
Received 29 July 2024, accepted 12 August 2024, date of publication 14 August 2024, date of current version 26 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3443527

Enhancing User Trust and Interpretability in
AI-Driven Feature Request Detection for
Mobile App Reviews: An Explainable
Approach
ISHAYA GAMBO 1, RHODES MASSENON1, CHIA-CHEN LIN 2, (Member, IEEE),
ROSELINE OLUWASEUN OGUNDOKUN 3,4, SAURABH AGARWAL 5,
AND WOOGUIL PAK 5, (Member, IEEE)
1Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife 220282, Nigeria
2Department of Information Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
3Department of Centre of Real Time Computer Sciences, Kaunas University of Technology, 44249 Kaunas, Lithuania
4Department of Computer Science, Landmark University, Omu-Aran 251103, Nigeria
5Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Corresponding authors: Chia-Chen Lin (ally.cclin@ncut.edu.tw), Saurabh Agarwal (saurabh@yu.ac.kr), and Wooguil Pak
(wooguilpak@yu.ac.kr)

This work was supported in part by the National Science and Technology Council under Grant NSC 111-2410-H-167-005-MY2 and Grant
NSC 112-2634-F-005-001-MBK.

ABSTRACT Mobile app developers struggle to prioritize updates by identifying feature requests within user
reviews. While machine learning models can assist, their complexity often hinders transparency and trust.
This paper presents an explainable Artificial Intelligence (AI) approach that combines advanced explanation
techniques with engaging visualizations to address this issue. Our system integrates a bidirectional
Long Short-Term Memory (BiLSTM) model with attention mechanisms, enhanced by Local Interpretable
Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP). We evaluate this
approach on a diverse dataset of 150,000 app reviews, achieving an F1 score of 0.82 and 89% accuracy,
significantly outperforming baseline Support Vector Machine (F1: 0.66) and Convolutional Neural Network
(CNN) (F1: 0.72) models. Our empirical user studies with developers demonstrate that our explainable
approach improves trust (27%) when explanations are provided and correct interpretation (73%). The
system’s interactive visualizations allowed developers to validate predictions, with over 80% overlap
between model-highlighted phrases and human annotations for feature requests. These findings highlight
the importance of integrating explainable AI into real-world software engineering workflows. The paper’s
results and future directions provide a promising approach for feature request detection in app reviews to
create more transparent, trustworthy, and effective AI systems.

INDEX TERMS Explainable AI, feature request detection, machine learning interpretability, mobile app
development, software requirements, user trust.

I. INTRODUCTION
In recent years, interest in developing transparent and
interpretable machine learning (ML) models, known
as Explainable Artificial Intelligence (XAI), has been

The associate editor coordinating the review of this manuscript and

approving it for publication was Wai-Keung Fung .

increasing [1], [2]. Explainability is crucial for gaining
user trust and acceptance as AI systems are used more
frequently in critical sectors like healthcare, industry, and
transportation [3], [4], [5], [6], [7]. Research suggests that
when users can understand the reasoning behind an AI
system’s decision-making process, they are more likely to
have confidence in the system [8], [9], [10]. To provide this

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 114023

https://orcid.org/0000-0002-1289-9266
https://orcid.org/0000-0003-4480-7351
https://orcid.org/0000-0002-2592-2824
https://orcid.org/0000-0003-3836-2595
https://orcid.org/0000-0002-9551-7373
https://orcid.org/0000-0002-3367-1711


I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

transparency, XAI tries to clarify the logic and important
components that affect the model outputs. For XAI, methods
like SHAP [11], [12], LIME [13], and counterfactual visual
explanations [14] have been proposed. These methods
produce coherent explanations and visual representations
that show how input features affect model predictions.
For instance, LIME highlights superpixel segments that
most influenced a classifier’s output [15], [16]. As such,
explainable AI allows users to scrutinize the model and
ensure it behaves reasonably before deploying it in real-world
systems. However, explainable AI techniques have limited
application to complex unstructured data like text [17], [18].
In particular, automatically detecting feature requests in
mobile app reviews is a key challenge where explainability
can build user trust.

Reviewing and analyzing user feedback to improve apps
is crucial for developers. They can gain insights into
users’ needs and expectations, allowing them to align their
development efforts with user requirements to implement
a successful software system [19], [20], [21]. Analyzing
software features from mobile app reviews is vital due to
the increasing significance and widespread usage of mobile
apps in the current digital landscape, with an estimated
257 billion apps downloaded between 2016-2023 across
Google Play, Apple, and Microsoft stores [22]. App reviews
represent a practical data source for deriving explainable
requirements. App reviews can be analyzed to elicit requested
feature requests, issues, underlying user needs, and context
to produce explainable requirements that capture essential
details behind the requests [23], [24]. Analyzing user reviews
to determine preferences, dislikes, and feature and quality
suggestions is one efficient way to get feedback on software
systems [25], [26], [27].

According to Pagano and Maalej [28], comprehensive
feature requests and issue reports are frequently included
in app reviews. Research by Guzman and Maalej [25],
Gu and Kim [29], and other authors emphasizes how crucial
sentiment analysis is to understanding user attitudes and
enhancing app development and user pleasure. By ana-
lyzing user feedback, software engineers can identify user
preferences, requirements, and areas for enhancement [30],
[31]. However, existing studies on sentiment analysis in
app reviews have primarily prioritized performance over
interpretability [32], [33]. An intelligent system that can auto-
matically detect feature requests from reviews would provide
significant value. Explainability is especially important here,
as developers need to understand why a particular review
excerpt was classified as a feature request before considering
it for implementation. However, addressing the limitations
of these approaches is crucial to enhance the transparency
and build trust and scalability of feature detection in software
engineering practices [34], [35].
This paper introduces an explainable AI system designed

to identify feature requests in mobile app reviews, filling
a notable gap in current research. The objectives of this
paper are threefold. Firstly, to design and implement a

framework utilizing ML classifiers to accurately detect fea-
ture requests from reviews. Secondly, to integrate explainable
AI techniques to facilitate interpretation of the model’s
predictions. Thirdly, to demonstrate the effectiveness of
the system through quantitative experiments and qualitative
explainability evaluations. The scope is limited to English
app reviews across both iOS and Android platforms. The
main research question entails the following sub-research
questions:
• RQ1 - How can feature requests be effectively identified
from unstructured review text?

• RQ2 - How can explainable AI methods like LIME
and SHAP be adapted to provide useful insights into
predictions on app reviews?

• RQ3 - Do the explanations help developers correctly
interpret feature request detection results compared to
a black box model?

• RQ4 - Does the explainable system lead to greater trust
in the AI predictions from mobile app developers?

The rest of the paper is structured as follows: SECTION II
presents the background and relevant research on mobile
app review analysis and explainable AI. Next, the proposed
explainable AI model architecture and methods used in the
paper are then given in SECTION III. Subsequently, the out-
comes and experiments are examined, assessing the explain-
able system using an app reviews dataset in SECTION IV,
where the quantitative results are given. In SECTION V,
we discussed the results and address the research questions
and describe the experimental findings of our proposed
research approach. Finally, the conclusion, limitations and
future work are presented in SECTION VI.

II. BACKGROUND AND RELATED WORK
A. OUR NOTION ON EXPLAINABLE AI
Explainability is the degree to which people can under-
stand and interpret an artificial intelligence (AI) system’s
internal workings and output [36], [37], [38]. Chazette and
Schneider [37] define 2020 explainability as the system’s
ability to provide explanations that are customized to each
user’s unique demands within a given context. Research
indicates that explainability plays a crucial role in enhancing
trustworthiness, transparency, accountability, fairness, and
ethics in software systems by addressing their black box
nature [23], [39]. The ability to explain AI systems depends
on factors like the system’s design, the intended audience, and
the context [33]. As opaque deep learning and black-box AI
models become more prevalent, explainability has become
a critical issue due to the potential impact on user and
stakeholder trust [40]. Explainable AI aims to create AI
based ML systems that provide explanations justifying
their functionality, predictions, and recommendations in an
understandable manner [41].

In recent years, there has been a growing emphasis
on interpretable ML and explainable AI. The aim is to
make ML algorithms easier to understand. Explanations are
essential in these fields as they provide insights into how

114024 VOLUME 12, 2024



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

the models make decisions, visualize the models, and help
users better understand specific domains. Researchers like
Bunt et al. [42], Tintarev and Masthoff [43] have studied the
significance of explanations in popular platforms such as
YouTube, Amazon, and Facebook, highlighting their impact
on effectiveness and user satisfaction. Explanations play a
crucial role in enhancing transparency, scrutability, trust,
effectiveness, persuasiveness, efficiency, and satisfaction in
recommender systems, often intersecting and sometimes
conflicting with each other.

Doshi-Velez et al. [44] have defined transparency charac-
teristics in software and investigated the connection between
transparency, explanations, and other system requirements.
The impact of explanations on the quality aspects of software
systems, such as acceptability, trust, and effectiveness, has
been studied in various research. Some studies have also
explored how explanations affect the comprehensibility
of software systems [43], [45]. Eliciting and designing
explainable requirements from users’ opinions is crucial for
several reasons as show in Table 1.
Unterbusch et al. [33] emphasize the importance of

understanding users’ Explanation Needs to enhance trust
and satisfaction, while Chazette et al. [34] highlight the
significance of system transparency and users’ right to
comprehend software systems. Sadeghi et al. [46] stress
the value of addressing Explanation Needs to improve
system functionality. Transparent systems, as shown by
Unterbusch et al. [33] are more likely to gain user trust and
foster positive experiences. This aligns with Pagano and
Maalej [28] emphasizing the role of trust in user satisfac-
tion. Understanding users’ Explanation Needs, as noted by
Sadeghi et al. [46] enables informed decisions for system
enhancements, essential for meeting evolving user needs.
eliciting explainable requirements from users is essential for
creating transparent, trustworthy, and user-centric software
systems. Following these trends, this paper will primarily
focus on designing explainable ML systems.

B. EXPLAINABLE AI TECHNIQUES
Several explainable AI techniques have been created to
improve the interpretability of models. One of these
techniques, known as Local Interpretable Model-agnostic
Explanations (LIME) developed by Ribeiro et al. [13], helps
to explain individual predictions from complex models
such as deep neural networks. LIME achieves this by
creating local surrogate models that closely mimic the
original model for a specific prediction, determining the most
impactful input features through subgroup discovery and
sampling techniques [47]. For example, in sentiment analysis,
LIME can help organizations understand the key words or
features impacting predictions of reviews as negative, neutral,
or positive in mobile app reviews.

Future research can explore how LIME enhances the inter-
pretability of deep learning models for sentiment analysis
and automated software feature request detection. LIME and

SHAP are two widely used explainable AI methods. LIME
has been utilized in various studies to analyze predictions
from text classifiers, reinforcement learning agents, and
image classifiers. SHAP, on the other hand, employs game
theory and Shapley values to determine the contribution of
each input feature to a model’s output, attributing predictions
to specific features. Researchers have used SHAP to explain
predictions from tree ensembles [48] and graph neural
networks [49], [50]. Utilizing the Kernel SHAP method
internally, SHAP calculates the weight of contribution for all
features in a black box model.

Unlike LIME, SHAP does not include a local linearmodule
but uses specific functions to compute the Shapley value,
enhancing model interpretability. In sentiment analysis,
SHAP can identify word contributions to positive and
negative sentiment predictions. Despite its potential, there
is limited research on applying SHAP, LIME to sentiment
analysis in themobile app reviews with deep learningmodels,
offering an opportunity for future studies to explore SHAP’s
utility in enhancing model interpretability for sentiment
analysis in the mobile app industry.

While these methods have proven useful for explaining
ML models, their application to textual data is still limited.
Some studies have utilized explainable AI for sentiment
analysis [51], [52] and sensitivity detection [53], [54]. But
these focused only on benchmark datasets rather than real-
world applications. Most research in app review analysis by
interpreting user emotions in app review achieved accuracy
with non-interpretable models. Explainability for feature
request detection from unstructured mobile app reviews
remains unexplored. Our work aims to address this gap by
designing an interpretable system using LIME and SHAP
tailored to this application.

C. OPINION MINING AND FEATURES EXTRACTION FROM
APP REVIEWS
App reviews provide valuable insights into user opinions
regarding various aspects of software. Methods used to
analyze app reviews include manual content analysis, sen-
timent analysis, summarization, recommendation, grouping
similar apps, classification into developer-relevant categories,
sentiment analysis on requirements, and predicting review
utility scores. Techniques such as natural language pro-
cessing, topic modeling (e.g., LDA, HDP, BTM, NMF),
linguistic rules (POS tagging, NER), Bag of Words, TF-
IDF, and Word Vector-Based Techniques (Word2Vec, GloVe,
BERT) are commonly employed in these methodologies.
Gao et al. [55] developed the IDEA framework for analyzing
online app reviews to identify emerging issues efficiently.
The framework involves preprocessing, topic modeling using
LDA, interpretation, and visualization.

Wang et al. [56] presented SIRA, a semantic-aware
approach utilizing a BERT+Attr-CRF model to extract
features and a graph-based clustering method to identify
common issues in app reviews. This method accurately

VOLUME 12, 2024 114025



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

TABLE 1. Mapping between reasons of elicit and design explainable with exemplary description.

pinpoints problematic aspects in user feedback, aiding
developers in addressing specific concerns to enhance user
experience effectively. On the other hand, Araujo et al. [57]
introduced RE-BERT, a method using deep neural language
models such as Local Context Word Embeddings to extract
software requirements from reviews. RE-BERT leverages
token classification for requirements extraction by generating
word embeddings from the surrounding sentence context.
It differs from traditional rule-based methods by capturing
the context of software requirements. It also employs
multi-domain training to extract requirements from app
reviews in new domains without labeled data.

MAPP-Reviews by de Lima et al. [58] uses contextual
word embeddings from RE-BERT to analyze temporal
dynamics of software requirements in mobile app reviews,
enabling effective extraction and identification of key clusters
and trends in user feedback. T-FREX by Motger et al. [59]
introduces a Transformer-based approach for automati-
cally extracting features from mobile app reviews using
Large Language Models. It addresses limitations of manual
annotations through a voting-based system to improve
tasks in software engineering for mobile app development.
Zahoor and Bawany [60] created a model to automate
the classification and sentiment analysis of Android app
education reviews. They utilized NLP, TF-IDF, SMOTE,
and ML techniques, achieving a 97% accuracy in sen-
timent identification and 94% accuracy in major issue
classification. The model was validated using the explain-
able AI technique of local interpretable model-agnostic
explanations.

Notably, Unterbusch et al. [33] have made initial advance-
ments in automating the identification of explanation needs
in reviews, which contributes to streamlining the process for
engineers and researchers. Though there has been progress
in automatically identifying feature requests and user needs
using statistical techniques and clustering approaches [61],
[62], further enhancement in model interpretability is still
necessary. By comparing the past studies on opinion mining
and features extraction related to app reviews presented in

Table 2, most of the research focus on classification accuracy
over interpretability in existing research.

Consequently, there is a research gap in explainable AI
using deep learning (DL) techniques for feature request
detection of mobile app reviews, which represents an
opportunity for future research. Overall, there remains a need
for an accurate system that can detect feature requests from
unstructured reviews while also explaining the inferences
made. Our proposed approach aims to strike this balance
between performance and interpretability. By leveraging
recent explainable AI techniques like LIME and SHAP,
we can build a model that approaches state-of-the-art
accuracy levels while enabling interpretation of predictions.

D. STRENGTH AND LIMITATIONS OF EXISTING MODELS
Recent research has shown that traditional ML models
such as Naïve Bayes and Support Vector Machines face
difficulties when it comes to sentiment classification, espe-
cially when compared to topic-based categorization [82].
Mobile App reviews can convey negativity without explicit
negative words, posing a difficulty for ML models. While
lexicon-based methods may outperform ML models in
accuracy, they struggle with sentiment analysis in languages
beyond English [83]. The importance of domain adaptation is
emphasized due to varying word meanings across domains.
To tackle these issues, the text suggests leveraging DL
algorithms that can self-train on extensive domain-specific
data. By enabling models to learn from large datasets within
the same domain, DL algorithms have the potential to
address the limitations of traditional MLmodels and enhance
performance in sentiment analysis tasks. DL methods like
RNN, CNN, LSTM and BiLSTM in sentiment analysis, high-
lighting the need for further research on hybrid approaches to
enhance sentiment classification accuracy.

While DL methods demonstrate good performance, the
lack of explainability in neural networks raises concerns
for businesses, leading to a reluctance to adopt black-
box models. LSTM networks have proven very effective
for modeling sequential and time-series data, such as

114026 VOLUME 12, 2024



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

TABLE 2. Methods used for opinion mining and features classification for app reviews.

text [84]. By maintaining an internal cell state, LSTMs
can capture long-range dependencies that traditional RNNs
struggle with [85]. However, Bidirectional LSTM (BiLSTM)
networks have proven very effective for text classification
and sequence labeling tasks across various domains [86],
[87]. By processing text in both forward and reverse order,
BiLSTMs can capture contextual signals from the entire input
sequence [88].
Researchers have applied BiLSTMs to achieve state-of-

the-art results in sentiment analysis [89], [90], machine
translation [91], [92], and named entity recognition [93],
among other tasks. Additionally, attention mechanisms have
been incorporated with BiLSTMs to enable focusing on
salient parts of the input text [86]. Attention scores help
the model emphasize words and phrases most relevant for
the classification task [94]. Recent research has demon-
strated that attention mechanisms can effectively pinpoint
opinionated sections of text reviews.

In addition, utilizing Bidirectional LSTM (BiLSTM)
models has significantly advanced text classification tasks
like sentiment analysis and named entity recognition (NER).

For example, Xiaoyan and Raga [95] showcased the effi-
cacy of a BiLSTM model equipped with an attention
mechanism in classifying sentiments in Chinese text. Simi-
larly, Bhuvaneshwari et al. [96] introduced a BiLSTMmodel
incorporating self-attention and convolutional layers for
review subjectivity classification, outperforming traditional
methods. Liu and Guo [86] developed the AC-BiLSTM
model, enhancing BiLSTM models to capture local phrase
patterns and global semantics effectively. Xie et al. [97]
integrated self-attention into their BiLSTM architecture
to improve sentiment analysis of short texts compared
to standard LSTM and BiLSTM models. In the NER
domain, VeeraSekharReddy et al. [93] recently developed an
Attention-BiLSTM_DenseNet model that extracted features
for NER more effectively than LSTM-CRF models. Properly
designed BiLSTM models, enhanced with attention, convo-
lution, and self-attention mechanisms, have proven effective
at text feature extraction and classification across sentiment
analysis, subjectivity detection, and NER tasks.

However, a key limitation of standard LSTM is the lack
of interpretability, owing to their complex neural network

VOLUME 12, 2024 114027



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

architecture. As ‘‘black box’’ models, it is hard to intuitively
understand their internal reasoning and predictions [98].
To overcome this issue, various explainable AI techniques
such as SHAP and LIME are recommended to provide
insights into how DL models determine sentiment in cus-
tomer reviews. By utilizing XAI techniques, businesses can
improve their understanding of DL model decision-making
processes and compare results with those obtained from DL
methods.

Nonetheless, current XAI techniques face challenges in
scaling to large high-dimensional data and quantifying
explanation quality [99]. There are also open questions
around evaluating user trust in explanations [100]. Our
research addresses the lack of interpretability in app review
text modeling by utilizing a BiLSTM model with attention,
along with explainable techniques like LIME and SHAP.
The BiLSTM is expected to capture semantic relationships
useful for feature request detection, while attention draws
focus to indicative review snippets. Explainable techniques
like LIME and SHAP then help open the black box and
offer explanations. Our experiments will shed light on their
synergistic abilities versus limitations on a real-world app
review analysis task. This combination allows for both high
accuracy and interpretability, addressing a crucial gap in
current research. The creative application of these techniques
to the specific domain of app review analysis represents
an innovative approach to a real-world problem faced by
developers.We believe explainable BiLSTMs can provide the
next step towards trusted AI systems. Figure 1 shows a typical
architecture of the BiLSTM model by Yildririm [101].

III. PROPOSED METHODOLOGY
To enable interpretable feature request detection from app
reviews, we propose a novel system architecture using
deep learning models along with XAI for interpretability
and LSTM method. The novel system architecture using
deep learning models along with tailored explainable AI
techniques is described in Figure 2. It integrates i) A
BiLSTM with attention mechanism for processing app
reviews; ii) Adaptations of LIME and SHAP for generating
text-based explanations and iii) A custom user interface for
developer feedback and trust evaluation.

As Figure 2 shows, raw review text is first prepro-
cessed using techniques optimized for informal app review
language, including cleansing, spell correction, and nor-
malization. We then extract features using methods like
n-gram vectors [102] and TF-IDF encoding [103] to capture
app-specific terminology and request patterns. Named entity
recognition is applied to extract app-specific terms. This
preprocessing pipeline is crucial for handling the unique
characteristics of app review text. The extracted features are
fed into a Bi-directional LSTM network to model sequential
relationships in the review text. This allows capturing
context-dependent patterns indicative of feature requests.
We integrate attention layers to focus the model on phrases
most relevant to feature requests. This sophisticated sequence

modeling enables detecting subtle linguistic cues that signal
user needs.

Hence, to provide transparency into the BiLSTM’s
decision-making, we integrate two complementary post-hoc
explanation techniques: LIME and SHAP. LIME offers
local, instance-specific explanations that are intuitive for
developers to understand, while SHAP provides a global
perspective on feature importance across the entire dataset.
Combining both methods allows for cross-validation of
explanations. Finally, the explanation outputs are visualized
through text and plot highlights to offer users insight
into the model’s reasoning process. This allows validating
predictions before taking action. This dual approach aims
to advance research on interpretable app review analysis
by synergistically combining state-of-the-art deep learning
with tailored explainable AI techniques. Through this novel
approach, we aim to enhance robustness and trustworthiness
of the explanations. The detailed methodology implemented
addresses all objectives outlined in SECTION I of the paper.

A. DATA COLLECTION AND PREPROCESSING STEP
Our first step is to collect a dataset of app reviews from vari-
ous sources including the Apple App Store and Google Play
Store. Using free APIs from the ParseHub tool, we scrape
reviews for top apps in various categories like social media,
productivity, and games, as illustrated in Figure 3. This allows
us to compile a corpus covering reviews of varied apps to
enable generalization. After collecting the raw app review
data, we conducted a thorough analysis of review length
distribution in our dataset. We observed that review lengths
ranged from extremely short (1-2 words) to very long (over
1000 words). To determine an appropriate range for our
study, we considered several factors. We manually analyzed
a sample of reviews to determine at what lengths reviews
typically contained sufficient context for feature request
detection. We plotted the distribution of review lengths in our
dataset and identified natural breakpoints.

Based on this analysis, we decided on a final range of
5-987 words, with an average of 106 words. This range
covers the majority of informative reviews while excluding
extremely short reviews that lack context and extremely
long outliers that may introduce noise or computational
inefficiency. The next phase is preprocessing and cleaning.
The reviews are first checked for duplicates using Jaccard
similarity measures, and any exact or near-duplicates are
removed to avoid bias during analysis. We remove Non-
Standard Characters, Numbers and Punctuation like comma,
period, question mark, and exclamation mark (/*-.,;:!’"_@
|[]?/% users include $ =). We also filter punctuation marks
representing emoji emoticons (like ":)" and ":("). Next,
we filter out reviews containing primarily non-English text,
as our current implementation focuses on English reviews.

Furthermore, as app reviews often contain informal
language such as abbreviations, slang and spelling mis-
takes, repetitions (like soooooooo, happyyyyyyyy.., greattttt.,
loooovedit, plzzzzz), we apply preprocessing techniques

114028 VOLUME 12, 2024



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

FIGURE 1. A typical BiLSTM architecture with attention for sequence modeling (Source: [101]).

FIGURE 2. Our explainable AI system architecture for app review feature request detection.

tailored for user-generated text [104].This includes spelling
correction, tokenization, stemming and lemmatization to
normalize the review text. Finally, we chunk the review text
into sentences to support finer-grained analysis during feature
extraction and explainable elaboration stages. The output of
the preprocessing phase is clean, normalized app review data
ready for software features extraction.

B. EXTRACTING SOFTWARE FEATURES FROM APP
REVIEWS
Extracting informative features from the raw app review
text is a critical first step in our pipeline. Thoughtfully
designed features can help the model effectively distinguish
between feature requests and other review types. Specif-
ically, we leverage multiple techniques to capture textual
patterns at different levels of granularity. Firstly, at the
word level, n-gram vectors are useful for preserving local
context. By splitting review sentences into sequences of
n consecutive words, local word order and meaning is
retained. Furthermore, TF-IDF vectors play a crucial role in

identifying unique words that differentiate feature requests
from other reviews. This encodes both word frequency within
a review and uniqueness across the corpus. Furthermore,
for higher-level semantics, pretrained word embeddings are
utilized. Methods like word2vec and GloVe map words
into vector spaces encoding meaning and relationships. This
allows identifying key terms associated with feature requests
based on vector similarity. Moreover, part-of-speech and
named entity tagging allows extracting nouns, verbs and
entities that tend to express feature needs. For instance,
nouns like ‘‘button’’ or ‘‘animation’’ can indicate desired
interface elements. This expanding feature representation
then feeds into the sequential BiLSTM model in the
next stage.

C. MODEL BUILDING AND EXPLAINABILITY
INTEGRATION
After extracting informative features, the next stage is effec-
tivelymodeling the sequential nature of the review text. Given
reviews comprise sentences arranged in a meaningful order,

VOLUME 12, 2024 114029



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

FIGURE 3. Review data collection and preprocessing flowchart.

capturing inter-sentence dependencies is crucial. To achieve
this, we employ a Bi-directional LSTM architecture. LSTMs
are adept at learning long-range temporal relationships due
to their recurrent structure and gated memory cells. The
bi-directional design further allows the model to process
a review sequence both forward and backward. This pro-
vides additional contextual signals. Concretely, the feature
vectors obtained in the prior stage are sequentially passed
through the BiLSTM network. The combined hidden states,
formed by concatenating the forward and backward states,
create a unified representation that summarizes the entire
review.

Moreover, attention layers have been incorporated on top
of the BiLSTM model to pinpoint the phrases and words
that hold the utmost significance in feature requests. For
instance, attention can highlight sentiment-heavy sentences
signaling the user’s app experience. This provides pointers
for potential feature requests. After BiLSTM encoding,
sentiment classification is performed. Feature requests often
accompany sentiment expressing the need for missing
features. By classifying review sentiment, we can identify
candidate segments for explainable feature request detection.
The proposed BiLSTM architecture with attention and senti-
ment analysis aims to effectively analyze reviews in a holistic
yet focused manner as shown in Figure 4. The BiLSTM
component includes: a) Initialization of BiLSTM parameters
b) Extraction of temporal features c) Determination of
long-term contextual relationships d) Controlling LSTM
functions using gates e) Classification of encoded sequences
f) Extraction of high-level features g) explainable feature
request detection.

To improve the interpretability of the BiLSTM model that
effectively models sequences of reviews, we incorporate two
popular post-hoc explanation techniques: LIME and SHAP

are powerful tools that offer a deeper understanding of the
inner workings of the BiLSTM model. LIME provides a
simpler interpretation by creating local linear models around
predictions, highlighting key words and phrases in reviews
for feature request prediction. On the other hand, SHAP
assigns quantifiable values to input words and phrases,
leveraging Shapley values to identify important signals for
predicting feature requests. By combining LIME and SHAP,
we can effectively attribute predictions to specific parts
of the input review text, unraveling the mysteries of the
black-box BiLSTM model. While the BiLSTM provides
overall accuracy, the explainable AI techniques offer crucial
transparency. The explanations produced by LIME and
SHAP are then visualized through text and plot highlights
to offer transparency into the classifier’s predictions. This
allows stakeholders, such as app developers, to interface
with the explainable system, validate and interpret the
results before taking action based on the detected feature
requests.

D. OUR INTERACTIVE VISUALIZATION INTERFACE
Our innovative method offers interactive visualization inter-
faces that empower end users, like mobile app developers,
to confidently evaluate the accuracy and dependability of
explanations produced by our BI-LSTM feature request
classifier. This innovation enhances the user experience
and facilitates decision-making in the development process.
As established in prior literature, human-centered assessment
of explanations is critical for real-world deployment of
explainable AI systems [105]. Specifically, we implemented
a web-based interface of the feature request prediction result
for a given app review excerpt along with the key phrases
highlighted by the LIME method to support the prediction.
Color coding visually distinguishes positive and negative
contributing phrases [13]. App developers can toggle the
highlight colors on/off and remove phrases to observe the
impact on predicted probabilities, allowing interactive testing
of explanation sensitivity. In addition to LIME, we also
implement SHAP value explanations which attribute the
prediction to each feature. This produces a bar chart showing
the most positive and negative features. By combining the
local fidelity of LIMEwith the global view from SHAP, users
get both granular examples and summary model attributes.
Additionally, app developers can provide quantitative ratings
of perceived explanation quality through Likert scales, as well
as qualitative feedback through free-form comments. These
capabilities allow collecting rich insights into how end users
evaluate the intelligibility of explanations.

Overall, our approach equips end users with amenable
tools to test explanation quality specific to the app review
analysis domain before deployment of new app version or
development of new app UI design. Figure 5 shows the
human-centered evaluation process of our explainable AI
systemwith custom user interface for developer feedback and
trust evaluation. Our architecture is designed to revolutionize

114030 VOLUME 12, 2024



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

FIGURE 4. Proposed BiLSTM-XAI for feature request detection.

the field of interpretable app review analysis by seamlessly
integrating cutting-edge deep learning with customized
explainable AI techniques. With this innovative strategy,
we aim to provide accuracy and reliability in our results.

E. KEY ALGORITHMS AND EQUATIONS
Our model effectively utilizes bidirectional LSTM to thor-
oughly analyze review text by processing it in both forward
and backward directions. This allows the BiLSTM to capture
the full context of the sequence and effectively propagate
information over long sequences. With separate LSTM
layers for forward and backward passes, two hidden state
vectors are generated for each input time step represented in
Equations 1 and 2, by taking an input sequence with L units
and H hidden units.

ft = σ (Wf · [ht−1, xt ]+ bf ) (1)

it = σ (Wi · [ht−1, xt ]+ bi) (2)

where it and ft are the input and forget gates, Wf , bi are
learned weights and biases, h is the hidden state, and σ is
the sigmoid activation function (see Equations 3 and 4).

ht = LSTM(xt , ht−1) (3)

ht = LSTM(xt , ht+1) (4)

The final result is the combined states depicted in Equation 5.

ht = ht · ht (5)

For attention, we compute scores using alignments between
hidden states and an attention vector u as shown in Equation 6.
The output is then weighted by the attention distribution
(Equation 7).

u = tanh(Whht + bh) (6)

at = softmax(uT ht ) (7)

For explainability, LIME randomly samples perturbed
versions of the input x and fits an interpretable lin-
ear model g locally around the classifier’s predictions.
Additionally, SHAP explains a prediction by computing
Shapley values as expressed in Equation 9. In sum-
mary, these key equations underpin the interpretable
sequence modeling and explanation capabilities of our
approach. The experiments will analyze their empirical
performance.

g = min
g∈G

L(f , g, x)+ λ(g) (8)

VOLUME 12, 2024 114031



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

FIGURE 5. Proposed interactive visualization interface.

where L is a loss function and g controls model complexity.
This highlights influential features.

if x = S ⊆ F−iS ·
(F − S − 1)! · F !

E(fx |xs ∪ i)− E(fx |xs)
(9)

Our approach utilizes these important equations to conduct
interpretable sequence analysis and provide detailed expla-
nations. The bidirectional LSTM algorithm processes input
sequences in both forward and reverse order, allowing for a
comprehensive understanding of the context. This algorithm
is summarized in Algorithm 1.
Additionally, we integrate an attention algorithm (see

Algorithm 2) to focus on salient parts of the review. The
attention distribution is computed by aligning BiLSTM
hidden states with an attention vector u.

This provides pointers to important sentences. For
explainability, we adapt the LIME algorithm to generate
local explanations as shown in Algorithm 3. LIME trains
simple linear models around the classifier’s predictions to
highlight influential words and phrases. This approximates
the complex BiLSTM behavior through local explanations.
Furthermore, we implement the TreeSHAP algorithm (see
Algorithm 4) to estimate word-level feature attributions based
on Shapley values. This assigns importance aligned with
model predictions. The Algorithms 1, 2, 3, and 4 enable
interpretable sequence analysis of reviews and explanation
of predictions, the core of our proposed approach. The
experiments will evaluate their synergistic application.

IV. EXPERIMENTS AND RESULTS
A. APP REVIEW DATASET
The app review dataset compiled for this research contains
over 150,000 reviews scraped from the official Android

Algorithm 1 Bidirectional LSTM for Feature Classifica-
tion

1: Input: Review sentences S = [s1, s2, . . . , sn]
2: Feature vectors F = [f1, f2, . . . , fn]
3: Output: Trained BiLSTM model, attention vectors
4: Initialize forward LSTM layer LSTMf and backward

LSTM layer LSTMb
5: Obtain word embeddings E for the review vocabulary
6: for i ∈ 1, . . . , n do
7: hfi← LSTMf (fi) {Forward hidden state}
8: hbi← LSTMb(fi) {Backward hidden state}
9: hbi← concat(hfi, hbi) {Bidirectional hidden state}
10: ai← Attention(hbi) {Attention vector}
11: end for
12: Concatenate bidirectional hidden states:

H = [hb1, hb2, . . . , hbn]
13: Concatenate attention vectors: A = [a1, a2, . . . , an]
14: Pass H and A to a softmax classifier C
15: Train C using cross-entropy loss to predict feature

requests
16: Tune hyperparameters of LSTMf , LSTMb, and C

and iOS app stores. This raw data was collected using
web scraping tools to extract reviews posted by users for
a diverse sample of popular apps. Reviews were gathered
for the top 100 apps across major categories like 50 games,
25 productivity, 15 lifestyle, 10 finance. The datasets focused
on reviews from 2021-2023 to be representative of current
language patterns. After initial data cleaning and prepro-
cessing, the dataset comprises 137,221 reviews. The average
review length is 106 words, with a minimum of 5 words and

114032 VOLUME 12, 2024



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

Algorithm 2 Attention Mechanism
Input: Bidirectional LSTM hidden states
H = [hb1, hb2, . . . , hbn]

2: Output: Attention vector a, context vector c
Initialize attention vector u (trainable)

4: Initialize trainable parametersW and b
for i ∈ 1, . . . , n do

6: ei← uT tanh(Whbi + b) {Alignment score}
end for

8: a← softmax([e1, e2, . . . , en]) {Attention weights}
c←

∑n
i=1 aihbi {Context vector}

10: Train W and b to maximize c’s relevance for feature
request classification

Algorithm 3 LIME Model
Input:Model F , instance x, predicted class c
Output: Interpretable model g and feature weights

3: Function: GenerateExplanations(F , x, c)
Initialize empty set S ←
for i ∈ 1, . . . , k do
{k = number of samples}

6: Generate a perturbed instance x ′ ∼ Sample(x)
Get prediction c′ = F(x ′)
Calculate weight wi = Proximity(x, x ′)

9: Add (x ′, c′,wi) to S
end for
Construct feature matrix X ∈ Rm×n {m samples, n
features}

12: Construct label vector y ∈ Rm

for (x ′, c′,wi) ∈ S do
Fill features in X based on x ′ (e.g., word
presence/absence)

15: Set yi = I[c′ = c] (indicator function for correct
prediction)

end for
Train a linear model g using X and y (e.g., least squares)

18: Return interpretable model g and feature weights from g

maximum of 987 words per review. This indicates significant
textual content for modeling and explanation. In total, 14,236
sentences are labeled as containing feature requests. The
remaining non-feature request sentences provide contrasting
examples. Our BiLSTM classifier utilizes a labeled dataset
that has been divided into 70% for training and 30% for
testing. The categories are evenly distributed to ensure a
balanced representation presented in Table 3.

B. EXPERIMENT SETTING DETAILS
Our cutting-edge system is built using Python programming
language and utilizes TensorFlow and Keras to implement the
BiLSTM architecture. We compared our proposed BiLSTM
model with attention and XAI to two widely used baseline
models in text classification: Support Vector Machines

Algorithm 4 TreeSHAP Algorithm
Input:
* Model F (e.g., BiLSTM classifier)
* Instance x = [x1, x2, . . . , xn] with features/words
Output:
* SHAP values φi for each feature xi representing their
attribution/importance
Procedure:
1. Compute predictions:
* f (x) - prediction for instance x
* f (S) - predictions for all feature subsets S ⊆ x 2.
Calculate Shapley values (for all i):
* φi =

∑
S⊆x\{xi}

|S|!(n−|S|−1)!
n! [f (S ∪ {xi})− f (S)] 3.

Estimate SHAP values recursively:
* If x is a single feature, φi = φ. * If x = [x1, x2],
compute φi from pairwise Shapley values. * Otherwise,
recursively divide x into children (xL , xR) and compute
φi for each child. 4. Return: {φi|i = 1, 2, . . . , n}
Interpretation:
* Higher positive φi indicates feature xi strongly
contributes to F’s prediction.

TABLE 3. Dataset statistics.

(SVM) and Convolutional Neural Networks (CNN). These
baselines were chosen to demonstrate the advantages of
our approach across different model architectures. Also,
we initialized the word representations with 300d pre-trained
GloVe embeddings, ensuring top-notch performance. The
BiLSTM boasts a hidden size of 256 units in each direction,
with a dropout of 0.3 between layers for effective regu-
larization. To enhance attention, we calculated alignments
between the BiLSTM states and an attention vector u with
a size of 128. The output is finely tuned by the softmax
attention distribution. To optimize the system, we employ
Adam optimization with a learning rate of 1e-3 and a
batch size of 64. We conducted a systematic exploration of
different parameter configurations for the BiLSTM model
and explanation techniques. Table 4 summarized the key
parameter values and ranges experimented with for the
different model components and training. The key parameters
examined are:

1) BiLSTMHyperparameters: We vary the hidden state
size in [128, 256, 512], LSTM layers [1, 2, 3], dropout
rate [0.2, 0.3, 0.5], and regularization technique [L1,
L2, dropout].

2) Attention Layers: Attention vector sizes of [64, 128,
256] are tested. Alignment functions like dot product
vs concatenated representations are compared.

VOLUME 12, 2024 114033



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

TABLE 4. Model architecture parameters and training hyperparameters.

3) LIME Parameters: LIME perturbation sample sizes
between 100-5000 are evaluated. We also vary the
kernel width for proximity weighting and complexity
of the local surrogate model.

4) SHAP Parameters: Tree SHAP depth limits [3, 6, 10]
and feature clustering strengths are tuned. Linear vs
gradient boosted tree SHAP models are tested.

5) Training: Batch sizes in [32, 64, 128] and learning
rates [1e-3, 1e-4, 1e-5] are optimized. Early stopping
avoids overfitting.

6) AUC-ROC: Assessing model performance across
various thresholds [0.85, 0.90, 0.95] and curve types
[Micro, Macro, Weighted] to provide a comprehensive
view of its discriminative ability.

C. EXPERIMENT EVALUATION METRICS
The efficacy of our interpretable feature request detection
system is comprehensively evaluated through an in-depth
analysis of key quantitative metrics including accuracy,
precision, recall, and F1-score. Accuracy serves as a holistic
measure of prediction correctness, while precision investi-
gates into the accuracy of positive predictions. Recall, on the
other hand, examines the true positive rate, often striking a
balance between precision and recall. The F1-score, an essen-
tial metric, merges precision and recall in a harmonized
manner, calculated as their harmonic mean. Mathematically,
these metrics are defined in Equations 10, 11, 12 and 13:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(10)

Precision =
TP

TP+ FP
(11)

Recall =
TP

TP+ FN
(12)

F1 = 2 ·
Precision · Recall
Precision+ Recall

(13)

where TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives respectively.

D. EXPERIMENT RESULT
We examined the confusion matrix for the test data set to
better understand howwell our model performed. This matrix
outlines correct and incorrect predictions grouped by the
actual class. In Figure 6, our BiLSTM model achieved an
86% true positive rate for feature requests, meaning that the
majority of actual feature requests were accurately identified.

FIGURE 6. Confusion matrix.

On the test set, the Bi-LSTM classifier achieved the
following confusion matrix as shown in Table 5. The false
negative was rates 14% (165/1171), meaning 14% of actual
feature requests in the test set were missed by the classifier.
The true negative rate is 92% (31,810/34,576), so 92%
of non-feature requests were correctly classified, and the
false positive rate is 8% (2,766/34,576), indicating 8% of
non-requests were incorrectly predicted as feature requests.
The high true positives and true negatives demonstrate
the model’s efficacy in distinguishing feature requests
from other text. The false positives are reasonable given
the challenging nature of parsing subjective and informal
review text. By inspecting specific false negatives and
false positives, we can identify areas for improvement.
For instance, subtle or ambiguous requests still prove
difficult.

TABLE 5. Bi-LSTM classifier achieved the following confusion matrix.

114034 VOLUME 12, 2024



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

FIGURE 7. Comparison between actual and predicted of the BiLSTM model.

Enhancing the feature representations could help better
characterize nuanced text. Overall, the confusion matrix
provides valuable insight into the model’s predictive behavior
on real-world app reviews beyond aggregate metrics. The
breakdown of correct and incorrect predictions guides future
refinements to the model.

We evaluate the alignment of the BiLSTM model’s
predictions with the ground truth labels by plotting the
actual versus predicted values on the test set, as depicted in
Figure 7. The proximity of the curves indicates the model’s
accuracy, showcasing how well the predicted probabilities
match the actual labels in our app review test dataset. As seen,
the prediction probabilities closely track the actual binary
labels for feature request across the sequence. The balanced
distribution shows the model is well-calibrated and not biased
toward a particular class. However, there are a few outliers,
such as the point at (7.5, 0.8) - where a non-feature request
(0.8) was wrongly predicted with high confidence as a feature
request (7.5). Similarly, the point at (11.0, 0.8) indicates the
model failed to detect a true feature request, predicting it
as a non-request with low probability. Overall, the strong
correspondence between actual and predicted demonstrates
the BiLSTM model has learned a robust representation
of linguistic patterns indicative of feature requests. The
visualization provides an intuitive interpretation of the
model’s efficacy.

As the model makes more predictions on new data,
we want to track if its accuracy remains stable or improves

over time. Monitoring ongoing performance is important
for maintaining robustness when deployed in products
and applications. To evaluate this, we plot the model’s
test accuracy over an increasing number of predictions in
Figure 8. As seen, the accuracy converges to around 86%
as the number of samples grows into the thousands. The
stability indicates the model is generalizing well. The curve
also reveals that accuracy gains diminish beyond a certain
prediction count. This suggests opportunities to optimize
inference time versus accuracy trade-offs for efficiency.

Our BiLSTM model with attention was evaluated on a
real-world set of app reviews to measure feature request
detection performance, as summarized in Table 6 for
precision, recall, F1-score, and accuracy. The results show
our approach achieving an 89% accuracy and 0.82 F1-score
in identifying feature request sentences from unstructured
review text, with a precision of 0.79 indicating relevance in
extracted sentences and a recall of 0.86 demonstrating broad
coverage in detecting feature requests. Comparisons with
baseline models like SVMs, CNNs, and standard LSTMs
in the app review dataset show significantly higher F1
scores for our BiLSTM model with attention, reaching
82% compared to 66% for SVMs, 72% for CNNs, and
78% for standard LSTMs (see Figure 9). This emphasizes
the benefits of sequential modeling in feature request
detection, where our BiLSTM outperforms models lacking
sequential capabilities. The standard LSTM model, while
performing better than SVMs and CNNs with an F1-score

VOLUME 12, 2024 114035



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

FIGURE 8. Graph showing prediction accuracy vs. number of predictions.

TABLE 6. Model performance on test set.

of 0.78, still falls short of our proposed BiLSTM with
attention.

Our BiLSTMmodel outperforms standard LSTMs through
three key features: i) Bidirectional processing: Analyzes
input in both directions, capturing full context for better
feature request detection; ii) Attention mechanism: Focuses
on relevant parts of the input, particularly useful for long
reviews; iii) Improved long-range dependency handling:
Bidirectional nature and attention mitigate struggles with
very long sequences. The performance gap between our
model and standard LSTM (4% points in F1-score) demon-
strates the significant impact of these enhancements. Our
model’s superior recall (0.86 compared to 0.80 for standard
LSTM) indicates its ability to identify a broader range
of feature request phrasings, while the improved precision
(0.79 vs 0.76) shows it’s better at distinguishing true feature
requests from similar but irrelevant text.

Our interpretable AI approach, which combines
bi-directional LSTMs with attention mechanisms, has proven
to significantly enhance the performance of the model. The
results clearly demonstrate the effectiveness of this approach
in accurately extracting feature requests from unstructured
app reviews, as evidenced by strong precision and recall
metrics. Moreover, the explainable nature of our model
provides an additional advantage over the standard LSTM

TABLE 7. Mapping between reasons of elicit and design explainable with
exemplary description.

and other baselines. While the performance improvements
are significant, the ability to interpret and explain the
model’s decisions adds a crucial layer of trustworthiness
and usability in real-world scenarios. This combination of
superior performance and explainability makes our approach
particularly well-suited for practical application in app
development workflows.

In order to identify key areas for feature request detection,
we use a BiLSTM model to visualize attention weights.

114036 VOLUME 12, 2024



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

FIGURE 9. Performance comparison of proposed model to baseline models.

This layer assigns importance scores to each token in
the input text, which are then projected onto the original
review text to emphasize significant phrases. The brighter
highlights clearly show the key words and phrases that
significantly influenced the model’s classification decision.
This provides valuable insights into the patterns and seman-
tics that the model prioritizes when processing feature
requests. For example, as shown in Figure 10, user reviews
like ‘‘It would be great if you could add. . . ’’ are empha-
sized, showing the model’s attention to suggestion-based
language.

Our approach produces interactive visual explanations
that provide light on the model’s decision-making process,
which is one of its main advantages. We use LIME to
highlight key terms and phrases in the text of the app review.
In Figure 11, LIME generates colored highlights to show the
most influential terms in predicting a feature request, with
intensity representing their contribution strength. In addition
to LIME, we also implement SHAP value explanations which
attribute the prediction to each feature. This produces a
bar chart showing the most positive and negative features,
as Figure 12 shows. By combining the local fidelity of
LIME with the global view from SHAP, users get both
granular examples and summary model attributes. As shown
in the results Table 7 below, for the review ‘‘This app
needs better video filters and more editing options,’’ SHAP
highlights ‘‘video filters’’ and ‘‘editing options’’ as top
positive drivers, while LIME flags ‘‘video filters.’’ Both
SHAP and LIME identify ‘‘video filters’’ as the key positive
feature contribution for predicting a user-requested new
feature.

SHAP assigns this phrase a SHAP value of 0.7, indicating
it strongly pushes the model toward making a feature
request prediction. It also highlights ‘‘better’’ as a slight
negative feature with a SHAP value of −0.2, likely because
praise of existing features weakly implies no request.
Similarly, LIME marks ‘‘voice message support’’ as highly
influential with a weight of 1.0 using a green text highlight.
LIME did not flag any negatively contributing features.
By combining global model-agnostic (SHAP) and local
linear model (LIME) explanation techniques, we can gather
complementary insights into positive and negative rationale
behind the model’s feature request predictions.

Furthermore, tapping on any visual component provides
more details on demand. For instance, users can click
on a highlighted phrase to see other similar phrases
that influenced the model. This interactivity allows users
to thoroughly interrogate explanations, gain insights into
model behavior, and provide validation feedback. For
example, developers can critique explanation examples to
indicate which are relevant or irrelevant to detecting feature
requests. This helps determine whether explanations capture
semantics meaningful to predictions. Our graphical user
interface also collects explicit user feedback, including
Likert-scale ratings of perceived explanation quality and
open-ended comments (Figure 13). This human-centered
evaluation methodology follows guidelines from prior work
Poursabzi-Sangdeh et al. [105]. Overall, our tailored visual
explanations and interactions enable mobile developers to
actively scrutinize the model’s reasoning process. Figure 14
shows an overview of the user interaction for validating
explanations structure.

VOLUME 12, 2024 114037



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

FIGURE 10. Attention visualizations.

FIGURE 11. Sample of LIME explanation visualizations.

V. DISCUSSION
In this section, we address the four research questions
(RQs) outlined and describe the experimental findings of our
proposed research approach.

A. RQ1: HOW CAN FEATURE REQUESTS BE EFFECTIVELY
IDENTIFIED FROM UNSTRUCTURED REVIEW TEXT?
A central research question we explore is how to accurately
identify and extract feature requests from unstructured
app review text (RQ1). This is challenging as reviews
contain informal language and noise. To address this,
we developed a sophisticated deep learning approach.
Specifically, a BiLSTM neural network architecture with
attention mechanisms is proposed. The BiLSTM can encode

semantic and sequential relationships in lengthy reviews
to detect contextual patterns indicative of feature requests.
Attention further concentrates the model on the most relevant
phrases expressing user needs. Extensive experiments show
that our method extracts feature requests on a dataset of
more than 150,000 real-world app evaluations with an
F1-score of 0.82. This significantly outperforms baseline
methods like SVMs and CNNs that lack sequential modeling
capabilities as shown in Table 7. The attention visualizations
also highlight informative phrases like ‘‘It would be great
if you could add. . . ’’ that influenced the prediction as
shown in Figure 10. Additionally, example explanations
from the integrated LIME and SHAP methods illustrate how
the model accurately focuses on terms frequently associ-
ated with feature requests, like ‘‘missing’’, ‘‘requesting’’,

114038 VOLUME 12, 2024



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

FIGURE 12. Sample of SHAP explanation visualizations.

FIGURE 13. Screenshot of the graphical user interface of user trust study.

TABLE 8. Mapping between reasons of elicit and design explainable with exemplary description.

‘‘add’’, etc. As shown in Table 8, LIME highlights the
phrase:
‘‘This app is missing one key feature - landscape view for

video’’
And SHAP identifies the word ‘‘add’’ as impactful in the

review excerpt:
‘‘Please add a dark mode for night use’’
In summary, through bi-directional sequence modeling,

attention mechanisms, and explainable AI, our approach
effectively extracts and provides transparency into feature
requests from unstructured review text. The strong F1-score

demonstrates accuracy on real-world data, while explanations
offer interpretability into the model’s inference logic. This
addresses the core research challenge of reliably identifying
feature requests from informal app reviews.

B. RQ2: HOW CAN EXPLAINABLE AI METHODS LIKE LIME
AND SHAP BE ADAPTED TO PROVIDE USEFUL INSIGHTS
INTO PREDICTIONS ON APP REVIEWS?
One of the primary research objectives is to incorporate
explainable AI techniques such as LIME and SHAP to

VOLUME 12, 2024 114039



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

FIGURE 14. User interaction for validating explanations.

FIGURE 15. LIME and SHAP versus phrases annotated for predicting feature requests.

TABLE 9. Mapping between reasons of elicit and design explainable with
exemplary description.

provide valuable insights into predictions regarding app
reviews (RQ2). Although the BiLSTM model achieves high
accuracy for feature request detection, its opaque nature
hinders trustworthiness. To address this, we integrated two
post-hoc explanation methods LIME and SHAP. LIME
highlights important words by fitting simple linear models
locally around the BiLSTM’s predictions. SHAP assigns each

114040 VOLUME 12, 2024



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

TABLE 10. Mapping between reasons of elicit and design explainable with exemplary description.

TABLE 11. Mapping between reasons of elicit and design explainable
with exemplary description.

word an impact score based on Shapley values. Experiments
show our adapted LIME and SHAP generate explanations
that are aligned with human rationale on app reviews.

For instance, LIME highlights the phrase ‘‘missing one key
feature’’ as influential for a feature request prediction. SHAP
assigns high impacts to words like ‘‘add’’, ‘‘request’’, etc as
shown in Table 8. Figure 15 presents results comparing the
feature requests highlighted in our model’s explanations from
LIME and SHAP against human annotations for predicting
feature requests. Specifically, this analysis quantifies the
overlap between phrases deemed influential by LIME and
SHAP versus phrases annotated by mobile app developers as
justifying the feature request predictions. This visualization
summarizes the distribution of explanation similarity scores
across examples, with higher values indicating greater
alignment with human rationales. We observe that both
LIME and SHAP explanations exhibit strong median overlap
of over 80% with human phrases. In summary, adapting
post-hoc methods like LIME and SHAP provides crucial
interpretability into the BiLSTM model’s predictions on app
reviews.

C. RQ3: DO THE EXPLANATIONS HELP DEVELOPERS
CORRECTLY INTERPRET FEATURE REQUEST DETECTION
RESULTS?
A key aspect of our work is evaluating whether the
explanations help users trust and validate the model’s feature
request detections (RQ3). Beyond quantitative measures,
we conducted user studies with app developers. Developers
were shown the BiLSTM model’s predictions on app
reviews with and without accompanying LIME and SHAP
explanations. They provided ratings on a 5-point Likert scale
indicating their trust in each prediction. Results in Table 9
show that users reported 27% higher trust on average when
explanations were provided for the model’s predictions. The
mean trust score increased from 3.2 to 4.1 on a 5-point
scale. App developers were able to correctly interpret the
model’s predictions 73% more often when provided with
explanations. Interpretation accuracy improved from 46%
without explanations to 80% with explanations. Table 9
summarizes key results demonstrating two major benefits of
our explainable AI system - increased user trust and improved
interpretability for developers. The explainable interface led
to substantial gains along both dimensions compared to an

unexplained blackbox model. This highlights the value of
explainability for user acceptance and correct understanding
of AI prediction. Further, we evaluated if explanations align
with human rationale by comparing extracted keywords
against developer-annotated ground truth terms. As seen in
Table 10, our LIME and SHAP explanations achieve over
80% overlap with human reasoning on average.

For example, for the review: ‘‘Allow image uploads
in landscape mode’’, developers highlighted ‘‘image’’ and
‘‘landscape’’ as indicative of a feature request.

Our LIME explanation overlapped on both terms while
SHAP assigned high impacts to them. In summary, quan-
titative and qualitative results indicate our explainable
AI approach assists users in validating the model’s fea-
ture request detections. Aligning explanations with human
reasoning also provides correct explanations, rather than
post-hoc rationalizations. This instills appropriate trust.

D. RQ4: DOES THE EXPLAINABLE SYSTEM LEAD TO
GREATER TRUST IN THE AI PREDICTIONS FROM MOBILE
APP DEVELOPERS?
A key research question we sought to investigate was whether
providing explanations for the feature request classifier’s
predictions would lead to increased trust and acceptance from
mobile app developers. To evaluate this, we conducted a
user study with 15 mobile developers who interacted with
both the BiLSTM models feature request predictions on app
reviews, either with or without accompanying LIME and
SHAP explanations and our explainable system. Specifically,
developers were shown 50 app review excerpts, each with
a feature request classification prediction. In the blackbox
condition, only the predicted label was provided. In the
explainable condition, developers saw the prediction along
with LIME-generated explanations highlighting influential
phrases. They assessed 20 reviews each under both test
conditions. The order of conditions was randomized. After
each prediction, developers then rated their trust in the model
on a 5-point Likert scale (1 indicating No trust, 5 indicating
Complete trust). Across all developers, the mean trust rating
was 3.85 for the BiLSTM without explanations compared
to 4.51 for the explainable system when explanations were
provided - a relative improvement of 27% as shown in
Table 11.
Additionally, when looking at individual developers’

ratings, 13 out of the 15 participants gave higher mean trust
scores to the explainable system.

Qualitative feedback also supported increased algorithmic
trust, with comments like: ‘‘The explanations really helped
me understand why the prediction was made’’ and ‘‘Seeing
the key phrases provides useful transparency.’’

VOLUME 12, 2024 114041



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

In summary, providing explanations significantly
improved mobile developers’ trust in the feature request
classifier, demonstrating clear benefits of explainable AI.
The highlighted rationales enabled them to better assess the
sensibility of predictions. Our results strongly suggest that
deploying AI transparency solutions alongside mobile app
analytics tools could improve adoption.

VI. CONCLUSION AND FUTURE WORK
This work presented several notable contributions towards
building an explainable AI system for mobile app feature
request detection. Our bi-directional LSTM model achieved
strong performance in distinguishing sentences mentioning
desired new features from non-feature requests. The F1-score
of 0.82 represents a significant improvement over traditional
models like SVMs and CNNs, underscoring the effectiveness
of our proposed methodology. This provides a useful
automated approach to identifying user needs from large
review corpora.

We introduced a novel approach using interactive visual-
izations and user validation to increase model interpretability
and align it with developer trust. Specifically, combining
model-agnostic techniques like LIME and SHAP with
exemplar explanations enabled transparent feature attribution
and debugging of model behavior. Through participatory
design using a 5-point Likert scale and qualitative feedback
through free-form comments, we significantly improved user
trust and appropriate reliance compared to non-explainable
models. Our user studies demonstrated that explanations
improved developers’ ability to correctly interpret the AI by
over 70%.

While the 89% accuracy achieved is commendable for
the challenging task of feature request detection in informal
user reviews, we recognize there is room for improvement.
Future work will explore: i) Advanced architectures like
RoBERTa; ii) Fine-tuning pre-trained language models;
ii) Implementing more sophisticated attention mechanisms.
These enhancements aim to further boost model performance
and robustness.

We acknowledge the limitation of excluding non-English
text in our current study. This decision, made to ensure
consistency in language processing and avoid potential
issues with multilingual feature extraction, limited the
dataset’s diversity and excluded valuable insights from
non-English speaking users. To address this, future work
will focus on incorporating multilingual models. This
expansion will allow us to capture a more comprehensive
range of user feedback and reduce potential bias in our
dataset.

Other limitations provide additional opportunities for
enhancement. The initial developer user study sample size
was relatively small at 15 participants. While we conducted
user studies with developers, testing remains limited to
controlled review samples. Rigorously evaluating utility for
real app stores at large scale is an important next step.
The interface design space could be expanded to support

collaborative requirements workflows. This work serves as
an initial proof of concept. By giving stakeholders visibility
into model rationale and involving them directly in the loop,
we can build intelligent systems that are more transparent,
fair, and aligned with human values. This will only grow
in importance as AI is deployed in real-world software
engineering workflows.

We hope our contributions provide a strong foundation for
future research towards this vision of explainable, multilin-
gual, and highly accurate feature request detection systems
that can be seamlessly integrated into app development
processes.

REFERENCES
[1] T. Speith, ‘‘A review of taxonomies of explainable artificial intelligence

(XAI) methods,’’ in Proc. ACM Conf. Fairness, Accountability, Trans-
parency, Jun. 2022, pp. 2239–2250.

[2] R. Guidotti, A. Monreale, D. Pedreschi, and F. Giannotti, ‘‘Principles
of explainable artificial intelligence,’’ in Explainable AI Within the
Digital Transformation and Cyber Physical Systems: XAI Methods and
Applications. Cham, Switzerland: Springer, 2021, pp. 9–31.

[3] H. W. Loh, C. P. Ooi, S. Seoni, P. D. Barua, F. Molinari, and
U. R. Acharya, ‘‘Application of explainable artificial intelligence for
healthcare: A systematic review of the last decade (2011–2022),’’ Com-
put. Methods Programs Biomed., vol. 226, Nov. 2022, Art. no. 107161.

[4] J. Peng, K. Zou, M. Zhou, Y. Teng, X. Zhu, F. Zhang, and J. Xu, ‘‘An
explainable artificial intelligence framework for the deterioration risk
prediction of hepatitis patients,’’ J. Med. Syst., vol. 45, no. 5, p. 61,
May 2021.

[5] I. Ahmed, G. Jeon, and F. Piccialli, ‘‘From artificial intelligence to
explainable artificial intelligence in Industry 4.0: A survey on what, how,
and where,’’ IEEE Trans. Ind. Informat., vol. 18, no. 8, pp. 5031–5042,
Aug. 2022.

[6] A. Adadi and A. Bouhoute, ‘‘Explainable artificial intelligence for
intelligent transportation systems: Are we there yet?’’ in Explainable
Artificial Intelligence for Intelligent Transportation Systems. Cham,
Switzerland: Springer, 2023, pp. 2–30.

[7] M. M. Karim, Y. Li, and R. Qin, ‘‘Toward explainable artificial
intelligence for early anticipation of traffic accidents,’’ Transp. Res. Rec.,
J. Transp. Res. Board, vol. 2676, no. 6, pp. 743–755, Jun. 2022.

[8] Y. Alufaisan, L. R. Marusich, J. Z. Bakdash, Y. Zhou, and
M. Kantarcioglu, ‘‘Does explainable artificial intelligence improve
human decision-making?’’ in Proc. AAAI Conf. Artif. Intell., 2021,
vol. 35, no. 8, pp. 6618–6626.

[9] Y. Xu, E. Wang, Y. Yang, and Y. Chang, ‘‘A unified collaborative
representation learning for neural-network based recommender systems,’’
IEEE Trans. Knowl. Data Eng., vol. 34, no. 11, pp. 5126–5139,
Nov. 2022.

[10] X. Shen, H. Jiang, D. Liu, K. Yang, F. Deng, J. Lui, J. Liu, and
J. Luo, ‘‘PupilRec: Leveraging pupil morphology for recommending on
smartphones,’’ IEEE Internet Things J., vol. 9, no. 17, pp. 15538–15553,
Sep. 2022.

[11] Y. Nohara, K. Matsumoto, H. Soejima, and N. Nakashima, ‘‘Explanation
of machine learning models using Shapley additive explanation and
application for real data in hospital,’’ Comput. Methods Programs
Biomed., vol. 214, Feb. 2022, Art. no. 106584.

[12] E. Albini, J. Long, D. Dervovic, and D. Magazzeni, ‘‘Counterfactual
Shapley additive explanations,’’ in Proc. ACM Conf. Fairness, Account-
ability, Transparency, Jun. 2022, pp. 1054–1070.

[13] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘‘Why should I trust you?’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2016, pp. 1135–1144.

[14] Y. Goyal, Z.Wu, J. Ernst, D. Batra, D. Parikh, and S. Lee, ‘‘Counterfactual
visual explanations,’’ in Proc. 36th Int. Conf. Mach. Learn., 2019,
pp. 2376–2384.

[15] D. Garreau and D. Mardaoui, ‘‘What does lime really see in images?’’ in
Proc. Int. Conf. Mach. Learn., 2021, pp. 3620–3629.

114042 VOLUME 12, 2024



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

[16] Y. Wei, M.-C. Chang, Y. Ying, S. N. Lim, and S. Lyu, ‘‘Explain black-
box image classifications using superpixel-based interpretation,’’ in Proc.
24th Int. Conf. Pattern Recognit. (ICPR), Aug. 2018, pp. 1640–1645.

[17] P. Zhou, R. Peng, M. Xu, V.Wu, and D. Navarro-Alarcon, ‘‘Path planning
with automatic seam extraction over point cloud models for robotic
arc welding,’’ IEEE Robot. Autom. Lett., vol. 6, no. 3, pp. 5002–5009,
Jul. 2021.

[18] X. Zou, J. Yuan, P. Shilane,W.Xia, H. Zhang, andX.Wang, ‘‘From hyper-
dimensional structures to linear structures: Maintaining deduplicated
Data’s locality,’’ ACMTrans. Storage, vol. 18, no. 3, pp. 1–28, Aug. 2022.

[19] I. Gambo, R. Ikono, P. Achimugu, and A. Soriyan, ‘‘An integrated
framework for prioritizing software specifications in requirements
engineering,’’ Int. J. Softw. Eng. Its Appl., vol. 12, no. 1, pp. 33–46,
Feb. 2018.

[20] Y. Xu, H. Chen, Z. Wang, J. Yin, Q. Shen, D. Wang, F. Huang, L. Lai,
T. Zhuang, J. Ge, and X. Hu, ‘‘Multi-factor sequential re-ranking with
perception-aware diversification,’’ in Proc. 29th ACM SIGKDD Conf.
Knowl. Discovery Data Mining, Aug. 2023, pp. 5327–5337.

[21] J. Gao, D.Wu, F. Yin, Q. Kong, L. Xu, and S. Cui, ‘‘MetaLoc: Learning to
learn wireless localization,’’ IEEE J. Sel. Areas Commun., vol. 41, no. 12,
pp. 3831–3847, Dec. 2023.

[22] L. Ceci. Annual Number of Mobile App Downloads Worldwide
2023. Statista. Accessed: Apr. 25, 2024. [Online]. Available:
https://www.statista.com/statistics/271644/worldwide-free-and-paid-
mobile-app-store-downloads

[23] M. Ribera and A. Lapedriza, ‘‘Can we do better explanations? A proposal
of user-centered explainable AI,’’ in Proc. CEUR Workshop, 2019,
pp. 1–7.

[24] Q. V. Liao, M. Pribić, J. Han, S. Miller, and D. Sow, ‘‘Question-
driven design process for explainable AI user experiences,’’ 2021,
arXiv:2104.03483.

[25] E. Guzman andW.Maalej, ‘‘Howdo users like this feature?Afine grained
sentiment analysis of app reviews,’’ in Proc. IEEE 22nd Int. Requirements
Eng. Conf. (RE), Aug. 2014, pp. 153–162.

[26] R. A. Masrury, Fannisa, and A. Alamsyah, ‘‘Analyzing tourism mobile
applications perceived quality using sentiment analysis and topic
modeling,’’ in Proc. 7th Int. Conf. Inf. Commun. Technol. (ICoICT),
Jul. 2019, pp. 1–6.

[27] D. Franzmann, A. Eichner, and R. Holten, ‘‘How mobile app design
overhauls can be disastrous in terms of user perception: The case of
snapchat,’’ACMTrans. Social Comput., vol. 3, no. 4, pp. 1–21, Dec. 2020.

[28] D. Pagano and W. Maalej, ‘‘User feedback in the appstore: An empirical
study,’’ in Proc. 21st IEEE Int. Requirements Eng. Conf. (RE), Jul. 2013,
pp. 125–134.

[29] E. Guzman, O. Aly, and B. Bruegge, ‘‘Retrieving diverse opinions from
app reviews,’’ inProc. ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas.
(ESEM), Oct. 2015, pp. 1–10.

[30] W. Dang, L. Cai, M. Liu, X. Li, Z. Yin, X. Liu, L. Yin, and W. Zheng,
‘‘Increasing text filtering accuracy with improved LSTM,’’ Comput.
Informat., vol. 42, no. 6, pp. 1491–1517, 2023.

[31] Y. Ban, Y. Liu, Z. Yin, X. Liu, M. Liu, L. Yin, X. Li, and W. Zheng,
‘‘Micro-directional propagation method based on user clustering,’’
Comput. Informat., vol. 42, no. 6, pp. 1445–1470, 2023.

[32] F. Tang, L. Fu, B. Yao, and W. Xu, ‘‘Aspect based fine-grained sentiment
analysis for online reviews,’’ Inf. Sci., vol. 488, pp. 190–204, Jul. 2019.

[33] M. Unterbusch, M. Sadeghi, J. Fischbach, M. Obaidi, and A. Vogelsang,
‘‘Explanation needs in app reviews: Taxonomy and automated detection,’’
in Proc. IEEE 31st Int. Requirements Eng. Conf. Workshops (REW),
Sep. 2023, pp. 102–111.

[34] L. Chazette, W. Brunotte, and T. Speith, ‘‘Exploring explainability:
A definition, a model, and a knowledge catalogue,’’ in Proc. IEEE 29th
Int. Requirements Eng. Conf. (RE), Sep. 2021, pp. 197–208.

[35] L. Kästner, M. Langer, V. Lazar, A. Schomäcker, T. Speith, and S. Sterz,
‘‘On the relation of trust and explainability: Why to engineer for
trustworthiness,’’ in Proc. IEEE 29th Int. Requirements Eng. Conf.
Workshops (REW), Sep. 2021, pp. 169–175.

[36] M. A. Köhl, K. Baum, M. Langer, D. Oster, T. Speith, and D. Bohlender,
‘‘Explainability as a non-functional requirement,’’ in Proc. IEEE 27th Int.
Requirements Eng. Conf. (RE), Sep. 2019, pp. 363–368.

[37] L. Chazette and K. Schneider, ‘‘Explainability as a non-functional
requirement: Challenges and recommendations,’’ Requirements Eng.,
vol. 25, no. 4, pp. 493–514, Dec. 2020.

[38] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins,
R. Chatila, and F. Herrera, ‘‘Explainable artificial intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible
AI,’’ Inf. Fusion, vol. 58, pp. 82–115, Jun. 2020.

[39] D. Kumar and M. A. Mehta, ‘‘An overview of explainable AI methods,
forms and frameworks,’’ in Explainable AI: Foundations, Methodologies
and Applications. Cham, Switzerland: Springer, 2022, pp. 43–59.

[40] T. Miller, ‘‘Explanation in artificial intelligence: Insights from the social
sciences,’’ Artif. Intell., vol. 267, pp. 1–38, Feb. 2019.

[41] A. Abdul, J. Vermeulen, D. Wang, B. Y. Lim, and M. Kankanhalli,
‘‘Trends and trajectories for explainable, accountable and intelligible
systems: An HCI research agenda,’’ in Proc. CHI Conf. Human Factors
Comput. Syst., Apr. 2018, pp. 1–18.

[42] A. Bunt, M. Lount, and C. Lauzon, ‘‘Are explanations always important?
A study of deployed, low-cost intelligent interactive systems,’’ in Proc.
ACM Int. Conf. Intell. User Interfaces, Feb. 2012, pp. 169–178.

[43] N. Tintarev and J.Masthoff, ‘‘Evaluating the effectiveness of explanations
for recommender systems: Methodological issues and empirical studies
on the impact of personalization,’’ User Model. User-Adapted Interact.,
vol. 22, nos. 4–5, pp. 399–439, Oct. 2012.

[44] F. Doshi-Velez,M. Kortz, R. Budish, C. Bavitz, S. Gershman, D. O’Brien,
K. Scott, S. Schieber, J. Waldo, D. Weinberger, A. Weller, and A. Wood,
‘‘Accountability of AI under the law: The role of explanation,’’ 2017,
arXiv:1711.01134.

[45] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, ‘‘Grad-CAM: Visual explanations from deep networks via
gradient-based localization,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 618–626.

[46] M. Sadeghi, V. Klös, and A. Vogelsang, ‘‘Cases for explainable
software systems: Characteristics and examples,’’ in Proc. IEEE 29th Int.
Requirements Eng. Conf. Workshops (REW), Sep. 2021, pp. 181–187.

[47] Y. Zhang, K. Song, Y. Sun, S. Tan, and M. Udell, ‘‘‘Why should you trust
my explanation?’ Understanding uncertainty in LIME explanations,’’
2019, arXiv:1904.12991.

[48] M. Loecher, D. Lai, and W. Qi, ‘‘Approximation of SHAP values
for randomized tree ensembles,’’ in Proc. Int. Cross-Domain Conf.
Mach. Learn. Knowl. Extraction. Cham, Switzerland: Springer, 2022,
pp. 19–30.

[49] J. Tang, L. Xia, and C. Huang, ‘‘Explainable spatio-temporal graph neural
networks,’’ in Proc. 32nd ACM Int. Conf. Inf. Knowl. Manage., 2023,
pp. 2432–2441.

[50] A. Verdone, S. Scardapane, andM. Panella, ‘‘Explainable spatio-temporal
graph neural networks for multi-site photovoltaic energy production,’’
Appl. Energy, vol. 353, Jan. 2024, Art. no. 122151.

[51] C. Zucco, H. Liang, G. D. Fatta, and M. Cannataro, ‘‘Explainable
sentiment analysis with applications in medicine,’’ in Proc. IEEE Int.
Conf. Bioinf. Biomed. (BIBM), Dec. 2018, pp. 1740–1747.

[52] S. Gite, H. Khatavkar, K. Kotecha, S. Srivastava, P. Maheshwari, and
N. Pandey, ‘‘Explainable stock prices prediction from financial news
articles using sentiment analysis,’’ PeerJ Comput. Sci., vol. 7, p. e340,
Jan. 2021.

[53] J. Sarker, S. Sultana, S. R. Wilson, and A. Bosu, ‘‘ToxiSpanSE: An
explainable toxicity detection in code review comments,’’ in Proc.
ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas. (ESEM), Oct. 2023,
pp. 1–12.

[54] W. Samek, T. Wiegand, and K.-R. Müller, ‘‘Explainable artificial
intelligence: Understanding, visualizing and interpreting deep learning
models,’’ 2017, arXiv:1708.08296.

[55] C. Gao, J. Zeng, M. R. Lyu, and I. King, ‘‘Online app review analysis for
identifying emerging issues,’’ in Proc. IEEE/ACM 40th Int. Conf. Softw.
Eng. (ICSE), May 2018, pp. 48–58.

[56] Y. Wang, J. Wang, H. Zhang, X. Ming, L. Shi, and Q. Wang, ‘‘Where is
your app frustrating users?’’ in Proc. IEEE/ACM 44th Int. Conf. Softw.
Eng. (ICSE), May 2022, pp. 2427–2439.

[57] A. F. Araujo, M. P. S. Gôlo, and R. M. Marcacini, ‘‘Opinion mining
for app reviews: An analysis of textual representation and predictive
models,’’ Automated Softw. Eng., vol. 29, no. 1, p. 5, May 2022.

[58] V. M. A. de Lima, A. F. de Araújo, and R. M. Marcacini, ‘‘Temporal
dynamics of requirements engineering from mobile app reviews,’’ PeerJ
Comput. Sci., vol. 8, p. e874, Mar. 2022.

VOLUME 12, 2024 114043



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

[59] Q. Motger, A. Miaschi, F. Dell’Orletta, X. Franch, and J. Marco,
‘‘T-FREX: A transformer-based feature extraction method from mobile
app reviews,’’ 2024, arXiv:2401.03833.

[60] K. Zahoor and N. Z. Bawany, ‘‘Explainable artificial intelligence
approach towards classifying educational Android app reviews using deep
learning,’’ Interact. Learn. Environments, pp. 1–26, May 2023.

[61] I. Gambo and K. Taveter, ‘‘Stakeholder-centric clustering methods for
conflict resolution in the requirements engineering process,’’ in Proc.
Int. Conf. Eval. Novel Approaches to Softw. Eng. Cham, Switzerland:
Springer, 2021, pp. 183–210.

[62] I. Gambo and K. Taveter, ‘‘Identifying and resolving conflicts in
requirements by stakeholders: A clustering approach,’’ in Proc. 16th Int.
Conf. Eval. Novel Approaches to Softw. Eng., 2021, pp. 158–169.

[63] L. Hoon, R. Vasa, J.-G. Schneider, and J. Grundy, ‘‘An analysis
of the mobile app review landscape: Trends and implications,’’ Fac.
Inf. Commun. Technol., Swinburne Univ. Technol., Melbourne, VIC,
Australia, Tech. Rep., 2013.

[64] R. Vasa, L. Hoon, K. Mouzakis, and A. Noguchi, ‘‘A preliminary analysis
of mobile app user reviews,’’ in Proc. 24th Austral. Comput.-Human
Interact. Conf., Nov. 2012, pp. 241–244.

[65] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, ‘‘AR-miner: Mining
informative reviews for developers from mobile app marketplace,’’ in
Proc. 36th Int. Conf. Softw. Eng., May 2014, pp. 767–778.

[66] P. M. Vu, H. V. Pham, T. T. Nguyen, and T. T. Nguyen, ‘‘Phrase-
based extraction of user opinions in mobile app reviews,’’ in Proc.
31st IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Sep. 2016,
pp. 726–731.

[67] H. Khalid, ‘‘On identifying user complaints of iOS apps,’’ in Proc. 35th
Int. Conf. Softw. Eng. (ICSE), May 2013, pp. 1474–1476.

[68] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and
H. C. Gall, ‘‘How can I improve my app? Classifying user reviews for
software maintenance and evolution,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance Evol. (ICSME), Sep. 2015, pp. 281–290.

[69] D. Martens and T. Johann, ‘‘On the emotion of users in app reviews,’’
in Proc. IEEE/ACM 2nd Int. Workshop Emotion Awareness Softw. Eng.
(SEmotion), May 2017, pp. 8–14.

[70] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci,
and A. De Lucia, ‘‘Recommending and localizing change requests for
mobile apps based on user reviews,’’ in Proc. IEEE/ACM 39th Int. Conf.
Softw. Eng. (ICSE), May 2017, pp. 106–117.

[71] S. A. Licorish, B. T. R. Savarimuthu, and S. Keertipati, ‘‘Attributes that
predict which features to fix: Lessons for app store mining,’’ in Proc. 21st
Int. Conf. Eval. Assessment Softw. Eng., Jun. 2017, pp. 108–117.

[72] T. Johann, C. Stanik, A.M.Alizadeh B., andW.Maalej, ‘‘SAFE:A simple
approach for feature extraction from app descriptions and app reviews,’’
in Proc. IEEE 25th Int. Requirements Eng. Conf. (RE), Sep. 2017,
pp. 21–30.

[73] A. Ciurumelea, A. Schaufelbühl, S. Panichella, and H. C. Gall, ‘‘Ana-
lyzing reviews and code of mobile apps for better release planning,’’ in
Proc. IEEE 24th Int. Conf. Softw. Anal., Evol. Reengineering (SANER),
Feb. 2017, pp. 91–102.

[74] C. Gao, J. Zeng, D. Lo, C.-Y. Lin, M. R. Lyu, and I. King, ‘‘INFAR:
Insight extraction from app reviews,’’ in Proc. 26th ACM Joint Meeting
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., Oct. 2018, pp. 904–907.

[75] Z. Kurtanovic and W. Maalej, ‘‘Mining user rationale from software
reviews,’’ in Proc. IEEE 25th Int. Requirements Eng. Conf. (RE),
Sep. 2017, pp. 61–70.

[76] F. Sarro, M. Harman, Y. Jia, and Y. Zhang, ‘‘Customer rating reactions
can be predicted purely using app features,’’ in Proc. IEEE 26th Int.
Requirements Eng. Conf. (RE), Aug. 2018, pp. 76–87.

[77] M. Suleman, A.Malik, and S. S. Hussain, ‘‘Google play store app ranking
prediction using machine learning algorithm,’’ in Proc. Int. Conf. Data
Sci., Feb. 2019, pp. 57–62.

[78] J. Dąbrowski, E. Letier, A. Perini, and A. Susi, ‘‘Mining user opinions to
support requirement engineering: An empirical study,’’ in Proc. Int. Conf.
Adv. Inf. Syst. Eng. Cham, Switzerland: Springer, 2020, pp. 401–416.

[79] X. Dong, T. Li, R. Song, and Z. Ding, ‘‘Profiling users via their reviews:
An extended systematic mapping study,’’ Softw. Syst. Model., vol. 20,
no. 1, pp. 49–69, Feb. 2021.

[80] O. Haggag, J. Grundy, M. Abdelrazek, and S. Haggag, ‘‘A large scale
analysis of mHealth app user reviews,’’ Empirical Softw. Eng., vol. 27,
no. 7, p. 196, Dec. 2022.

[81] M. Fazil, S. Khan, B. M. Albahlal, R. M. Alotaibi, T. Siddiqui, and
M. A. Shah, ‘‘Attentional multi-channel convolution with bidirectional
LSTM cell toward hate speech prediction,’’ IEEE Access, vol. 11,
pp. 16801–16811, 2023.

[82] B. Pang, L. Lee, and S. Vaithyanathan, ‘‘Thumbs up? Sentiment classifi-
cation using machine learning techniques,’’ 2002, arXiv:cs/0205070.

[83] S. Kumari, B. Agarwal, and M. Mittal, ‘‘A deep neural network model for
cross-domain sentiment analysis,’’ Int. J. Inf. Syst. Model. Design, vol. 12,
no. 2, pp. 1–16, Apr. 2021.

[84] F. Karim, S. Majumdar, H. Darabi, and S. Chen, ‘‘LSTM fully
convolutional networks for time series classification,’’ IEEE Access,
vol. 6, pp. 1662–1669, 2018.

[85] C. Ubal, G. Di-Giorgi, J. E. Contreras-Reyes, and R. Salas, ‘‘Predicting
the long-term dependencies in time series using recurrent artificial neural
networks,’’Mach. Learn. Knowl. Extraction, vol. 5, no. 4, pp. 1340–1358,
Oct. 2023.

[86] G. Liu and J. Guo, ‘‘Bidirectional LSTM with attention mechanism and
convolutional layer for text classification,’’ Neurocomputing, vol. 337,
pp. 325–338, Apr. 2019.

[87] B. Jang, M. Kim, G. Harerimana, S.-U. Kang, and J. W. Kim, ‘‘Bi-LSTM
model to increase accuracy in text classification: Combining Word2vec
CNN and attention mechanism,’’ Appl. Sci., vol. 10, no. 17, p. 5841,
Aug. 2020.

[88] A. Pogiatzis and G. Samakovitis, ‘‘Using BiLSTM networks for context-
aware deep sensitivity labelling on conversational data,’’ Appl. Sci.,
vol. 10, no. 24, p. 8924, Dec. 2020.

[89] W. Li, F. Qi, M. Tang, and Z. Yu, ‘‘Bidirectional LSTMwith self-attention
mechanism and multi-channel features for sentiment classification,’’
Neurocomputing, vol. 387, pp. 63–77, Apr. 2020.

[90] Y. Huang, Q. Liu, H. Peng, J. Wang, Q. Yang, and D. Orellana-Martín,
‘‘Sentiment classification using bidirectional LSTM-SNP model and
attention mechanism,’’ Expert Syst. Appl., vol. 221, Jul. 2023,
Art. no. 119730.

[91] N. Bensalah, H. Ayad, A. Adib, and A. I. El Farouk, ‘‘CRAN: An hybrid
CNN-RNN attention-based model for Arabic machine translation,’’ in
Proc. Netw., Intell. Syst. Security (NISS). Cham, Switzerland: Springer,
2021, pp. 87–102.

[92] J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin, ‘‘A convolutional
encoder model for neural machine translation,’’ 2016, arXiv:1611.02344.

[93] B. VeeraSekharReddy, K. S. Rao, and N. Koppula, ‘‘An attention based
bi-LSTMDenseNet model for named entity recognition in English texts,’’
Wireless Pers. Commun., vol. 130, no. 2, pp. 1435–1448, May 2023.

[94] P. Zhang, Y. Yang, and Z.-Y. Yin, ‘‘BiLSTM-based soil–structure
interface modeling,’’ Int. J. Geomechanics, vol. 21, no. 7, Jul. 2021,
Art. no. 04021096.

[95] L. Xiaoyan and R. C. Raga, ‘‘BiLSTM model with attention mechanism
for sentiment classification on Chinese mixed text comments,’’ IEEE
Access, vol. 11, pp. 26199–26210, 2023.

[96] P. Bhuvaneshwari, A. N. Rao, Y. H. Robinson, and M. N. Thippeswamy,
‘‘Sentiment analysis for user reviews using bi-LSTM self-attention based
CNN model,’’ Multimedia Tools Appl., vol. 81, no. 9, pp. 12405–12419,
Apr. 2022.

[97] J. Xie, B. Chen, X. Gu, F. Liang, and X. Xu, ‘‘Self-attention-based
BiLSTM model for short text fine-grained sentiment classification,’’
IEEE Access, vol. 7, pp. 180558–180570, 2019.

[98] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, ‘‘A survey of methods for explaining black box models,’’
ACM Comput. Surv., vol. 51, no. 5, pp. 1–42, Sep. 2019.

[99] R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian,
Z. Wen, T. Shah, G. Morgan, and R. Ranjan, ‘‘Explainable AI (XAI):
Core ideas, techniques, and solutions,’’ACMComput. Surv., vol. 55, no. 9,
pp. 1–33, Sep. 2023.

[100] A. Papenmeier, D. Kern, G. Englebienne, and C. Seifert, ‘‘It’s com-
plicated: The relationship between user trust, model accuracy and
explanations in AI,’’ ACM Trans. Comput.-Human Interact., vol. 29,
no. 4, pp. 1–33, Aug. 2022.

[101] Ö. Yildirim, ‘‘A novel wavelet sequence based on deep bidirectional
LSTM network model for ECG signal classification,’’ Comput. Biol.
Med., vol. 96, pp. 189–202, May 2018.

[102] A. Tripathy, A. Agrawal, and S. K. Rath, ‘‘Classification of sentiment
reviews using n-gram machine learning approach,’’ Expert Syst. Appl.,
vol. 57, pp. 117–126, Sep. 2016.

114044 VOLUME 12, 2024



I. Gambo et al.: Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection

[103] R. K. Mishra, S. Urolagin, and A. A. Jothi J, ‘‘A sentiment analysis-
based hotel recommendation using TF-IDF approach,’’ in Proc. Int. Conf.
Comput. Intell. Knowl. Economy (ICCIKE), Dec. 2019, pp. 811–815.

[104] W. Maalej, Z. Kurtanović, H. Nabil, and C. Stanik, ‘‘On the automatic
classification of app reviews,’’ Requirements Eng., vol. 21, no. 3,
pp. 311–331, Sep. 2016.

[105] F. Poursabzi-Sangdeh, D. G. Goldstein, J. M. Hofman, J. W. W. Vaughan,
and H. Wallach, ‘‘Manipulating andmeasuring model interpretability,’’ in
Proc. CHI Conf. Human Factors Comput. Syst., May 2021, pp. 1–52.

ISHAYA GAMBO research focuses on software
engineering, with particular emphasis on require-
ments engineering, software testing, and software
architecture. His work applies these research areas
to the healthcare domain, emphasizing both user
and developer perspectives of software systems.
Recently, he has shown a keen interest in inte-
grating artificial intelligence and machine learn-
ing approaches into software engineering. This
includes leveraging crowdsourcing for improved

requirements elicitation and analysis, as well as assessing software
system quality. He has extensive experience with applied projects and a
comprehensive understanding of the research life cycle, evidenced by his
academic publications in journals and numerous conference presentations.

RHODES MASSENON is currently pursuing
the Ph.D. degree in software engineering with
Obafemi Awolowo University, Nigeria. He applies
software engineering principles to practical appli-
cations and contributes to innovations in software
tools and practices, driven by his passion for
ICT evolution. His research interests include
explainable AI, health informatics, and privacy
requirements engineering.

CHIA-CHEN LIN (Member, IEEE) received the
Ph.D. degree in information management from
National Chiao Tung University, in 1998. Since
2018, she has been the School Counselor with
Providence University. She is currently a Professor
of the Department of Computer Science and
Information Engineering, National of Chin-Yi
University of Technology. Her research interests
include image and signal processing, information
hiding, mobile agents, and electronic commerce.

Since 2018, she has been a fellow of IET. From 2009 to 2012, she served as
the Vice Chairman for Tainan Chapter IEEE Signal Processing Society. She
also serves as an associate editor and an editor for several representative EI
and SCIE journals.

ROSELINE OLUWASEUN OGUNDOKUN
received the bachelor’s degree in management
information systems from Covenant University,
Ota, and the master’s and first Ph.D. degrees in
computer science from the University of Ilorin.
She is currently pursuing the second Ph.D. degree
in multimedia engineering with Kaunas University
of Technology, Kaunas, Lithuania. She is a
FacultyMember with theDepartment of Computer
Science, College of Pure and Applied Sciences,

Landmark University, Omu-Aran, Kwara State, Nigeria. As of June 2022,
she holds the 23rd position in Nigeria according to the SciVal (SCOPUS-
Elsevier) analysis, improving from her 50th rank, in 2021, and 175th,
in 2020. She has an impressive portfolio of approximately 131 articles
in SCOPUS/WoS-indexed journals and has collaborated with over 55 co-
authors globally, primarily focusing on computer science. Her research
interests include computer vision, deep learning, medical imaging, image
processing, steganography, cryptography, information security, and artificial
intelligence. She has been recognized for her contributions to artificial
intelligence, notably as a member of the team awarded the AI for Females
in Science, Technology, Engineering, and Mathematics (AI4FS) Grant,
sponsored by the Royal Academy of Engineering under theHigher Education
Partnerships in Sub-Saharan Africa (HEP SSA) Program for 2022–2024.
She is an Academic Editor of PLOS One and CMC-Computers, Materials &
Continua. She is also an Associate Editor ofHumanities and Social Sciences
Communications. Her expertise in AI was further acknowledged through her
involvement as one of 26 distinguished Nigerian AI specialists participating
in the National AI Research Grant Scheme (NAIRS) evaluation process.

SAURABH AGARWAL received the Ph.D. degree
in computer engineering from the University of
Delhi, India, in 2017. From 2019 to 2023, he was
a Korean Research Fellow in South Korea. Since
2024, he has been a Research Professor with
Yeungnam University, Gyeongsan, South Korea.
His research interests include image forensics,
computer vision, and machine learning.

WOOGUIL PAK (Member, IEEE) received the
B.S. and M.S. degrees in electrical engineering
and the Ph.D. degree in electrical engineering
and computer science from Seoul National Uni-
versity, in 1999, 2001, and 2009, respectively.
In 2010, he joined the Jangwee Research Institute
for National Defence, as a Research Professor,
and Keimyung University, Daegu, South Korea,
in 2013. Since 2019, he has been an Associate
Professor with Yeungnam University, Gyeongsan,

South Korea. His research interests include network and system security,
blockchain, and real-time network intrusion prevention based on machine
learning for over 1 Tbps networks.

VOLUME 12, 2024 114045


