ensure
that the model converges. In addition, the number of heads
in GAT is fixed at 2 to keep the computational complexity
manageable. We also set the focal loss hyperparameters (see
Section IV-C) γ and β to 2 and 0.999, respectively, as these
values have been found to perform best [40], [41]. For both
the GNN-RNN and Static GNN models, we applied two
regularization techniques that are commonly used for GNNs
to improve their performance and generalization capabilities:
layer normalization and a 50% dropout rate.
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FIGURE 2. Labelling intuition.

FIGURE 3. Train/validation/test setup.

TABLE 3. Hyperparameters tuning.3 The models are trained on NVidia
A100 GPU for 300 epochs with a learning rate of 0.0001 using the ADAM
optimizer [42]. The models are implemented using Pytorch Geometric [43].

E. GNN-RNN MODELS TRAINING
To evaluate model performance and ensure that it can
generalize, we use a rolling window strategy with a window
size of three months and a shift of one month to split the
data into train, validation, and test subsets according to the
out-of-time validation and testing strategy (Figure 3).
The train data spans seven months, resulting in five three-

month windows. Within each window, the trained model is

3For City 3, GAT-RNN models, the following configurations are not
feasible due to computing limitations: all models with GNN layers = 4;
configurations with GNN hidden dimensions = RNN hidden dimensions =

GNN embeddings = 512.

used to make predictions for the last month. We use a network
snapshot of each month as input to the GNN encoder, which
produces embeddings that are subsequently fed to the RNN
decoder, with the input hidden states initialized as a tensor
of ones for the first time window. For all subsequent time
windows, the hidden state produced by the first month of
the previous time window is used as the input hidden state.
The output produced by the RNN decoder at time t is used
as the input hidden state at time t+1. At the final timestamp of
the window, the hidden states produced by the RNN decoder
are fed into the FCN decoder to generate final probabilities,
and backpropagation occurs during training.
Both validation and test data consist of one three-month

window. The trained models are applied to a validation set
that is used to measure model generalization capability by
checking its convergence during training by inspecting the
validation loss. Additionally, a validation set is used to select
the best hyperparameter configuration (see Section IV-D).
A test set is used for the final model comparison (with the best
hyperparameter setting chosen on a validation set).

F. BASELINE MODELS TRAINING
The process of splitting the data into train, validation,
and test subsets and the training methodology for the
Features(+PR)-RNN models are similar to those of the GNN-
RNN models, with the only difference being the encoder part.

VOLUME 12, 2024 115033



E. Tiukhova et al.: INFLECT-DGNN: Influencer Prediction With Dynamic Graph Neural Networks

In this case, instead of using GNN embeddings, the encoder
consists only of node features (including the PageRank feature
for PR configurations), which are fed directly into the RNN
decoder. The rest of the training process follows the steps
outlined in Section IV-E (Figure 3).

Unlike the previous models with the RNN component, static
GNN models do not take dynamics into account. The training
data for the static model spans seven months, with predictions
made for each month and the training performance averaged
over those months. The validation and test sets consist of data
from a single month each, with predictions made for their
respective months (Figure 3b).

G. PERFORMANCE METRICS
We are solving the influencer prediction problem in a profit-
driven manner, and therefore the final model threshold
decision is made based on profit rather than predictive
performance at that particular threshold. Therefore, we use
threshold-independent metrics.

The area under the receiver operating characteristic (ROC)
curve (AUC), which plots the true positive rate (TPR) against
the false positive rate (FPR) for different classification
thresholds, is often calculated to compare model performance,
with a range of values from 0 to 1 and a baseline of 0.5.
In the presence of class imbalance, AUC may not be a reliable
performance indicator as it is necessary to consider the skewed
class distribution. The Precision-Recall (PR) curve is a better
alternative for imbalanced data as it summarizes performance
over different thresholds with precision and recall on its
axes [44]. To facilitate model comparison, the area under
the PR curve (AUPRC) can be calculated with the baseline
corresponding to the fraction of positives. While the AUPRC
metric is our primary criterion for evaluating performance,
we also report the AUC metric.

For both AUC and AUPRC, we report the values separately
for seen and unseen nodes. The term ‘‘seen nodes’’ refers to
nodes that the model encountered during backpropagation
in training, whereas ‘‘unseen nodes’’ refers to nodes that
only appear in the network later. Hence, ‘‘unseen nodes’’
for the validation data are the nodes that appeared in the
last month of the validation window, while the ‘‘unseen
nodes’’ for the test data include new nodes that appeared
in the last month of the test window as well as in the last
month of the validation window, as all of them were not part
of the training. Model performance on seen nodes shows
the models’ applicability for transductive learning which
focuses on making predictions specifically for the given
training instances without generalizing to unseen instances,
while performance on unseen nodes highlights the ability to
generalize from observed data to make predictions on unseen
instances, i.e., inductive learning.
We also report training time and carbon footprint estimate

measured in equivalent grams of CO2 (gCO2eq), as we also
want to evaluate the tradeoff between energy efficiency and
prediction performance [45].

V. RESULTS
Table 4 displays the values of the performance metrics. The
results for City 1 demonstrate that GIN-RNN models perform
similarly to dynamic non-GNN models in terms of AUC for
both seen and unseen nodes, with GIN-GRU being the best
performing model for seen nodes. The AUPRC values for
seen nodes are also comparable across these model types, with
GAT-LSTM achieving the highest value. Notably, the Static
GIN model delivers exceptional performance in terms of AUC
on unseen nodes. Nevertheless, the highest AUPRC values
for unseen nodes are obtained by the GIN-LSTM and GIN-
GRU models. The GIN-RNN models achieve comparable
time performance to the baseline models, while the GAT-
RNN models have the longest training time and produce the
highest amount ofCO2 emissions due to an expensive attention
computation.

TABLE 4. Models performance on test data. Best model configurations can
be found in Tables 7-9.

For the larger network of City 2, the GNN-RNN models
obtain similar AUC results as the dynamic non-GNN models
on seen nodes. However, the best AUC values on unseen
nodes are obtained by the static GIN model, followed by
the GIN-GRU model. The GIN-RNN models show the best
AUPRC performance on both seen and unseen nodes, with a
strong dominance on unseen nodes and an AUPRC uplift of
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about 0.12 from the best performing dynamic non-GNNmodel.
Overall, the GIN-GRU model provides the best performance
based on most of the metrics. In terms of time and energy
performance, the pattern is the same as for City 1: complex
GAT-RNN models take the longest time to train and produce
maximum carbon emissions.
For the largest network of City 3, it becomes apparent

that the GNN-RNN models outperform the baseline models.
In particular, the GIN-RNN models achieve the highest AUC
values on both seen and unseen nodes, indicating their superior
performance. Additionally, in terms of AUPRC on seen and
unseen nodes, all GNN-RNN models perform exceptionally
well, with no clear winner among them.

In summary, more sophisticated models, and in particular
the GIN-GRU combination, perform better as the network
grows, becoming dominant in the largest network of all.
This is consistent with other results in deep learning, that
confirm how data-hungry these models can be: in order
to improve on simpler alternatives, it is necessary to have
enough data diversity to achieve effective results. In terms of
computational time, models with pure attention mechanisms
are the most complex to train, which is consistent with their
quadratic complexity. In our models, this does not translate
into better performance, so modelers should carefully test
other alternatives to benchmark the right model. Interestingly,
the use of a balanced error measure, AUPRC, shows that more
powerful models do present better results. As discussed earlier,
the AUC performance can be misleading in the presence of
high imbalance, so measures such as AUPRC can be more
helpful.

Figures 4a, 4b, and 4c display train/validation losses, AUC,
and AUPRC convergence plots for the consistently well-
performing GIN-GRU models for all three cities. These plots
demonstrate that the GIN-GRU model achieves convergence
across all networks. While the validation AUC grows
consistently with epochs for all cities, Figure 4c reveals that
the model training for the largest city, City 3, is the most
stable, with AUPRC gradually increasing with each epoch.
In contrast, the validation AUPRC for City 1 is the least stable.
Therefore, providing more data to the model improves both
its training stability and accuracy. The convergence plots for
the other models can be found in Online Appendix A.

Appendix C, Tables 7-9 present the optimal hyperparameter
configurations for the GNN-RNN models and the benchmark
models. Across all cities, focal loss is generally the preferred
loss function for most models. The optimal number of layers
in the GNN encoder shows no clear pattern for City 1, while
for Cities 2 and 3, shallower networks with two layers are
favored. A similar trend is observed for the RNN model:
shallower networks with one layer are preferred for Cities
1 and 3, whereas no distinct pattern is evident for City 2.

There is no consistent preference for the number of hidden
dimensions and embeddings in the GNN encoder, although
configurations with 512 hidden dimensions are slightly
favored for GNN-RNN architectures. The optimal number
of hidden dimensions for the RNN component increases

with data size: 256 dimensions are preferred for City 1,
and 512 dimensions for City 3. Regarding the SMOTE rate,
no oversampling typically results in better performance for
most models. Notably, none of the GNN-RNN models benefit
from oversampling, with zero rate chosen for all GNN-RNN
combinations.
The analysis indicates that optimal model configurations

are highly dependent on the underlying data and its specific
characteristics. Although some hyperparameters, such as focal
loss and the absence of oversampling, remain consistently
optimal across the cities, most hyperparameters vary between
the models built for different cities. Therefore, each city
requires a tailored model that is trained and optimized based
on its own data, as we have not been able to establish the
generalizability of model configurations across cities.

VI. PROFIT EVALUATION
To make use of the model predictions, the decision on the
classification threshold must be made in order to return
the final predicted labels used for a marketing campaign.
When dealing with severe class imbalance, the default
threshold of 0.5 used for the balanced tasks can lead to
poor performance [46]. Therefore, we tune this threshold
by applying the predict-then-optimize approach introduced
by Vanderschueren et al. [8]: a cost-insensitive influencer
detection model is used to optimize decision making, i.e.,
tuning a classification threshold to obtain the maximum
expected profit of potential customers brought by influencers.
Since profit is customer-specific, we use instance-dependent
cost-sensitive thresholding [8].
We assume that the influencer detection model is used for

targeted marketing, i.e., the influencers predicted by the model
are contacted with a contact cost c. True influencers are also
rewarded at a cost of ic. As we know from the data provider,
all the customers have been targeted during a time frame of
the study. However, the assumption that this is permanent is
unrealistic, so we need to model the impact of a targeted policy.
Hence, we can introduce a probability p of not referring new
customers while having the opportunity to do so (being an
influencer). Since we know that everyone has been targeted,
true influencers have a probability of not referring equal
to 0 (p = 0). For non-influencers, this probability is a free
parameter to be estimated (p ̸= 0). Consequently, (1 − p)
represents the probability that an actual influencer will still
bring new customers even without being targeted.
The total profit of the campaign depends on the accuracy

of the model’s predictions and comprises the profit of four
different categories, each constructed based on the actual and
predicted influencer labels (Table 5). The first category is the
Target Influencer (TI) category, which corresponds to the True
Positive predictions. The profit of this category is calculated
as the future profit of potential customers Pu referred by an
influencer u, reduced by the incentive cost ic. In addition,
a contact cost c is subtracted once, as the action to contact
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FIGURE 4. Convergence plots, GIN-GRU models.

TABLE 5. Profit. Nu is the set of people referred by u, c is a contact cost, ic is a reward cost, Pv is a future 6-month profit of a customer v calculated as an
interest earned on the outstanding balance on a credit card; p is a probability of not referring new customers while having the opportunity to do so (being
an influencer).

the customer may have a cost.4 The TNI category represents
False Positive predictions: the customers who were targeted
but did not refer other customers. The profit from this category
is negative because we spend money to contact them and do
not get new customers in return. The NTI category consists
of False Negatives: true influencers who were not contacted.
We expect to get profit from this category of customers with the
aforementioned probability 1− p, minus the reward cost of ic.
The last category NTNI represents True Negative predictions
that bring neither profit nor cost. We search for an optimal
threshold that maximizes profit on the validation data, and then
use this threshold on the test data to obtain a profit estimate.
Hence, we solve the optimization problem as follows:

argmax
t

Ptotal(t) = {t | Ptotal(t) = max
t ′

P(t ′)} (8)

where t is a classification threshold, Ptotal is a total
profit calculated as Ptotal =

∑
S∈G

∑
u∈S Pu,G =

{TI ,TNI ,NTNI ,NTI }.

4In an app-based contact strategy, this cost can be very marginal.
In traditional marketing, this cost can escalate quickly. Users must calibrate
these values based on their situation.

We illustrate the aforementioned framework using the best
performing GIN-GRU model for City 2. The Ptotal calculation
has three parameters ic, c, and p that influence the resulting
profit. We obtained a reward parameter from the data provider
and normalized it to a generic value of 100 monetary units.
All values are expressed based on these normalized results.
We solve the optimization problem for each combination of c
and p with c ∈ [0, 80] with a step of 10 (the step is reduced to
5 in the interval [0, 30] to better illustrate smaller values of c)
and p ∈ [0, 1] with a step of 0.05. We vary a threshold from
0 to the maximum probability score returned by the model,
which is 0.78 for the validation month data.

Figure 5a shows how the optimal classification threshold
changes for different combinations of c and p, while Figure 5b
shows how these thresholds are applied to obtain a profit
estimate for these combinations. In particular, when the
incentive comes at no cost, the most profitable solution is
to contact everyone in the customer base, regardless of the
value of p. This is also the case when the maximum profit is
achieved. This is not surprising, since targeting false positives
(TNI category) comes at no cost, while targeting true positives
(TI category) brings non-negative profit. However, this case is
not realistic because of the need to contact customers through
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different channels, which has a non-negative cost. The profit
is also maximal when the probability of referral without being
targeted is one, i.e., 1 − p = 1, which represents a situation
where no one is targeted because the profit obtained from the
true influencers is higher than when the target campaign is
activated, which comes with positive contact costs.
With an increasing contact cost c and a decreasing

probability of referral (i.e., increasing probability p of not
referring), the optimal threshold increases: it is no longer
economically feasible to contact everyone. This is a more
realistic situation, where the model brings added value in
selecting the best customers to contact. In this case, the
profit becomes smaller with increasing values of probability
p. This is expected because as probability p increases, the
need for the marketing campaign diminishes, as the likelihood
of recommendation is high enough without the need to be
stimulated by a target. As soon as the contact cost c becomes
higher than 60, it is no longer feasible to target customers:
the cost becomes higher than the added value of using the
model’s predictions, regardless of the value of p. At this
point, the profit is negative and targeted marketing is no
longer economically rational. Thus, profit analysis can be
used to determine the optimal value of a contact cost at
which the marketing campaign still makes sense from a profit
perspective.
A similar analysis can be performed for the case where ic

is varied instead of c (Figure 6). In this scenario, we can set c
to 35 with ic ∈ [0, 250] with a step of 50 and p ∈ [0, 1] with
a step of 0.05. Similar to the p vs. c case, if the probability
of referring without being targeted (1 − p) is 1, the targeting
campaign makes no sense: all the influencers will refer to
other customers anyway, without being nudged to do so. For
increasing probability p and decreasing reward cost ic, the
optimal threshold value decreases as more customers are
predicted as influencers. When the reward cost becomes too
high (≥ 200), it is again optimal to not use a model, and
rely on referrals without a targeting campaign. When these
thresholds are applied to test data to obtain profit estimates,
we observe the patterns similar to the p vs. c case: the
profit decreases with increasing values of p and increasing
reward costs, and becomes negative for reward costs greater
than 200.
The above examples illustrate that prior knowledge

is required to deploy influencer prediction models in
production. The optimal thresholds should be estimated
based on this prior information to get the maximum
benefit from the model. The probability p, determined by
personal brand attitudes and marketing preferences [20],
is beyond the company’s control and can be modeled in
order to estimate its values depending on aforementioned
characteristics. We believe this is an interesting topic for future
research.

5The value is chosen based on the conversations with the data provider; it
must be chosen based on the use case and the cost structure.

VII. DISCUSSION
As illustrated in Section V, the GNN-RNN models, in par-
ticular the GIN-GRU combination, dominate the baseline
models, and this dominance is most pronounced on unseen
nodes being crucial for inductive learning that focuses on
generalizing to data not encountered by a model. For this
configuration, the best combination of performance on seen
and unseen nodes is obtained on the largest network of City 3,
with consistently high values for all performance metrics.
In other words, as task complexity increases, which is the
case for inductive learning, the applicability of complex GNN-
RNN models is justified. On the contrary, the performance
of non-GNN dynamic baseline models, i.e., Features(+PR)-
RNNmodels, deteriorates with increasing network size. While
on the smallest network of City 1, these models perform
comparable to the GNN-RNN models, the opposite is true for
the largest network of City 3. Therefore, for smaller networks,
it is advisable to choose simpler models due to the limited
performance gain achieved by using GNN-RNN models, but
as the networks scale, it is necessary to leverage the complexity
of deep learners.

When comparing the two types of GNNs, the GIN encoder
emerges as the clear winner in both GNN-RNN and static
GNN model types due to its ability to be trained in less
time and with fewer CO2 emissions, while consistently
outperforming the GAT in terms of detection performance.
This superiority can be attributed to the complex network
structures we are dealing with: GINs are universal and
invariant to the graph structure, whereas GATs are more
sensitive to it, which is disadvantageous for complex dynamic
networks. This illustrates a trade-off between complexity
and performance: the increased complexity of GATs is not
justified by a relatively small performance gain. Moreover,
in the realm of inductive learning, the importance of the
GNN component surpasses that of network dynamics. This
is particularly true in the context of the GIN encoder, where
models incorporating a GNN encoder consistently exhibit
superior AUC and AUPRC values compared to non-GNN
dynamic models. Nonetheless, network dynamics play a
crucial role and must be captured: the best results are obtained
when GNNs and RNNs are coupled as a single model. Given
the time and CO2 emissions of the GIN-RNNmodels, they are
also the best candidates for production use: on average, they
are the fastest to train with the least carbon footprint. Given the
rising cost of energy, this is an important advantage of these
models.
The profit framework highlights the targeting advantages

that the proposed models, particularly the GIN-GRU model,
can provide. The experiments illustrate that the applicability
of the model depends heavily on both the costs of contacting
a customer and the value of the reward offered to the referrer.
According to Ryu and Feick, this reward should be non-zero,
and the model is found to be useful in cases with lower
contact/reward costs and higher probabilities of not referring
without being targeted [20]. Since the company can only

VOLUME 12, 2024 115037



E. Tiukhova et al.: INFLECT-DGNN: Influencer Prediction With Dynamic Graph Neural Networks

FIGURE 5. p vs. c analysis.

FIGURE 6. p vs. ic analysis.

influence the contact/reward costs, they should be kept as
low as possible. However, since there is a positive relationship
between a reward size and a referral likelihood [20], a trade-off
between the two should also be considered (see future research
directions in Section VIII).

VIII. CONCLUSION
Network data is getting increased attention due to its ability
to reveal complex relationships that may go unnoticed
by traditional data sources. Marketing is no exception,
as network information can be used to promote products
and services through marketing initiatives.Given that DGNNs
have demonstrated effective learning from evolving network
data [17], this paper investigated the optimal strategy
for deploying DGNNs to solve the inductive influencer
prediction problem, emphasizing profit-sensitive decision-
making optimization. Four DGNN configurations were trained
and evaluated on network data from three cities and compared

with dynamic non-GNN and static GNN baseline models. The
evaluation was performed based on the AUC and AUPRC
metrics calculated on seen and unseen nodes, as well as on
the time performance and environmental impact of a model.
A predict-then-optimize approach was used to illustrate the
usability of the models in real business environments.
First, our study shows that using DGNNs for inductive

influencer prediction is highly advantageous. By incorporating
dynamic network information, these models demonstrate
better generalization to unseen data while maintaining strong
detection performance on nodes encountered during training.
Among the different types of encoders tested, the GIN model
is the most effective due to its ability to handle universal graph
structures. We therefore recommend the use of DGNNs with
a GIN encoder for influencer prediction tasks that require
generalization to new nodes.

Next, we illustrate that applying DGNNs to larger networks
provides the best combination of detection performance
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and model stability. In these cases, DGNNs are particularly
useful because they can effectively capture the increasing
complexity that cannot be fully captured by centrality metrics
such as PageRank. However, for smaller networks with less
informative topology, simpler dynamic non-GNN models can
perform comparably to DGNNs. Therefore, the choice of
model must be carefully evaluated to determine whether the
amount of data available justifies the use of more sophisticated
models, considering the performance and technical debt of
running them.
Finally, the practical application of the model depends

heavily on the additional parameters, both controllable and
external factors, which can at best be estimated. We conclude
that a proper analysis of the cost of the target campaign,
together with the cost of referral marketing, should be
conducted to find the optimal threshold for final deployment.
In our case, we recommend a careful study of the minimum
reward necessary to induce a probability of response, using
the proposed methods to evaluate the results. A/B testing and
similar strategies can be used to fine-tune the value of the
incentive.
While this study provides valuable insights into the

applicability of DGNNs for influencer prediction, it is
important to acknowledge its limitations. The approach used
to construct the networks can influence model performance.
Investigating the impact of network topology on performance
is left for future research. In addition, the profit-driven
evaluation framework presented in this study relies on the
probability of referring without being targeted, which requires
explicit modeling. Future research can focus on modeling this
probability.

APPENDIX A
NODE FEATURES

TABLE 6. Node features description.

APPENDIX B
NETWORK CHARACTERISTICS

FIGURE 7. Network characteristics.

APPENDIX C
HYPERPARAMETER CONFIGURATIONS

TABLE 7. Model configurations: City 1.
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TABLE 8. Model configurations: City 2.

TABLE 9. Model configurations: City 3.
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