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ABSTRACT Extracting meaningful information from high-dimensional data poses a formidable modeling
challenge, particularly when the data is obscured by noise or represented through different modalities.
This research proposes a novel non-parametric modeling approach, leveraging the Gaussian process (GP),
to characterize high-dimensional data by mapping it to a latent low-dimensional manifold. This model,
named the latent discriminative generative decoder (LDGD), employs both the data and associated labels
in the manifold discovery process. A Bayesian solution is derived to infer the latent variables, allowing
LDGD to effectively capture inherent stochasticity in the data. Applications of LDGD are demonstrated
on both synthetic and benchmark datasets. Not only does LDGD infer the manifold accurately, but its
accuracy in predicting data points’ labels surpasses state-of-the-art approaches. In the development of
LDGD, inducing points are incorporated to reduce the computational complexity of Gaussian processes
for large datasets, enabling batch training for enhanced efficient processing and scalability. Additionally,
we show that LDGD can robustly infer manifold and precisely predict labels for scenarios in which data size
is limited, demonstrating its capability to characterize high-dimensional data with limited samples efficiently.
These collective attributes highlight the importance of developing non-parametric modeling approaches to
analyze high-dimensional data.

INDEX TERMS High-dimensional data analysis, Gaussian process models, latent variable, variational
inference, decoding.

I. INTRODUCTION
Dealing with high-dimensional data presents significant
challenges, often resulting in analytical complications
and increased computational demands. Dimensionality
reduction techniques aim to transform complex, high-
dimensional datasets into more manageable and insightful
lower-dimensional representations [1]. These techniques
enhance data understanding and interpretation across various
scientific domains, including but not limited to neuroscience,
finance, and biology [2], [3], [4], [5]. For instance, in neural
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data analysis, dimensionality reduction simplifies the vast
amount of data from brain imaging studies or neural
recordings, aiding in the identification of patterns of activity
underlying cognitive processes or disorders [6], [7], [8].

Dimensionality reduction techniques fall into two main
categories: parametric and non-parametric. Non-probabilistic
methods include principal component analysis (PCA) [9],
linear discriminant analysis (LDA) [10], and more recent
approaches including t-distributed stochastic neighbor
embedding (t-SNE) [11] and uniform manifold approxima-
tion and projection (UMAP) [12]. These methods are widely
used for data simplification and visualization. Despite their
significance in advancing science and their popularity, they
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often lack the ability to provide a sophisticated understand-
ing, such as stochasticity in the inferred projections, and
are highly sensitive to noise and outlier data points. On the
other hand, probabilistic models, including probabilistic PCA
(PPCA) [13], variational auto-encoders (VAE) [14], and
Gaussian process latent variable model (GPLVM) [15] are
gaining prominence as dominant approaches in data analysis.
The GPLVM and PPCA address major shortcomings of non-
probabilistic methods, as their inference of low-dimension
representation is probabilistic rather than deterministic.
GPLVM is built upon PPCA, with the advantage of
utilizing non-linear mappings to find lower-dimensional
representations. Despite significant progress in these models,
challenges persist, and opportunities exist to enhance
their ability to characterize complex and high-dimensional
data. A key area for improvement is the integration of
label and category information, which these models often
overlook due to their predominantly unsupervised nature.
An important challenge facing Gaussian process-based
models like GPLVM is their excessive computational cost,
especially as the data size increases. Our research seeks to
tackle these computational challenges and employ label and
category information to enhance the scalability and utility of
models like GPLVM.

To address the high computational cost associated with
non-parametric models, several approaches have been devel-
oped. The Nyström approximation [16] offered an initial
method to reduce computational requirements by sampling
a subset of the data to approximate the Gaussian process
covariance matrix. This was followed by the introduction
of the pseudo-inputs concept by [17], which parameterizes
its covariance using the locations of M pseudo-input points,
determined optimally through gradient-based optimization.
Building upon these foundations, [18] introduced variational
inducing points, utilizing variational inference for the optimal
selection of inducing points. Furthermore, stochastic gradient
descent-based variational inducing points, developed by [19],
employed stochastic optimization to further enhance scalabil-
ity for large datasets. These advancements lay the foundation
for further enhancements in this category of models. For
example, a method for human action recognition using an
improved sparse Gaussian process latent variable model
and hidden conditional random field has achieved better
feature dimensionality reduction and an average recognition
accuracy of 93.68% [20].

Alongside advancements in enhancing the scalability of
GPLVMs, there is growing research aimed at integrating
labels or categories into the dimensionality reduction process.
This integration allows for the inference of both the
underlying structure and its relevance within the mapping.
Incorporating the labels of data points into the dimension-
ality reduction process has been explored in approaches
such as supervised PPCA (SPPCA) [21]. This approach
employs two linear mappings: one mapping from the
latent space to the input space, representing the original

high-dimensional data, and another mapping from the latent
space to the output space, corresponding to the data points’
label or category or other supervised information. This
concept was extended to nonlinear dimensionality reduction
techniques, especially with the GPLVM approach. The
discriminative GPLVM (D-GPLVM) applies principles of
generalized discriminant analysis (GDA) [22] to modify
latent positions within the data, aiming to bring data points
of the same class closer and distance those of differing
classes. Here, latent positions denote the model’s estimated,
unobserved variables that capture the underlying structure of
the data. Other approaches, such as the supervised GPLVM
and shared GPLVM (SGPLVM) [23], [24], [25], employ
two distinct GPLVMs to uncover nonlinear relationships
among latent variables, data, and labels. The integration of
SGPLVM with SPPCA, also known as supervised latent
linear GPLVM (SLLGPLVM), was presented by [25]. This
approach employs two mapping functions to link the input
and output spaces via a latent variable space. To minimize
computational costs, SLLGPLVM employs a linear mapping
from latent variables to high-dimensional data, similar to the
method used by [26]. While this modification reduces the
computational cost, it sacrifices the flexibility to capture com-
plex nonlinear relationships inherent in the data, potentially
limiting the model’s ability to model highly intricate patterns
found in more complex datasets properly. A further extension
to SGPLVM is the supervised GPLVM based on a Gaussian
mixture model (SGPLVM-GMM) [26]. SGPLVM-GMM
assumes that latent variables follow a Gaussian mixture
distribution, where mixture components are conditioned on
class labels. Thus, the model simultaneously learns to reduce
data dimension and classify data samples by predicting
class probabilities. These models, including SGPLVM and
its extensions such as SLLGPLVM and SGPLVM-GMM,
have successfully utilized latent variables and class labels to
enhance feature extraction and data classification. However,
they primarily rely on point estimates of the latent process,
thereby increasing the risk of overfitting, especially in
scenarios where linear relationships do not fully capture data
structure. The semi-supervised multimodal Gaussian process
latent variable model with pseudo-labels (semi-MGPPL) [27]
addresses interest level estimation by integrating features
from multiple modalities, although it faces challenges in
obtaining behavior features for new test samples and requires
all modalities for latent variable calculation.

Although these models have made progress in incor-
porating training labels into latent process inferencing,
a gap remains in their ability to manage the complexities
introduced by noise and limited sample sizes. To address
these challenges, our research aims to develop a fully
Bayesian dimensionality reduction solution that integrates the
samples’ labels. Another challenge with previous GP-based
models is scalability, which this work addresses through
variational inducing points. The distinctiveness of our model
lies in employing a Bayesian approach for both training
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and inference while assuming a prior over latent space. The
Bayesian approach helps us better manage data complexity
introduced by noise and missing points; it also lets the
framework be applied to datasets with a limited sample
size. Our approach, which can be considered an extension
of SGPLVM, presents a robust and scalable method for
dimensionality reduction as we incorporate the inducing
points. Through multiple examples, it is demonstrated that
the proposed method enhances the feature extraction process
by mapping data points to a lower dimension and ensures
the retention of essential data patterns. We illustrate that
our proposed approach can be used as a robust decoder
model to draw low-dimensional representations and labels for
new data points. In deriving the model, Gaussian processes
(GPs) and Bayesian inference are used, turning the model
into a non-parametric approach. As such, the solution
prevents overfitting and is best suited for datasets with a
limited number of samples. Our proposed approach can be
readily applied to datasets from various fields. As such,
the focus is on highlighting the framework application and
evaluating its performance through synthetic and benchmark
datasets.

In this research, we introduce our method, which is
called Latent Discriminative Generative Decoder (or, briefly,
LDGD) model. In LDGD, a low-dimensional random vari-
able defines the underlying generative process responsible
for generating both the continuous values and label data.
This random variable defines the covariance structures of two
Gaussian processes (GPs)—one for the continuous measure-
ment and another for the label. A Bayesian inference solution
integrated with the variational inducing points approach is
employed to train the model. The usage of inducing points
enables efficient management of computational costs during
training and inference. Specifically, we draw two sets of
inducing points, one set for each GP. LDGD achieves a
balanced prediction accuracy and data generation capability
with two sets of inducing points. Additionally, a batch
training pipeline for LDGD is introduced, which significantly
aids in faster training and enhances the model’s scalability
for larger datasets. LDGD also serves as an adaptive feature
extraction and classification solution, allowing for predicting
data point labels from continuous values. Moreover, it func-
tions as a generative model capable of producing data in
high-dimensional space. To facilitate further research and
development, the code for LDGD implementation, along
with the experiment files and datasets used in this study,
is publicly available at the following GitHub repository:
https://github.com/Navid-Ziaei/LDGD.

While some of these attributes are shared with varia-
tional auto-encoders (VAE), we argue that this framework
represents a substantial advancement over VAE. A key
enhancement of LDGD over VAEs is its fully Bayesian
inference process, which quantifies prediction uncertainty
as the posterior variance. Another notable advancement is
LDGD’s ability to partially optimize the dimensions of
latent variables during the training phase, enhancing both

feature extraction and model interpretability. Additionally,
LDGD’s Bayesian framework inherently protects against
overfitting, making it well-suited for complex datasets
with limited sample sizes. These advantages collectively
position LDGD not just as a mere alternative but as a
significant advancement over traditional encoder-decoder
models, especially in high-dimensional data analysis.

The subsequent sections present the technical and applied
aspects of the LDGD modeling framework. First, the
intricacies of the LDGD framework are delved into, covering
its formulation, model training, and inference procedures
in Section II. Additionally, a variant of LDGD, termed
‘‘fast LDGD,’’ which integrates a neural network into the
LDGD framework to enhance its computational efficiency
and potentially predictive power, is introduced. In Section III,
we discuss the performance and attributes of the proposed
model through evaluations on a synthetic dataset. Its
applicability is then demonstrated across several benchmark
datasets, including Oil Flow, Iris, andMNIST. The distinctive
features of LDGD are compared with other methods, such
as SLL-GPLVM, SGPLVM, and variational auto-encoder
model to better understand its unique advantages and
improvements of our proposed framework. Section IV
discusses the results obtained in Section III addresses the
potential significance of the LDGD model in efficiently
reducing the dimensionality of data and its strong expressive
power. Finally, Section V concludes the article with a
summary of the findings and potential future research
directions.

II. MATERIALS AND METHODS
A. GAUSSIAN PROCESS LATENT VARIABLE MODEL
Gaussian processes (GP) are a powerful tool in machine
learning for defining distributions over functions, where
function values at any finite set of points follow amultivariate
normal distribution [28]. This makes GPs suitable for regres-
sion tasks, leading to Gaussian Process Regression (GPR),
which infers the function that best fits the observed data with
uncertainty measures [29]. Inducing points are introduced to
summarize the dataset information to handle large datasets,
reducing inference complexity [18]. They allow scalable GP
models by approximating the full covariance matrix with
a lower-rank matrix based on these inducing points. The
connection between Gaussian processes, GPR, and inducing
points is key to efficiently applying GPs to real-world data.
These concepts are detailed in Appendix A.

Gaussian process latent variable models emerge from
the necessity of understanding high-dimensional data by
projecting it into a simpler and much lower-dimensional
latent space. At its core, a GPLVM is built upon the
hypothesis that even though data Y ∈ RN×D are observed,
there exists a latent representation X ∈ RN×Q, with
Q ≪ D, that captures the essential features or structures
present in the high-dimensional data. This idea was inspired
by PPCA, evolving into a nonlinear dimensionality reduction
method that extends the capabilities of its precursor [13].
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The relationship between GPLVM and PPCA is explained in
Appendix B. In GPLVM, the conditional distribution of Y
given X is assumed to be:

p(Y | X) =
D∏
d=1

p(y:,d | X), (1)

where y:,d is d th column ofY. Each element of y:,d is a noisy
realization of the function fd ∈ RN at location xi defined by

yi,d = fd (xi)+ ϵd , (2)

where ϵd ∼ N (0, σ 2
d ) and fd ≡ [fd (x1), . . . , fd (xN )] is

function values with GP prior. This leads to the following
conditional distribution:

p(y:,d | X) = N (y:,d | 0,KNN + σ
2
d IN ), (3)

with KNN being an N ×N covariance matrix defined using a
kernel function as a function of the latent space X.
The ARD kernel is used for the kernel [29]. This kernel is

generally used for determining the relevance of dimensions
in X by tuning αq. A typical ARD kernel is defined by:

k(x, x′) = σ 2
f exp

−1
2

Q∑
q=1

αq(xq − x ′q)
2

 , (4)

where x and x′ represent two input vectors in the latent space.
The term σ 2

f denotes the variance parameter of the kernel,
dictating the scale of the output space. Each αq is an inverse
length-scale parameter associated with the qth dimension
of the latent space, which influences how variations in
that particular dimension affect the kernel computation.
These length-scale parameters allow the kernel to adjust the
relevance of the feature dimensions.

The GPLVM can be interpreted as a variant of a
multi-output Gaussian process. Every dimension of the
observed data, Y, is a separate realization of a Gaussian
process, all derived by a common latent structure [30].
To fit GPLVM to a dataset, a suitable representation of the
latent variables that best explain the observed data must
be found. This can be done by estimating ARD kernel-
free parameters. Three primary methods used for finding
suitable representation include point estimate, Maximum A
Posteriori (MAP) [15], and a fully Bayesian approach [31].
Whereas the point estimate method can be more susceptible
to overfitting, the Bayesian approach typically offers a better
generalization to data due to its integration over uncertainties.
The payoff is that the Bayesian approach is computationally
more expensive and often requires sophisticated inference
techniques such as Markov Chain Monte Carlo (MCMC)
[32] or variational inferencing [33]. This research focuses
on Bayesian methods to derive a more robust inference.
In the Bayesian framework, it is imperative to specify a prior
distribution for the latent variables. It is assumed that the prior
on the latent variables is Gaussian, defined by:

p(X) =
N∏
n=1

N (xn | 0, IQ), (5)

where xn denotes the nth row of the latent variables matrixX.
With this prior, the marginal probability of Y involves the
integral, which is defined by:

p(Y) =
∫
p(Y | X)p(X)dX

=

∫ D∏
d=1

p(y:,d | X)p(X)dX. (6)

This integral corresponds to the expectation of conditional
probability of Y over X. The integral does not have a closed-
form solution, asKNN is a function ofX. To find the marginal
distribution, Jensen’s inequality is applied, which provides a
variational lower bound on the log likelihood:

log p(Y) ≥
D∑
d=1

Eq(X)[log p(y:,d | X)]

− KL(q(X) ∥ p(X | Y)). (7)

It is necessary to pick a proper q distribution to achieve a
tight bound here. The number of samples in the training set
introduces additional complexities to the model; thus, we will
use the inducing points to derive a more tractable solution to
calculate the bound. Different strategies have been proposed
to calculate the bound, including the solution proposed
by [19], which creates a closed-form solution for the bound.
[34] employed the variational distribution to simplify the
problem by enabling lower-dimensional sampling conducive
to convergence. Here, we discuss our approach, which
integrates the labels or categories attached to each data point
into the formation of our low-dimensional representation,
thereby facilitating the classification of these labels. This has
been accomplished through the doubly variational method,
upon which the LDGD has been developed.

B. LATENT DISCRIMINATIVE GENERATIVE DECODER
MODEL
While the idea behind LDGD is the same as GPVLM,
our objective is different. In LDGD, the aim is to infer
the latent process that can capture essential features of the
observed data and separate the classes in the data, contrasting
with GPLVM, which primarily focuses on dimensionality
reduction without explicitly optimizing for class separability.
Essentially, the goal is to identify a set of features in the
data that can be used for both data generation and achieving
high accuracy in the data class or category prediction. It is
noted that LDGD inference will differ from those derived
by generative auto-encoders, as the inferred latent process
needs to capture those essential features of the data that are
expressive of labels or categories. The following section will
delve into the framework definition and its different modeling
steps, including training and prediction.

1) OBSERVED DATA
In LDGD, It is assumed the observed data consists of
continuous measures, represented as Yr

∈ RN×D, and

VOLUME 12, 2024 113317



N. Ziaei et al.: Bayesian GP-Based LDGD Model for High-Dimensional Data

corresponding classes of data or categories, represented as
Yc
∈ RN×K . N denotes the number of samples, D is the

dimension of continuous measures per sample, and K is the
number of distinct categories or classes per sample. Each
row of Yr , denoted as yri , corresponds to the continuous
measurement for the ith sample. Each column, denoted
as yr

:,d , represents the data for the d th dimension across
all samples. Similarly, each row of Yc, denoted as yci ,
corresponds to the one-hot encoded class label for each
sample.

2) LATENT VARIABLES
LDGD incorporates latent variables X ∈ RN×Q, to capture
the essential features driving both Yr and Yc. Here,
Q represents the latent space’s dimensionality, which is
generally much smaller than the dimension of the observed
data. A Gaussian prior is assumed for these latent variables,
expressed as:

p(X) =
N∏
i=1

N (xi | 0, IQ), (8)

where 0 is a zero vector and IQ is the identity matrix of size
Q× Q.

3) GAUSSIAN PROCESS PRIORS
To model the relationships between the latent space and the
observed data, two Gaussian process (GP) priors are imposed
on function values Fr and Fc. Specifically, The GP priors are
defined over Fr ∈ RN×D, for the continuous measurements,
and Fc ∈ RN×K for the categorical measurements or labels.
These prior distributions are defined by:

p(Fc | X) =
K∏
k=1

N (fc
:,k | 0,K

c
NN ) (9)

p(Fr | X) =
D∏
d=1

N (fr:,d | 0,K
r
NN ), (10)

where Kc
NN and Kr

NN are the N × N covariance matrices
for the GPs corresponding to class labels and observed
measurements, respectively. The element in the ith row and
jth column of these matrices are defined by kernel functions
kci,j = kψ (xi, xj) and kri,j = kθ (xi, xj), with θ and ψ as
the kernel parameters. Furthermore, fc

:,k represents the kth
column of Fc, and fr

:,d denotes the d th column of Fr . The
independence assumption embedded in Equation (9) and
Equation (10) is a direct consequence of the dual formulation
in PPCA. A detailed explanation of duality is provided in the
Appendix B.

4) OBSERVED DATA MODEL
LDGD delineates the relationship between the features and
the observed data. This relationship is modeled by:

p(Yr
| Fr ) =

N∏
i=1

D∏
d=1

N (yri,d | f
r
d (xi), σ

2
d ) (11)

p(Yc
| Fc) =

N∏
i=1

K∏
k=1

Bernoulli(yci,k | g(f
c
k (xi))), (12)

where σ 2
d is the variance of the Gaussian noise and g(·) is

a squash function, such as the Sigmoid or Probit, ensuring
the output represents a probability. For the ith element in
the d th column of Fr , f ri,d ≜ f rd (xi) is defined. Similarly,
for the ith element in the kth column of Fc, f ci,k ≜ f ck (xi)
is defined. Figure 1 shows the graphical model behind the
LDGD framework.

5) MARGINAL LIKELIHOOD LOWER BOUND
Equations (8) to (12) define the LDGDmodel. It is necessary
to find the marginal distribution of Y r and Y c to fit the model
to the dataset. The marginal distribution is defined by:

p(Yr ,Yc) =
∫
p(Yr ,Yc,Fr ,Fc,X) dFr dFc dX. (13)

Similar to Equation (6), this integral has no closed-form
solution. Additionally, calculating the integral numerically
is impractical due to the high dimensionality of the latent
elements over which the integral is taken. Given there is
no solution to find this integral, maximizing the evidence
by adjusting its free parameter becomes impossible. Instead,
a lower bound for the marginal likelihood is derived, similar
to what is shown in Equation (64). To achieve this, inducing
points and variational distributions are used. As shown later,
this solution will have a modest computational cost and
can be applied to high-dimensional datasets. Besides, model
training can be done through batches of datasets, making it
appropriate for iterative training.

a: INDUCING POINTS AND VARIATIONAL DISTRIBUTIONS
In Appendix A, the utilization of inducing points for GP
regression is explained. Similarly, in LDGD, the same
concept is applied, with the distinction that both discrete
and continuous observation processes need to be addressed.
Attributes of these processes impose different sensitivities to
the choice of inducing points; therefore, two sets of inducing
points are selected, one for the discrete and one for the
continuous observations.

For the label data in the classification component, the
inducing points and variables are defined as

p(Uc
| Zc) =

K∏
k=1

N (uc
:,k | 0, k

c(Zc,Zc)), (14)

where Uc
≡

[
uc
:,1, . . . ,u

c
:,K

]
, uc
:,k ∈ RM , and Kc

McMc
≜

kc(Zc,Zc). Here, Zc represents the set with Mc inducing
points associatedwith theFc. Analogously, for the continuous
measurement of the regression component, the following is
obtained:

p(Ur
| Zr ) =

D∏
d=1

N (ur:,d | 0, k
r (Zr ,Zr )), (15)
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FIGURE 1. Graphical models depicting LDGD. (a) Exact inference, (b) Variational inference.

where Ur
≡

[
ur
:,1, . . . ,u

r
:,D

]
, ur
:,d ∈ RM , and Kr

MrMr
≜

kr (Zr ,Zr ). Here, a new set of Mr inducing points, Z r ,
associated with Fr is used. The choice of two disjoint sets
of inducing points addresses the different sensitivities in the
regression and classification processes.

b: DOUBLY STOCHASTIC VARIATIONAL GP AND
VARIATIONAL POSTERIOR DISTRIBUTION
The true posterior distribution is given by

p(Fr ,Fc,X | Yr ,Yc) =
p(Fr ,Fc,X,Yr ,Yc)

p(Yr ,Yc)
. (16)

Calculating the denominator involves the computation of
Equation (13), which is intractable. We propose variational
distributions as a part of our approach to approximate
the posterior distribution in LDGD. Our methodology
incorporates concepts from the doubly stochastic variational
Gaussian process (DSVGP) outlined by [34], and integrates
the scalable variational GP framework for classification
proposed by [35]. This integration is achieved through
the utilization of two distinct sets of inducing variables,
as delineated in Equations (14) and (15), which are applied
respectively for classification and regression tasks. Training
involves maximizing the marginal likelihood (evidence), and
our method provides a mean to find a lower bound for the
otherwise intractable marginalization process. To achieve this
lower bound, the process begins by marginalizing the joint
distribution of LDGD, taking into account the variational
inducing points introduced:

p(Yr ,Yc) =
∫
p(Yr ,Yc,Fr ,Fc,Ur ,Uc,X)

× dFr dFc dUr dUc dX. (17)

The joint distribution of LDGD, including the observed data
Yr and Yc, the function values Fr and Fc, the inducing
variables Ur and Uc, and the latent features X, can be
factorized as:

p(Fr ,Fc,Ur ,Uc,X,Yr ,Yc) = p(Yc
| Fc)p(Fc,Uc

| X)

× p(Yr
| Fr )p(Fr ,Ur

| X)

× p(X). (18)

Solving marginalization integral is not straightforward.
A common technique used in variational inference is
multiplying and dividing the terms inside the integral by a
proposal distribution, which is an approximation of the joint
posterior. The joint posterior p(Fr ,Fc,Ur ,Uc,X | Yr ,Yc)
can be factorized into three separate posteriors:

p(Fr ,Fc,Ur ,Uc,X | Yr ,Yc) = p(Fc,Uc
| Yc,X)

× p(Fr ,Ur
| Yr ,X)

× p(X | Yr ,Yc). (19)

where p(Fc,Uc
| Yc,X) and p(Fr ,Ur

| Yr ,X) are the
joint posterior of the Gaussian process function values and
their inducing variables for regression and classification
respectively. p(X | Yr ,Yc) shows the posterior over the latent
features. To derive a tractable solution using the posterior, the
posterior p(X | Yr ,Yc) is approximated with the variational
distribution qφ(X),

qφ(X) =
N∏
i=1

N (xi | µi, siIQ), (20)

Also p(Fc,Uc
| Yc,X) is approximated with q(Fc,Uc)

q(Fc,Uc) = p(Fc | Uc,X)qλ(Uc)
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qλ(Uc) =
K∏
k=1

N (uck | m
c
k ,S

c
k ), (21)

and p(Fr ,Ur
| Yr ,X) is approximated with q(Fr ,Ur ):

q(Fr ,Ur ) = p(Fr | Ur ,X)qγ (Ur ),

qγ (Ur ) =
D∏
d=1

N (urd | m
r
d ,S

r
d ), (22)

where φ = {µi, si}
N
i=1, λ = {mc

k ,S
c
k}
K
k=1,and γ =

{mr
d ,S

r
d }
D
d=1 are the variational parameters. The joint posteri-

ors p(Fr ,Fc,Ur ,Uc,X | Yr ,Yc) can be approximated using
the variational distribution q(Fr ,Fc,Ur ,Uc,X) that can be
expressed as:

Q̂ ≜ q(Fr ,Fc,Ur ,Uc,X)

≡ q(Fc,Uc)q(Fr ,Ur )qφ(X). (23)

Employing the approximated posterior, the evidence intro-
duced in Equation (17) is reformulated, and Jensen’s
inequality is applied to the logarithm of the evidence to
establish the evidence lower-bound (ELBO):

log p(Yr ,Yc) ≥ EQ̂
[
logP

]
≜ ELBO, (24)

where

P =
p(Yc

| Fc)p(Uc)p(Yr
| Fr )p(Ur )p(X)

qφ(X)qλ(Uc)qγ (Ur )
. (25)

This ELBO can be further broken down into five
terms:

ELBO ≡ ELLreg
+ ELLcls

− KLcu − KLru − KLX , (26)

where the ELLreg and ELLcls are expected log-likelihood
(ELL) for regression and classification paths, respectively,
and are defined by:

ELLreg
≡ Eqφ (X)

[
Eq(Fr ,Ur )

[
log p(Yr

| Fr )
]]
, (27)

ELLcls
≡ Eqφ (X)

[
Eq(Fc,Uc)

[
log p(Yc

| Fc)
]]
. (28)

The KL terms are defined as:

KLcu ≡ KL(qλ(Uc) ∥ p(Uc)), (29)

KLru ≡ KL(qγ (Ur ) ∥ p(Ur )), (30)

KLX ≡ KL(qφ(X) ∥ p(X)). (31)

ELLreg and ELLcls contribute to data fitting, whereas
KLcu, KL

r
u, and KLX terms serve as regularizers and help

prevent overfitting. Minimizing the KL divergence between
the posterior defined in Equation (19) and its variational
estimation defined in Equation (23) is equivalent to max-
imizing the ELBO. A detailed explanation is provided in
Appendix C. A closed form for this lower bound is desirable
for optimizing the variational parameters, inducing points,
and kernel parameters. While KL terms have a closed form
due to the Gaussian distribution characteristics, ELLcls and
ELLreg do not have a closed form in general. The details of
calculating these two terms are explained in the subsequent
sections.

6) CLASSIFICATION EXPECTED LOG-LIKELIHOOD (ELLCLS)
In this section, a detailed analysis of ELLcls is provided,
defined as:

ELLcls
= Eqφ (X)

[
Ep(Fc|Uc,X)qλ(Uc)

[
log p(Yc

| Fc)
]]

=

∑
i,k

ELLclsi,k . (32)

The ELLcls
i,k is rewritten as:

ELLclsi,k =
∫
qφ(xi)p(f ck | u

c
k , xi)qλ(u

c
k ) log p(y

c
i,k | f

c
k (xi))

× df ck du
c
k dxi

=

∫
qφ(xi)qλ(f ck | xi) log p(y

c
i,k | f

c
k (xi)) df

c
k dxi

= Eqφ (xi)qλ(f ck |xi)
[
log p(yci,k | f

c
k (xi))

]
, (33)

where the predictive distribution is defined as:

qλ(f ck | xi) ≜
∫
p(f ck | u

c
k , xi)qλ(u

c
k ) du

c
k

= N
(
µf ck

(xi),6f ck
(xi)

)
. (34)

By defining 9c = kciMc
(Kc

McMc
)−1, the mean vector and

covariance matrix of the predictive distribution can be
expressed as:

µf ck
(xi) = 9cmc

k , (35)

6f ck
(xi) = kcii −9c(Scd −Kc

McMc
)9T

c , (36)

with kciMc
= kc(xi,Zc) being the ith row of Kc

NMc
, and kcii =

kc(xi, xi). The details are provided in Appendix D. For ease
of use, we define B(xi) ≜ Eqγ (fck |xi)

[
log p(yci,k | f

c
k (xi))

]
. For

the Bernoulli likelihood with Probit likelihood function, the
inner expectation B(xi) is:

B(xi) = Eqγ (fck |xi)
[
log p(yci,k | f

c
k (xi))

]
=

∫
qγ (fck | xi) log8((2y

c
i,k − 1)f ck (xi)) df

c
k

=

∫
1√

2π6f ck
(xi)

exp

(
−
(fck − µf ck

(xi))2

26f ck
(xi)

)
× log8((2yci,k − 1)f ck (xi)) df

c
k . (37)

To use Gauss-Hermite quadrature, this integral needs to
be transformed into the standard form of

∫
∞

−∞
e−x

2
g(x) dx.

A change of variable is performed: z =
fck−µf ck

(xi)√
26fck

(xi)
so that

fck = z
√
26fck (xi) + µf ck

(xi) and dfck =
√
26f ck

(xi) dz. The
integral then becomes:

B(xi) =
∫
∞

−∞

e−z
2

√
π
g(z) dz. (38)

Now, the integral is in a form suitable for Gauss-Hermite
quadrature, where

g(z) =
√

6fck (xi) log8((2y
c
i,k − 1)(z

√
26f ck

(xi)+ µf ck
(xi))).

(39)
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Let z(j)i and w(j) denote the nodes and weights of the Gauss-
Hermite quadrature. The integral B(xi) can be approximated
as:

B(xi) ≈
1
√
π

L∑
l=1

w(l)g(z(l)i ), (40)

where L is the number of quadrature points. The z(l)i
are the roots of the physicists’ version of the Hermite
polynomial Hn(zi), and the associated weights w(l) are given
by

w(l)
=

2L−1L!
√
π

L2[HL−1(zi)]2
. (41)

This approximation allows for the numerical evaluation of the
integral using the Gauss-Hermite quadrature method [36].To
calculate Eqφ (xi) [B(xi)], J samples can be drawn from
x(j)i ∼ qφ(xi) to estimate the expectation.

Eqφ (xi) [B(xi)] ≈
1
√
π

L∑
l=1

J∑
j=1

w(l)g(z(l)i ). (42)

7) REGRESSION EXPECTED LOG LIKELIHOOD (ELLreg)
In this section, the regression component of the model
is addressed. With a similar calculation, the following is
obtained:

ELLreg
= Eqφ (X)

[
Ep(Fr |Ur ,X)qλ(Ur )

[
log p(Yr

| Fr )
]]

=

∑
i,d

ELLregi,d . (43)

Here are the computation details for calculating the ELL:

ELLregi,d =
∫
qφ(xi)p(frd | u

r
d , xi)qγ (u

r
d )

× log p(yri,d | f
r
d (xi)) df

r
d du

r
d dxi

=

∫
qφ(xi)qγ (frd | xi) log p(y

r
i,d | f

r
d (xi)) df

r
d dxi

= Eqφ (xi)
[
Eqγ (frd |xi)

[
log p(yri,d | f

r
d (xi))

]]
= Eqφ (xi) [A(xi)] . (44)

It is already known that yri,d = f rd (xi) + ϵd , therefore the
internal term has a Gaussian distribution:

p(yri,d | f
r
d (xi)) = N (f rd (xi),6

2
d ). (45)

By defining 9r = kriMr
(Kr

MrMr
)−1, a closed form for the

predictive distribution can be derived:

qγ (f rd | xi) = N
(
f rd | µfrd

(xi),6frd (xi)
)

(46)

µfrd
(xi) = 9rmr

d (47)

6frd (xi) = krii +9r (Srd −Kr
MrMr

)9T
r , (48)

where kriMr
= kr (xi,Zr ), krii = kr (xi, xi), and K r

MrMr
is the

covariance matrix evaluated at inducing points.

A(xi) = Eqγ (f rd |xi)
[
log p(yri,d | f

r
d (xi))

]

=

∫
qγ (f rd | xi) log p(y

r
i,d | f

r
d (xi)) df

r
d

= −0.5

 log 2π + log62
d+

(yri,d − µfrd
(xi))2

62
d

+
6frd (xi)

62
d

 . (49)

This can be easily calculated by sampling.

ELLregi,d = Eqφ (xi)
[
Eqγ (f rd |xi)

[
log p(yri,d | f

r
d (xi))

]]
= −

1
2J

J∑
j=1

 log 2π + log62
d+

(yri,d − µfrd
(x(j)i ))2 +6frd (x

(j)
i )

62
d

 .
(50)

It is worth mentioning that for some certain kernel
functions, finding the analytic form for the expectation
introduced in Equation (44) is possible.

8) TRAINING PROCEDURE
Learning occurs through optimizing the kernel hyperpa-
rameters, inducing points, and variational parameters by
maximizing the ELBO as the objective function.

argmax
θ,φ,λ,γ,Zr ,Zc

ELBO (51)

where θ represents the kernel hyperparameters, φ =

{(µi, si), i = 1, . . . ,N } are the variational parameters for
latent features, λ = {(mc

k ,S
c
k ), k = 1, . . . ,K } and γ =

{(mr
d ,S

r
d ), d = 1, . . . ,D} are the variational parameters for

inducing variables. In the previous section, it was discussed
how the expected log-likelihood for regression (ELLreg) and
classification (ELLcls) can be broken down and calculated
for each sample in the dataset. This formulation simplifies
the calculations and enables batch training and sampling
methods. To optimize the variational parameters for qφ(X)
during sampling, samples x(j)i ∼ qφ(xi) are generated using
the reparameterization technique [37], where ϵ(j) ∼ N (0, IQ)
and x(j)i = µi + si ⊙ ϵ(j). Based on Equations (26),
(44), and (32), the training procedure is simplified to this
maximization problem:

argmax
θ,φ,λ,γ,Zr ,Zc

∑
i,d

ELLreg
i,d +

∑
i,k

ELLcls
i,k

−

N∑
i=1

KL(qφ(xi) ∥ p(xi))

−

K∑
k=1

KL(qλ(uck ) ∥ p(u
c
k | Z

c))

−

D∑
d=1

KL(qγ (urd ) ∥ p(u
r
d | Z

r )) (52)

where the KL divergence terms have closed forms due to the
conjugacy of the Gaussian distributions.ELLreg

i,d and ELLcls
i,k

was introduced in Equation (50) and (42). The Algorithm 1
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details the training procedure. Detailed implementations of
the predictive distribution, along with the calculations for the
expected log-likelihood for regression and classification, are
provided in Appendices D and E, respectively.

Algorithm 1 Training the Gaussian Process Regression
Model
Require:

Batch size (B)
Learning rate (lr)
Number of iterations (Niter )
Training continuous measures Yr

∈ RN×D

Training class labels Yc
∈ RN×K

1: procedure TrainModel(Yr ,Yc,Zc,Zr , lr,Niter )
2: Initialize free parameters

2 ≜ {θ, ψ, φ, λ, γ,Zr ,Zc}

3: for i = 1 to Niter do
4: Sample ϵi ∼ N (0, IQ) for i = 1, . . . ,N
5: Reparametrization xi← µi +

√
siϵi

6: Sample a batch Xb
7: Calculate K r

NN ,K
r
MrMr

,Kr
MrN ,K

c
NN ,K

c
McMc

,

Kc
McN

8: µfr ,6fr ← PredictiveDist(Xb,K r
NN ,K

r
MrMr

,

Kr
MrN ,m

r ,Sr )
9: µfc ,6fc ← PredictiveDist(Xb,K c

NN ,K
c
McMc

,

Kc
McN ,m

c,Sc)
10: ELLreg

← ELLRegression(Yr ,µfr ,6fr , σ
2,Xb)

11: ELLcls
← ELLClassification(Yc,µfc ,6fc ,Xb)

12: KLU ← KL(qλ(Uc) ∥ p(Uc
| Zc))+

KL(qγ (Ur ) ∥ p(Ur
| Zr ))

13: ELBO← ELLreg
+ ELLcls

− KLU−
KL(qφ(X) ∥ p(X))

14: Gradient←−∇{θ,ψ,φ,λ,γ,Z}ELBO
15: Update {θ, ψ, φ, λ, γ,Z} using Adam optimizer.
16: end for
17: return Optimized parameters {θ, ψ, φ, λ, γ,Z}
18: end procedure

9) PREDICTION
After optimizing the hyperparameters using a training
dataset, the aim is to employ LDGD to predict the labels
for a new set of measurements, denoted as Yr∗. This set
of measurements constitutes the test set. We assume that
the corresponding labels Yc∗ for these new data points are
absent. In essence, the test data points are employed to infer
their latent features, and these latent features are subsequently
decoded to determine the distribution over the corresponding
labels.

The variational posterior for the latent variables X was
introduced in Equation (20). Given a new test point Yr∗,
the objective is to compute the posterior distribution p(X∗ |
Yr∗,Yr ,Yc), which represents the belief about the latent
variables after observing the new test data. This can be
approximated as q(X∗) =

∏Ntest
i=1 N (x∗i | µ∗, s∗IQ).

To find the optimumµ∗ and s∗, the objective is to minimize
the negative of the lower bound with respect to these new
variational parameters. During this process, the inducing
points and inducing variables are held constant. Therefore,
the objective function for optimizing the variational parame-
ters associated with a test point is formulated as follows:

arg max
µ∗,s∗

{∑
d

ELLreg
∗,d − KL

(
qφ(X∗) ∥ p(X∗)

)}
. (53)

Using this result, p(Yc∗
| X∗) can be effectively decoded and

determined.

10) FAST LDGD
In LDGD, an iterative optimization needs to be run in the
prediction or test phase, making it less suitable for real-
time scenarios. In this section, we introduce Fast LDGD,
in which a neural network is employed to estimate the
variational parameters for the latent space directly. To this
end, the variational distributions introduced in Equation (22)
are modified, and the posterior p(X | Yr ,Yc) is estimated
with:

qφ(X) =
N∏
i=1

N (xi | µ(yri ), s(y
r
i )IQ), (54)

where µ(yri ) and s(yri ) are neural network outputs with
trainable parametersφ. The architecture of the neural network
can be chosen based on the data. In this approach, the number
of the model parameters depends on the continuous data
dimensionality and does not depend on the number of data
points. In contrast, in LDGD, the number of variational
parameters in Equation (22) grows linearly with the number
of training samples. Thus, this approach is beneficial
when dealing with a decoding problem (classification)
with a relatively larger number of data points. Our goal
in the training phase is to minimize the negative of the
ELBO by optimizing neural network parameters, inducing
points, inducing variables’ variational parameters, kernel
parameters, and model parameters. By achieving this, the
neural network ensures a suitable approximation to the true
posterior given the continuous data. Once trained, the model
can instantly provide estimates of the posterior’s mean and
covariance for a test point without additional optimization.
This capability facilitates real-time inference.

By directly mapping from observations to the variational
parameters of latent variables, the need for iterative optimiza-
tion to determine µi and si (introduced in Equation (22))
for each test data point is bypassed. Consequently, this
significantly reduces computational time, enabling real-time
predictions, which is crucial in time-sensitive applications.

C. EXPERIMENTAL SETUP
The experiments were conducted using a setup of
both software and hardware. The software environment
included Windows as the operating system, utilizing
Python 3.10 as the programming language. Key libraries
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included PyTorch 1.12.1 [38] and GPyTorch 1.11 [39] for
implementing machine learning models.

The hardware setup featured an Intel Core i7-10700K CPU
@ 3.80GHz, providing strong performance, complemented
by an NVIDIA GeForce RTX 3080 GPU for handling
intensive deep learning tasks. The system was equipped with
32GB of DDR4 RAM and a 1TB NVMe SSD to ensure fast
data access and smooth performance.

III. EXPERIMENTS AND RESULTS
In this section, different attributes of LDGD are studied by
applying it to various datasets. In particular, we examine
its capability to draw low-dimensional data representations,
decode accurately (classification), and generate data points.
The attributes of LDGD are investigated using both syn-
thetic and real-world datasets. By utilizing synthetic data,
a comprehensive investigation of the model attributes under
controlled conditions can be conducted. The real-world
datasets include the Oil Flow [40], Iris [41], and MNIST
datasets [42]. Through these datasets, the model’s attributes
are further explored to determine how they extend to handling
complex datasets, thereby underscoring the unique benefits of
LDGD. These benefits include its ability to infer meaningful
features from high-dimensional data, address variability
present in the data, and achieve optimal low-dimensional data
representation.

We also compare LDGD modeling results with different
variants of GPLVM. Through these comparisons, the aim is
to underscore LDGD’s distinctive advantages. In applying
this model to classification tasks, it is evaluated across
three datasets using classification metrics to demonstrate
the model’s robustness in class label prediction. Addition-
ally, LDGD classification accuracy is compared with two
other supervised GPLVM variants, SLLGPLVM [25] and
SGPLVM [23], to illustrate its superiority in classification.
The model’s data generation capability is explored using
the MNIST dataset, showing that LDGD can effectively
replicate the complex patterns of handwritten digits. LDGD
and fast LDGD are also compared with variational auto-
encoders, highlighting LDGD and fast LDGD’s key features
over variational auto-encoders, including optimal discovery
of low-dimensional representation, robustness with limited
datasets, and an efficient inference process. These analyses
illustrate LDGD’s advantages in analyzing complex and high-
dimensional datasets.

A. DATASETS
1) SYNTHETIC DATA
For the synthetic data, we utilize a ‘‘moon-like’’ dataset,
which is a two-dimensional dataset resembling a pair of
crescent moons depicted in Figure 2. This two-dimensional
data is transferred into a much higher dimensional space
using two different transformations. The first transformation
involves a linear transformation, where the original data is
multiplied by a randomly generated matrix of size D × 2,

with D set to 5, 15, or 20. In the second transformation,
the dimension of the data is doubled by adding white noise
data dimensions. For instance, if the data dimension is 5, five
channels of independent white noise with unit variance are
generated and appended to the data. The added dimensions
do not carry class-specific information, making inference
and classification tasks more challenging. For each specified
dimensionality, 500 synthetic data samples were generated,
divided into two classes with 250 samples per class, and
labeled synthetic-10, synthetic-30, and synthetic-40.

2) OIL FLOW DATASET
The Oil Flow dataset is a high-dimensional dataset consisting
of 12-dimensional feature vectors. These data points are
recorded to capture various factors representing oil flow
dynamics within a pipeline [40]. The dataset embodies
three distinct phases of flow: horizontally stratified, nested
annular, and homogeneous mixture flow. These three phases
represent the conditions under which oil, gas, and water
can coexist and move through a pipeline. Despite the high
dimensionality of the dataset, the crucial information about
the flow conditions can be effectively described by two main
variables: the fraction of water and the fraction of oil in the
flow. This property of the dataset makes it an extensively used
benchmark for evaluating the effectiveness of dimensionality
reduction techniques, showcasing their ability to simplify and
interpret complex, high-dimensional data in fluid dynamics
and pipeline management. A total of 1,000 samples are
included in the dataset. This dataset is publicly available and
can be found at [43].

3) IRIS DATASET
The Iris dataset is widely used in machine learning, covering
morphological variations across three categories of iris
flowers, namely Setosa, Versicolor, and Virginica [41]. This
dataset is publicly available in the UCI Machine Learning
Repository [44]. It comprises 150 data points distributed
equally among the species, each detailing four critical
features reflecting the flowers’ physical characteristics,
specifically petal and sepal sizes. The dataset’s clear class
distinctions and simple structure make it an ideal example of
how our dimensionality reduction technique findsmeaningful
low-dimensional representation.

4) MNIST DATASET
The MNIST (Modified National Institute of Standards and
Technology) dataset is popularly used in machine learning
and image processing [42]. The dataset comprises 70,000
images of handwritten digits (0 through 9), and it serves
as a fundamental benchmark for evaluating the performance
of various machine-learning algorithms. Each image is
represented in a gray-scale format with a resolution of 28 ×
28 pixels, equating to 784 dimensions when flattened into
a vector form. The dataset is publicly available and can be
accessed at [42].
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B. PERFORMANCE ASSESSMENT
1) SYNTHETIC DATA
a: LOWER DIMENSION REPRESENTATION
We argue that two key advantages of our model are its
ability to infer meaningful information in high-dimensional
data and, more importantly, quantify the validity of its
probabilistic inference. To demonstrate this, LDGD is applied
on the synthetic-10, synthetic-30, and synthetic-40 datasets,
described in Section III-A2.We run LDGDwith two different
settings. In the first setting, it is assumed that Q, the latent
dimension, is 2. This choice of dimension is helpful to
properly visualize the inferred X. Figure 2-B, 2-C, and 2-D
respectively show inferred X for the synthetic-10, synthetic-
30, and synthetic-40 dataset. The inferred points (posterior
mean of X) represent a rotated version of the initial data
shown in Figure 2-A. Here, our pipeline converges to a
similar data representation independent of the observed
data dimension. The variance of the predictive distribution
p(Yc

| X ) serves as a measure of uncertainty in label
prediction. The heatmap, employing a binary colormap,
visualizes the uncertainty levels across different regions. The
inferred posterior variance reflects higher confidence in areas
with denser data concentrations (segments) and lower con-
fidence in regions where these concentrations approach one
another.

We use the second setting to highlight LDGD’s capability
to infer the latent dimension representing observed data and
corresponding labels optimally. This can be done by adjusting
ARD coefficients in the training step. For this setting, the
synthetic-10 dataset is used, and LDGD’s latent dimensions
are set to 10, equal to the data dimension, with 25 inducing
points for each classification and regression path. The model
was trained using 80% of the dataset, selected randomly.
The training process aimed to minimize Equation (26),
as described in Section II-B5. Figure 2-E shows values of
ELBO loss over training iterations. For the classification,
the ARD coefficients indicate LDGD converges to a 2-D
representation aligned with what is embedded in the data
(Figure 2-F). For the regression, the ARD coefficients
suggest that all dimensions are employed for data generation
(Figure 2-G). The ARD coefficients in each of the two paths,
along with the inferred state, demonstrate how the framework
tries to reconstruct both paths through the same latent
structure. The inferred X shows what the model requires
for classification and what is needed for reconstructing data.
The regression ARD coefficients display larger values for the
dimensions identified by the classification ARD coefficients,
suggesting that these dimensions play a significant role
in data reconstruction. However, additional dimensions are
also necessary. This is anticipated, as the expanded data
in each dimension is a weighted sum of the original data,
necessitating the involvement of other latent dimensions as
well.

Subsequently, with the optimized hyperparameters, the
partial ELBO introduced in Equation (53) is optimized to
find the estimated posterior over latent variables for the

TABLE 1. Classification performance of LDGD for synthetic data.

remaining 20% of the data without any knowledge of the
labels. Figure 2-I demonstrates that, even for test data with
unknown labels, the model could discern the intrinsic pattern
hidden within the high dimensions.

b: CLASSIFICATION RESULTS
To assess the model’s performance in classification tasks,
LDGD was evaluated using 5-fold cross-validation. In each
fold, the parameters were optimized using 80% of the syn-
thetic dataset’s data points, with the remaining 20% serving
as the test set, where labels were assumed to be unknown.
Twenty-five inducing points within a 10-dimensional latent
manifold were utilized for LDGD. Subsequently, the model’s
precision, recall, and F-measure were evaluated on the
test set. These results are detailed in Table 1. The model
demonstrated accurate label prediction on the test set,
showcasing another critical feature of LDGD: its capability
to decode labels.

2) OIL FLOW, IRIS, AND MNIST DATASET
a: LOWER DIMENSION REPRESENTATION
To investigate the LDGD application further in inferring
low-dimensional representation of data, we applied it to
the Oil Flow, Iris, and MNIST datasets. An ARD kernel
with seven dimensions is used for the Oil Flow and Iris
datasets. The model exhibits low sensitivity to the choice of
latent dimension size; therefore, a latent dimension size of
7 is selected, which exceeds the dimensionality of the Iris
dataset but remains below that of the Oil Flow dataset. Ten
inducing points are assumed for both the classification and
regression paths. The parameters are optimized using 80%
of the data along with their labels, and the latent space for
the remaining 20% is inferred without label information. The
results indicate that the trained ARD coefficients suggest an
optimal use of about one dimension for the Iris dataset and
two dimensions for the Oil Flow dataset (see Figure 3). It can
be observed that there are different levels of certainty in each
axis; for instance, in Figure 3-B, much higher confidence
is seen in the x-axis, corresponding to the 5th element in
ARD space, indicating its significant role in the model’s
predictions. On the other hand, the second-largest ARD
coefficient is less significant, leading to lower confidence in
the y-axis. For Iris, the dimension of X is larger than the
observed data. Though this is not the case the framework
is designed for, it is observed that ARD only keeps two
coefficients and pushes other coefficients toward zero.
Though this does not reflect any attributes of the LDGD,
it shows the robustness of the pipeline and its principled
representation of the latent data.
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FIGURE 2. Visualization of Dimensionality Reduction on Synthetic Data. (A) Displays the initial two dimensions of the moon-like dataset. (B-D) Illustrates
the latent space heatmap representation across different synthetic data dimensions: 10 dimensions (B), 20 dimensions (C), and 40 dimensions (D). Red
and blue points represent class 1 samples (yc = 0) and class 2 samples (yc = 1), respectively. Green crosses indicate classification-inducing points, while
yellow crosses denote regression-inducing points, with five inducing points used for each. The green data points are more uniformly distributed over the
space as it is constructing the Yr . The yellow ones are aligned on two sides of the decision boundary as they are more needed for a correct classification.
The heatmap visualizes the model’s uncertainty level (posterior variance). (E) Shows the training curve (ELBO loss) for synthetic data with ten dimensions,
where the latent space is also set to 10 dimensions. (F-G) Depicts the ARD coefficients for the classification kernel (F) and the regression kernel (G). The
trained coefficients highlight that the model selects two dimensions to represent a 10-dimensional space in a lower-dimensional setting for decoding
labels and employs almost all dimensions to reconstruct data in the original space. (H) displays a scatter plot of the training points in the
lower-dimensional space for the two most dominant dimensions, while (I) shows the scatter plot for test points where the labels are unknown.

Given the MNIST dataset’s larger feature space, we used
20 dimensions for the latent space and 150 inducing points
for each path. The model utilized almost all the available
dimensions for this dataset, highlighting the necessity of
high dimensions to classify and reconstruct such a large
dataset. LDGD’s representation in 2-D may not exhibit as
much distinct separation as T-SNE due to its generative
nature and probabilistic embeddings that prioritize cap-
turing the global data structure over local neighborhood
relationships.

In parallel, we applied PCA, t-SNE, GPLVM, Bayesian
GPLVM, FGPLVM, SGPLVM, and SLLGPLVM to the Oil
Flow and Iris datasets. The latent variable’s dimensions
were fixed to two across all models for fair comparisons.
SGPLVM, SLLGPLVM, and LDGD utilize labels during the
training process, while others are unsupervised and agnostic
to the labels. Figure 4 illustrates the latent representations
generated by LDGD compared to those obtained using
other models. The Iris dataset, being less complex, allowed
almost all models to find a lower-dimensional representation
that demonstrates a clear distinction between species. So,
LDGD’s performance is similar to other models. For the
Oil Flow dataset, LDGD and SLLGPLVM effectively
separate the three flow phases, while some other methods
exhibit partial overlap between different categories. Unlike
SLLGPLVM, LDGD incorporates inducing points within

its pipeline, which allows LDGD to scale better than
SLLGPLVM. Consequently, a direct comparison for
the MNIST dataset is not feasible since SLLPLVM is
ill-equipped to handle larger datasets.

b: CLASSIFICATION RESULTS
Here, our aim is to demonstrate the model’s ability to decode
or classify real-world datasets. We have applied it to the Iris
and Oil Flow with seven latent dimensions and ten inducing
points. LDGD was then applied with 20 latent variables
and 150 inducing points for classification and regression
on the MNIST dataset. The evaluation criteria included
classification accuracy, precision, recall, and F1 score. The
results are provided in Table 2. As can be seen, the model
performance is as good as the state of the arts in the iris and
oil dataset, and the performance in the MNIST dataset is not
far from the other image classifier methods like convolutional
neural network (CNN) methods but comparable to them [45].
The classification results in datasets with different input
dimensions and different data points further demonstrate the
model potential in the feature extraction and classification
step.

To quantitatively compare our model’s classification
capabilities, we benchmarked its performance against several
state-of-the-art models. While our model and others perform
well on the simpler Iris dataset, LDGD stands out for its
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FIGURE 3. Comparative analysis of latent space representation in Iris and Oil Flow dataset. (A) reveals the most dominant latent dimension for the Iris
dataset, identified through ARD coefficients. (B) illustrates the scatter plot of the two dominant dimensions in the latent space for the Iris dataset,
highlighting the data’s intrinsic clustering. The vertical and horizontal error bars show the variance at each data point in latent space. (C) displays the
most dominant latent dimension for the Oil dataset, as determined by ARD coefficients. (D) presents the scatter plot of the two dominant dimensions in
the latent space for the Oil Flow dataset, showcasing its unique distribution.

FIGURE 4. Two-dimensional visualization of dataset projections using various dimensionality reduction techniques. The top row displays projections
of the Oil Flow dataset, while the bottom row shows the Iris dataset. Techniques used include (A) PCA, (B) t-SNE, (C) GPLVM, (D) Bayesian GPLVM,
(E) FGPLVM, (F) SGPLVM, (G) SLLGPLVM, and (H) LDGD. It was observed that both SLLGPLVM and LDGD inference in low dimensions reflect the class
labels, resulting in separate regions for different data classes. With LDGD, a one-dimensional representation of data can be achieved. Thus, a better
reduction rate might be obtained using LDGD.

TABLE 2. Classification performance of LDGD for Iris, Oil Flow, and
MNIST datasets.

unique ability to handle the complexity of theMNIST dataset.
Consequently, our comparison focuses on the Oil Flow
dataset to provide a fair comparison of LDGD’s performance
with its competitors.

Table 3 summarizes the classification results, where
LDGD consistently outperforms other models across all
measures. This confirms LDGD’s effectiveness in extracting
latent features and accurately predicting labels. The model’s
superior classification performance results from its adaptive
feature extraction capabilities. These empirical findings

TABLE 3. Classification performance of LDGD for the Oil Flow dataset
compared to other models.

highlight LDGD’s dual role as both an efficient tool for
dimensionality reduction and a powerful discriminative
model. The model’s achievement of high classification
metrics across various datasets underscores its adaptability
and potential for use in numerous practical machine-learning
scenarios, even with larger datasets. Our results for MNIST,
a comparatively large dataset for Gaussian process-based
models, demonstrate LDGD’s scalability. The LDGD model
surpasses both SLLGPLVM and SGPLVM in terms of
scalability. The scalability is attributed mainly to integrating
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FIGURE 5. LDGD Data Generation Analysis. (A-D) These figures present scatter plots of data points in the 2D latent space for the Iris (A) and the Oil Flow
dataset (C). For each dataset, a sample point near each cluster is randomly selected (marked with a cross) to illustrate the model’s generative capabilities.
The corresponding high-dimensional reconstructions of these starred points are shown for the Iris dataset (B) and the Oil Flow dataset (D), alongside the
real values of other points. (E) displays nine randomly chosen test points in the latent space for the MNIST dataset and their reconstructed images
through the model’s generative path. The generated images properly reconstruct corresponding digits.

batch training, which enables efficient handling of large
datasets without compromising the model’s performance or
accuracy.

c: PROCESSING TIME
All the training for the models was done using the
experimental setup described in Section II-C, with the
SLLGPLVM and SGPLVM executed on MATLAB 2022
[46]. In terms of processing time, the collective analyses
described below suggest its computational efficiency is on
par with other state-of-art models and in some cases even
more efficient. The execution time for training the LDGD
model on 200 samples from the oil-flow dataset is about
327 seconds for 3000 iterations, compared to 346 seconds
for SGPLVM and 3100 seconds for SLLGPLVM. As the
data size increases to 800 samples, the training time for
SLLGPLVM becomes significantly longer going beyond
216000 seconds, whereas LDGD processing time will grow
to 542 seconds suggesting a reasonable training time. This
timing suggests the computational efficiency of Gaussian
process models, though it is still slower than some parametric
models [47]. The balance between accuracy and processing
time observed in our proposed model makes it a viable option
for applications requiring high precision without excessively
long training times.

d: LDGD DATA GENERATION
So far, our focus has been on inferring the latent space and
then utilizing LDGD for label prediction. It is noteworthy
that LDGD is capable of generating continuous samples
given a label. Figure 5 displays three sample data points,
each selected randomly near a class in the latent space
within the Iris and Oil Flow datasets. As observed, the
reconstructed samples in high-dimensional space lie close
to the actual data points. This demonstrates how LDGD
training effectively balances the label and continuous paths,
ensuring that the generated data accurately represents its
respective classes. Additionally, Figure 5-C illustrates nine
sample digits generated randomly from the MNIST dataset,
highlighting the model’s ability to produce samples from
more complex data.

C. LDGD, FAST LDGD, AND VARIATIONAL
AUTO-ENCODERS
While LDGD might resemble a variational auto-encoder
(VAE), fundamental differences between our proposed
framework and VAE models must be highlighted further.
In VAEs, the latent manifold has Gaussian priors, similar
to LDGD and fast LDGD, where the posterior over latent
variables are approximated using a Gaussian distribution.
However, the distinctions lie in the relationship between the

VOLUME 12, 2024 113327



N. Ziaei et al.: Bayesian GP-Based LDGD Model for High-Dimensional Data

FIGURE 6. Comparison of LDGD, Fast LDGD, and VAE Models. (A) shows the graphical models for VAE, fast LDGD, and LDGD from left to right.
(B, C) illustrate the relationship between the number of training samples (x-axis) and the performance metrics on the test set, specifically
accuracy (B) and F-measure (C), where the blue line represents VAE performance, red indicates LDGD and green denotes fast LDGD
performance.

latent manifold, labels, and high-dimensional data. LDGD
employs a probabilistic framework, whereas VAEs utilize
a deterministic framework (neural networks). Fast LDGD
occupies a middle ground, inferring X through a neural
network while leveraging a Gaussian Process (GP) model for
label prediction. Another key difference resides in the loss
functions used: VAEs incorporate mean squared error (MSE),
categorical entropy, and Kullback-Leibler (KL) divergence,
whereas LDGD relies on the ELBO. Figure 6.A shows the
probabilistic graphs for these three methods. As observed in
LDGD, the objective is to find the posterior over X given Yr

and Yc.
LDGD has multiple advantages over the VAE model,

making it a more suitable model for analyzing high-
dimensional data, specifically when the size of the dataset
is limited. Using LDGD, the optimal dimension of the
latent process can be identified as a part of learning.
In contrast, the number of dimensions must be tuned as
a hyperparameter when using the VAE model. Inferencing
and training in LDGD are not data-greedy processes; the
model can be built with much smaller data compared to
what is needed for VAE model training. Compared to a
point estimate in VAE, Bayesian inferencing helps us have
higher-order statistics, such as confidence in our prediction
of a label or data point, giving us a better sense of our
predictions.

Another key advantage is the inherent robustness of LDGD
against overfitting, a common pitfall in many machine learn-
ing models. LDGD’s use of Bayesian inferencing inherently
guards against overfitting, making LDGD particularly suited
for dealing with small datasets. This framework doesn’t
merely fit the model to the data; it enables the model to
correctly infer and adapt to the data, even when the dataset is
small. To assess the model’s performance in such scenarios,
we have used the synthetic-20 dataset. Different amounts
of training data with the same amount of test data were
used to compare VAE, LDGD, and fast LDGD. As shown in
Figure 6-B and 6-C, for small datasets, LDGD and

fast LDGD’s performance in classification is significantly
better. For large datasets, the performance is comparable.
These advantages collectively position LDGD as a mere
alternative and a significant advancement over traditional
encoder-decoder models, especially in high-dimensional data
analysis.

IV. DISCUSSION
In this research, different modeling steps of LDGD were
developed, including its training, inferencing, and decoding
(classification). New approaches were introduced in devel-
oping the framework, including a shared latent variable
with doubly stochastic variational inference with trainable
inducing points. To assess the model’s different attributes, the
framework was applied to the Synthetic, Iris, and Oil Flow
datasets.

The modeling results in both synthetic and real-world
data suggest LDGD’s capability to correctly infer latent
space and identify the latent space’s proper dimension. The
classification results using LDGD are on par with the state-
of-the-art models, and in some of the data points, it even
surpasses other approaches.

Different attributes and potential advantages of LDGD
were highlighted. We argued its capabilities in identifying
the optimal dimension of the latent process. For instance,
in synthetic data, it was demonstrated that the framework
would suggest a 2-D dimensional latent space, whichmatches
the intrinsic dimensions of the original data. This can be
done using an ARD kernel where its coefficients are trained
during the model training. This is a remarkable feature of the
model, which is not present in other algorithms such as VAEs.
LDGD’s expressiveness and ability to classify data labels
precisely were also highlighted. It was demonstrated that
LDGD can be a highly effective classifier for the Iris and Oil
Flow datasets, surpassing state-of-the-art approaches. LDGD
can be viewed as a pipeline with adaptive feature extraction
and a classifier with features capable of reconstructing the
data. Our results demonstrated its capability to process
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larger datasets, such as MNIST, efficiently, which was
achieved by adopting batch training, the inducing point
concept, and a doubly variational strategy. Specifically, this
approach highlighted LDGD’s scalability to larger datasets,
a feature distinctly lacking in models like SGPLVM and
SLLGPLVM. The generative prowess of LDGD was also
explored, highlighting its ability to create data from high-
dimensional spaces. Our experiments confirmed that LDGD
can adeptly generate samples from the Iris, Oil Flow, and
MNIST datasets. The generated samples from MNIST were
remarkably coherent.

A couple of challenges with LDGD were also observed.
A core challenge is hyperparameter selection, such as
determining the number of inducing points. As with many
in machine learning, the model’s performance hinges on
hyperparameter choices. In Gaussian Process-based mod-
els, the number of inducing points is critical; too few
may lead to underfitting and inadequate data complexity
representation, while too many can escalate computational
demands and risk overfitting. Finding the optimal number
often requires a dataset-specific balance, posing practical
challenges. Although LDGD improves scalability, it may
struggle with extremely large or high-dimensional datasets
due to the inherent complexity of Bayesian models and
Gaussian Processes, limiting its feasibility in some real-time
applications.

LDGD’s reliance on label quality for dimensionality
reduction means its performance is contingent on label
accuracy. The model’s efficiency may diminish in cases of
scarce, inaccurate, or biased labels. Despite its proficiency
in uncertainty quantification, the interpretability of complex
models like LDGD can be daunting, especially for users
without a machine learning background. The contribution of
various modeling steps to create the outcome might make
the pipeline hard to digest. Furthermore, while LDGD shows
promise for particular datasets, its performance across diverse
data types, such as time series, images, or text, has not been
thoroughly tested, leaving its applicability in these areas yet
to be fully established.

Several improvements are suggested to overcome these
limitations and extend the applicability of LDGD. These
include the development of methods for the automatic
selection of inducing points, such as Bayesian optimization
and cross-validation approaches, as well as extensions of
the model to handle time series data. Several modifications
are suggested to enhance the LDGD model for time series
analysis. Firstly, incorporate temporal dynamics by integrat-
ing autoregressive components, state space models, or using
time series-specific kernels in Gaussian Processes [48],
[49], [50], [51]. Secondly, implementing methods to handle
sequential data, possibly using recurrent neural network
structures like LSTMs [52] or GRUs [53] within the LDGD
framework. Thirdly, explore time-variant inducing points that
adapt to changes in time series data, improving the model’s
ability to capture temporal dynamics. Parallel computing,
GPU acceleration, and sparse variational frameworks are

also recommended to enhance algorithmic efficiency and
scalability.

In general, it is essential to establish standard bench-
marks and evaluation methodologies to advance the field
of dimensionality reduction and ensure the efficacy of
techniques like the LDGD model. Additionally, it’s crucial
to continuously benchmark the enhanced model against the
latest state-of-the-art models in dimensionality reduction.
This ongoing comparison will ensure the model’s com-
petitiveness and help identify potential areas for further
improvement.

Future work will focus on extending LDGD for specific
applications, such as datasets recorded during neuroscience
experiments, which are generally small in size and exhibit
complex variability [54]. We also aim to enhance algorith-
mic efficiency and conduct robustness and generalizability
studies. In summary, the LDGD model offers promising
advancements in dimensionality reduction and classification,
with wide-ranging applications and potential for significant
contributions to various fields. However, realizing its full
potential requires continuous research and development to
address its current limitations and expand its applicability in
addressing complex real-world problems.

V. CONCLUSION
In this research, we showcased the utilities of non-parametric
models for dimensionality reduction, feature discovery, and
decoding. Despite the emergence of powerful machine-
learning tools, there is still a lack of principled tools
capable of dealing with intrinsic stochasticity and variability
in data or scenarios where the size of available data is
limited. The LDGD framework addresses these needs and
achieves comparable or even higher prediction accuracy and
generative capability. With LDGD, data from domains such
as neuroscience, which are generally complex and limited
in size, can be studied effectively. The ideas in LDGD can
be extended to more realistic data, such as time series, thus
requiring further model development, which is the core of our
future research.

APPENDIX A
GAUSSIAN PROCESS REGRESSION
Gaussian processes (GP) offer a powerful non-parametric
approach for regression and classification tasks [29]. A Gaus-
sian process is a collection of random variables, with the
property that any finite subset of these variables has a
joint Gaussian distribution. GP defines a distribution over a
function defined by:

p(f | X) = N (µ,KNN ), (55)

where X = [x1, . . . , xN ] are input vectors with xi ∈ Rd ,
f = [f (x1), . . . , f (xN )] represents latent variables, called
function values in GP context, at the input points with mean
µ = [m(x1), . . . ,m(xN )] and a N × N covariance matrix
KNN . Each element in the ith row and jth column is given
by Kij = kθ (xi, xj) for i, j ∈ {1, . . . ,N }, where k is a positive
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definite kernel constructing elements of the covariancematrix
KNN and θ defines the kernel’s free parameters. In practice,
with no prior observation, themean of the function is assumed
to be zero, i.e., m(x) = 0.

Consider a dataset d = {(xi, yi)}Ni=1, where yi ∈ R
represents the noisy observations at each input location xi
within the domain of interest, encapsulating the underlying
process; we aim to model using a Gaussian process. The
generation of yi is modeled as follows:

yi = f (xi)+ ϵ, (56)

where ϵ is considered as Gaussian noise, defined by
ϵ ∼ N (0, σ 2

y ). The likelihood of observing yi given xi is
defined by

p(yi | xi) = N (yi | f (xi), σ 2
y ). (57)

Furthermore, given the GP model, the joint distribution of
y = [y1, . . . , yN ] given X is defined by

p(y | X) = N (y | 0,KNN + σ
2
y IN ). (58)

To train the model, the kernel parameters (θ) need to be
estimated, which can be found by solving

argmax
θ

log p(y | X). (59)

For a set of test points X∗ ≡ [x∗1, . . . , x
∗
N∗ ], the objective

is to find the predictive distribution p(y∗ | y,X,X∗) =
N (µ∗,6∗), where the mean and covariance are defined by

µ∗ = K∗NK−1NNy, (60)

6∗ = K∗∗ −K∗N (KNN + σ
2
y IN )−1KN∗. (61)

Here, K∗∗ is the covariance matrix between the test points,
and K∗N is the cross-covariance matrix between the test
points and the training points.

The formulation requires the inversion of an N × N
matrix to derive the predictive distribution, resulting in
a computational complexity of O(N 3). This computation
becomes expensive in datasets even with a moderate number
of data points. A solution that addresses this challenge is
based on variational inducing points proposed by [18]. In this
approach, M data points Z ≡ {zi}Mi=1, where zi ∈ Rd ,
is introduced in the input space. These M data points, where
M ≪ N , replace the N original data points used in deriving
the covariance matrix. Inducing points Z can be chosen as
fixed points or model-free parameters [18]. This research
considers Z as free parameters with random initial values.
It is further assumed that for each inducing point, there
is a corresponding inducing variable ui. Induced variables
u ≡ [u1, . . . , uM ] follow the distribution p(u | Z) = N (u |
0,KMM ), where KMM is an M × M matrix. This matrix is
generated using the same kernel function kθ (zi, zj) as in the
GP model, applied to the inducing points. The conditional
distribution of f given u is:

p(f | u;Z,X) = N (f | µf ,6f ), (62)

where µf = KNMK−1MMu and 6f = KNN −KNMK−1MMKMN .
Using the inducing points, predictions for new points can be
drawn with a much smaller dataset, significantly reducing
the computational cost for the covariance inverse. However,
to use Z for the prediction step, these points need to be
estimated first. With the inducing points, the free parameters
of the GP model increase to include both θ and Z. The
maximum likelihood estimate of θ and Z is found through
the marginal distribution of y, defined by:

p(y | X;Z, θ) =
∫
p(y, f,u | X;Z, θ) df du

=

∫
p(y | f; θ)p(f | u,X;Z, θ)p(u;Z, θ)

× df du, (63)

where f and u are sets of latent variables of length N and
M , respectively. To determine θ and Z without needing
to invert the large matrix KNN , a variational approach is
employed by introducing the variational distribution q(f,u).
The distribution q(f,u) is defined as q(u)q(f | u), where
q(u) =

∏M
j=1N (uj;mj, sj) and q(f | u) = p(f | u,X;Z, θ),

as already defined in Equation (62). With the q distribution,
a lower bound on the marginal distribution of y can be derived
using Jensen’s inequality, which becomes:

log p(y | X;Z, θ) ≥ Eq(f,u)[log p(y | f; θ)]

− KL[q(u) ∥ p(u;Z, θ)], (64)

where Z and θ , along with mj, sj for j = 1, . . . ,M , are
found to maximize the lower bound. The first term on the
right-hand side of the Equation 64 encourages the model to fit
the data well, while the second term regularizes the model by
penalizing deviations of the variational distribution from the
prior. It is worth noting that the inversion of the KNN matrix
is no longer needed in prediction and parameter estimation
steps.

For Nt test points X∗ ≡
[
x∗1 , . . . , x

∗
Nt

]
, the predictive

distribution is defined by p(f∗ | X, y,X∗). Given the inducing
points, this distribution can be written as:

p(f∗ | X, y,X∗) =
∫
p(f∗,u | X, y,X∗) du. (65)

Note that in the equation, for clarity, its parameters–Z and
θ–are omitted. The exact posterior p(f ∗,u | X, y,X∗) is
estimated with the updated variational distribution q(f ∗,u).
Thus, the predictive distribution can be approximated as:

p(f∗ | X, y,X∗) ≈
∫
q(f∗,u) du

=

∫
p(f∗ | u)q(u) du. (66)

These distributions have already been derived during the
model training. They are defined by:

q(u) ∼ N (u | m,S), (67)

p(f∗ | u) ∼ N
(
f∗ | µf ∗ ,6f ∗

)
. (68)
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where m = [m1, . . . ,mM ] and S is an M × M diagonal
matrix. The mean and covariance matrix of this predictive
distribution are defined by µf∗ = K∗MK−1MMu and 6f∗ =

K∗∗ − K∗MK−1MMKM∗, respectively. The diagonal elements
of S are {si}Mi=1, which are the variational free parameters that
are optimized during training. The approximated integral in
Equation (66) has a closed form, which is a Gaussian with the
following mean and covariance:

µ∗ = K∗MK−1MMm, (69)

6∗ = K∗∗ −K∗MK−1MM (KMM − S)K−1MMKM∗. (70)

APPENDIX B
EXPLORING THE CONNECTION BETWEEN PPCA AND
GPLVM
TheGPLVM is developed based on the probabilistic principal
component analysis (PPCA) framework. In PPCA, the
observed data vector yi for each observation i is modeled as a
linear transformation of the corresponding latent variable xi
with additive Gaussian noise ϵi:

yi =Wxi + ϵi, (71)

where yi ∈ RD denotes the observations, xi ∈ RQ represents
the low-dimensional representation, and W ∈ RD×Q is the
transformation matrix mapping from the low-dimensional
space to the high-dimensional space. The prior distribution
over X is assumed to be Gaussian with a zero mean and an
identity covariance matrix:

p(X) =
N∏
i=1

N (xi | 0, IQ). (72)

Consequently, the likelihood of Y given the transformation
matrixW is:

p(Y |W) =
N∏
i=1

N (yi | 0,C), (73)

with the covariance matrix C defined as:

C =WWT
+ σ 2ID. (74)

In the dual formulation of PPCA, the model is considered
from the perspective of the observed data:

y:,d = Xw:,d + ϵd , (75)

whereX ∈ RN×Q represents the low-dimensional representa-
tion of all samples, y:,d is the d th feature in high-dimensional
space for all samples, andw:,d is the d th column ofW, which
is the linear transformationmatrix. The prior distribution over
W is assumed to be Gaussian with a zeromean and an identity
covariance matrix:

p(W) =
D∏
d=1

N (w:,d | 0, IQ). (76)

Here, the likelihood of Y given the latent variables X is:

p(Y | X) =
D∏
d=1

N (y:,d | 0,K), (77)

where K is the covariance matrix reflecting a linear
relationship to X:

K = XXT
+ σ 2IN . (78)

To accommodate the nonlinear relationships present in many
real-world datasets, the dual PPCA formulation can be
extended using kernel functions kθ (x, x′). This formulation
enables the covariance matrices to be expressed through
kernel functions as follows:

K = KNN + σ
2IN , (79)

whereKNN denotes the covariance matrix, with each element
kij in the ith row and jth column calculated by the kernel
function kθ (xi, xj), reflecting the covariance between two
points xi and xj in the input space. The incorporation of
kernel functions into the PPCA model gives rise to the
Gaussian Process Latent Variable Model (GPLVM), allowing
for the capture of nonlinear relationships within the data. This
enhancement transforms the model into a more adaptable
framework, capable of accommodating the data’s inherent
complexity, as described by:

p(Y | X) =
D∏
d=1

N (y:,d | 0,KNN + σ
2IN ), (80)

where Y represents the high-dimensional data, X denotes the
latent low-dimensional representation, andKNN is the covari-
ance matrix derived from the kernel function, capturing the
nonlinearities in the data. Thus, GPLVM extends the linear
dimensionality reduction approach of PPCA to a nonlinear
setting, offering a more powerful tool for uncovering the
underlying structure in complex datasets.

APPENDIX C
EVIDENCE LOWER BOUND FOR GPLVM
In this appendix, it is demonstrated that maximizing the
ELBO (Equation 26) is equivalent to minimizing the
KL divergence between the true posterior distribution
and the variational posterior distribution. Equations (19)
and (23) depict LDGD’s true and approximated posteriors,
respectively. Let’s denote the true posterior as P̂ ≜
p(Fr ,Fc,Ur ,Uc,X | Yr ,Yc) and approximated posterior
as Q̂ ≜ q(Fr ,Fc,Ur ,Uc,X) = q(Fc,Uc)q(Fr ,Ur )qφ .The
process begins by computing the KL divergence between the
exact posterior and the approximation:

KL(Q̂ ∥ P̂) =
∫
Q̂ log

Q̂

P̂
dFr dFc dUr dUc dX (81)

The posterior distribution of LDGD, given the observed
data Yr and Yc, the latent functions Fr and Fc, the inducing
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variables Ur and Uc, and the latent features X, is defined as:

P̂ =
p(Fr ,Fc,Ur ,Uc,X,Yr ,Yc)

p(Yr ,Yc)
. (82)

This is then substituted into Equation (81):

KL(Q̂ ∥ P̂) =
∫
Q̂ log

p(Yr ,Yc)Q̂
p(Fr ,Fc,Ur ,Uc,X,Yr ,Yc)

× dFr dFc dUr dUc dX

= log p(Yr ,Yc)

+

∫
Q̂ log

Q̂
p(Fr ,Fc,Ur ,Uc,X,Yr ,Yc)

× dFr dFc dUr dUc dX

≜ log p(Yr ,Yc)+ A (83)

The focus is on the integral term. Equations (18) and (23)
are utilized to factorize the joint distribution and the
approximated posterior, respectively:

A =
∫
Q̂ log

Q̂
p(Fr ,Fc,Ur ,Uc,X,Yr ,Yc)

× dFr dFc dUr dUc dX

=

∫
Q̂ log

qφ(X)qλ(Uc)qγ (Ur )
p(Yc | Fc)p(Uc)p(Yr | Fr )p(Ur )p(X)

× dFr dFc dUr dUc dX

= EQ̂

[
log

qφ(X)qλ(Uc)qγ (Ur )
p(Yc | Fc)p(Uc)p(Yr | Fr )p(Ur )p(X)

]
≜ EQ̂

[
log

Q̃

P̃

]
(84)

Given that the KL divergence is always non-negative, the
following is obtained:

log p(Yr ,Yc) ≥ EQ̂

[
log

Q̃

P̃

]
≜ ELBO (85)

Thus, a lower bound for themarginal likelihood, known as the
Evidence Lower Bound (ELBO), is identified. An alternative
approach to achieve the same result involves marginalizing
the joint distribution, followed by multiplying and dividing
the joint distribution by the joint posterior approximation:

p(Yr ,Yc) =
∫
p(Yr ,Yc,Fr ,Fc,Ur ,Uc,X)

× dFr dFc dUr dUc dX

=

∫
Q̂

Q̂
p(Yr ,Yc,Fr ,Fc,Ur ,Uc,X)

× dFr dFc dUr dUc dX

=

∫
Q̂
p(Yc

| Fc)p(Uc)p(Yr
| Fr )p(Ur )p(X)

qφ(X)qλ(Uc)qγ (Ur )

× dFr dFc dUr dUc dX

= EQ̂

[
p(Yc

| Fc)p(Uc)p(Yr
| Fr )p(Ur )p(X)

qφ(X)qλ(Uc)qγ (Ur )

]

≜ EQ̂

[
log

Q̃

P̃

]
(86)

Using Jensen’s inequality, the evidence lower bound (ELBO)
can be found:

log p(Yr ,Yc) ≥ EQ̂

[
log

Q̃

P̃

]
≜ ELBO (87)

Having calculated the ELBO through two approaches, the
next step is to decompose the ELBO into simpler terms:

ELBO = Eq(Fc,Uc,X)

[
log

p(Yc
| Fc)p(Uc)
qλ(Uc)

]
+ Eq(Fr ,Ur ,X)

[
log

p(Yr
| Fr )p(Ur )
qλ(Uc)

]
− KL(qφ(X) ∥ p(X))

= Eqφ (X)
[
Ep(Fc|Uc,X)qλ(Uc)

[
log p(Yc

| Fc)
]]

+ Eqφ (X)
[
Ep(Fr |Ur ,X)qγ (Ur )

[
log p(Yr

| Fr )
]]

− KL(qλ(Uc) ∥ p(Uc))− KL(qλ(Ur ) ∥ p(Ur ))

− KL(qφ(X) ∥ p(X))

= ELLreg
+ ELLcls

− KLcu − KLru − KLX . (88)

APPENDIX D
COMPUTATION OF PREDICTIVE DISTRIBUTION
In this appendix, the calculation of the predictive distribution
is detailed. Given that the calculation for both continuous and
labeled data follows the same process, the focus is on the con-
tinuous case for simplicity. The LDGD framework employs
a Gaussian prior for the inducing variables, formalized as
p(ur
:,d | Z) = N (ur

:,d | 0,K
r
MrMr

). Moreover, the variational
distribution within this model is specified as qγ (Ur ) =∏D

d=1N (ur
:,d | m

r
d ,S

r
d ). Utilizing the transformation matrix

A, defined as A ≜ Kr
NMr

Kr
MrMr

−1, the distribution of
function values, conditional on the inducing points and latent
variables, is then expressed as:

p(fr:,d | u
r
:,d ,X) = N (Aur:,d ,K

r
NN − AKr

MrMr
AT ). (89)

This formulation leverages Gaussian distribution properties
for the marginal distribution. Subsequently, the predictive
distribution, represented as qγ (fr:,d | X), is derived by
integrating out the inducing variables. Given that both terms
within the integral are Gaussian distributions, this integration
has an analytical solution, allowing for straightforward
computation:

qγ (fr:,d | X) ≜
∫
p(fr:,d | u

r
:,d ,X)qγ (u

r
:,d ) du

r
:,d

= N (fr:,d | µ
r
f ,6

r
f ), (90)

µr
f = ATmr

d , (91)

6r
f = Kr

NN + AT (Srd −Kr
MrMr

)A. (92)

For stabilizing the learning of variational parameters, the
whitening trick proposed by [55] is utilized. Let Lr denote
the Cholesky factor of the covariance matrix of the prior over
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Algorithm 2 Calculate Predictive Distribution
Require:

Sampled latent variables Xb
Kernel matrices KNN ,KMM ,KMN
Whitened variational mean m̂
Whitened variational covariance Ŝ = ŴŴT (Ŵ is upper
triangular)

1: function PredictiveDist(Xb, KNN , KMM , KMN , m̂, Ŝ)
2: Add jitters to KMM
3: LLT ← CholeskyDecomposition(KMM )
4: Â← L−1KMN
5: µf ← ÂT m̂
6: 6f ← ÂT (ŴŴT

− I )Â
7: 6f ← Kr

NN +6f
8: return µf and 6f
9: end function

Algorithm 3 Calculate Expected Log-Likelihood (ELL) for
Regression
Require:

Observations y
Predictive distribution mean and covariance µfr ,6fr

Noise variance σ 2

Sampled points X(j), j = 1, . . . , J
1: function ELLRegression(Yr ,µfr ,6fr , σ

2,X)
2: ELLreg← 0
3: for i = 1 to B do
4: for d = 1 to D do
5: ELLregi,d ← 0
6: for j = 1 to J do

7: A←
(yri,d−µfr

:,d
(x(j)i ))2+6fr

:,d
(x(j)i )

σ 2d

8: A← A+ log 2π + log σ 2
d

9: A←−0.5 A
10: ELLregi,d ← ELLregi,d + A
11: end for
12: ELLregi,d ←−

1
2J × ELL

reg
i,d

13: ELLreg← ELLreg + ELLregi,d
14: end for
15: end for
16: return ELLreg

17: end function

inducing variables, such that Kr
MrMr

= Lr (Lr )T . Whitened
parameters mr

d = Lrm̂r
d and Wr

d = LrŴr
d are introduced,

where m̂r
d and Ŵr

d are the free parameters. Here, Wr
d and

Ŵr
d are upper triangular matrices. The covariance matrix of

the variational distribution is computed as Srd = Wr
d (W

r
d )
T .

Given these definitions and transformations, the mean and
covariance of the predictive distribution are expressed as
µrf = ÂT m̂r

d and 6r
f = Kr

NN + ÂT
(
Ŵr

d (Ŵ
r
d )
T
− I

)
Â,

where Â = Lr−1Kr
MrN . The introduction of whitened param-

eterization and the transformation of themean vector simplify
computation, ensuring numerical stability and computational

Algorithm 4 Calculate Expected Log Probability Using
Gauss-Hermite Quadrature
Require:

Observations y
Predictive distribution mean and covariance
Gauss-Hermite Quadrature nodes Loc
Gauss-Hermite Quadrature weights ω

1: function ELLClassification(Yc,µfc ,6fc ,Xb)
2: ELLcls← 0
3: for i = 1 to B do
4: for k = 1 to K do
5: yci,k ← 2yci,k − 1
6: ELLclsi,k ← 0
7: for j = 1 to J do
8: L ←

√
26f ck

(x(j)i )× Loc(j)+

9: L ← L + µf ck (x
(j)
i )

10: L ← log8(L · yci,k )
11: ELLclsi,k ← ELLclsi,k + L × ω

(j)

12: end for
13: ELLclsi,k ←

1
J
√
π
ELLclsi,k

14: ELLcls← ELLcls + ELLclsi,k
15: end for
16: end for
17: return ELLcls

18: end function

efficiency. This approach applies to categorical data (labels)
as well:

qλ(fc:,k | X) ≜
∫
p(fc
:,k | u

c
:,k ,X)qλ(u

c
:,k ) du

c
:,k

= N (fc
:,k | µ

c
f ,6

c
f ), (93)

µc
f = BTmc

k , (94)

6c
f = Kc

NN + B
T (Sck −Kc

McMc
),B (95)

where B ≜ Kc
McMc

−1Kc
McN . Using whitened parameters,

it can be expressed as µc
f = B̂T m̂c

k and 6c
f = Kc

NN +

B̂T (Ŵc
k (Ŵ

c
k )
T
− I)B̂, where B̂ = (Lc)−1Kc

McN andKc
McMc

=

Lc(Lc)T .
Implementation details for the predictive distribution are

provided in Algorithm 2. The calculation process is identical
for both continuous and labeled data; hence, we omit the
superscripts ‘‘r’’ and ‘‘c’’ used in the main text to differentiate
between the two data types.

APPENDIX E
EXPECTED LOG-LIKELIHOOD IMPLEMENTATION
The implementation details for calculating ELLreg based
on Equation (50) and ELLcls based on Equation (42) are
provided in Algorithms 3 and 4, respectively.
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