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ABSTRACT Air pollution is a global challenge to human health and the ecological environment. Identifying
the relationship among pollutants, their fundamental sources and detrimental effects on health and mental
well-being is critical in order to implement appropriate countermeasures. The way forward to address this
issue and assess air quality is through accurate air pollution prediction. Such prediction can subsequently
assist governing bodies in making prompt, evidence-based decisions and prevent further harm to our urban
environment, public health, and climate, all of which co-benefit our economy. In this study, the main
objective is to explore the strength of features and proposed a two stage feature engineering approach,
which fuses the advantage of influential factors along with the decomposition approach and generates an
optimum feature combination for five major pollutants including Nitrogen Dioxide (NO2), Ozone (O3),
Sulphur Dioxide (SO2), and Particulate Matter (PM2.5, and PM10). The experiments are conducted using
a dataset from 2015 to 2020 which is publicly available and is collected from Belfast-based air quality
monitoring stations in Northern Ireland, UK. In stage-1, using the dataset new features such as trigonometric
and statistical features are created to capture their dependency on the target pollutant and generated
correlation-inspired best feature combinations to improve forecasting model performance. This is further
enhanced in stage-2 by an optimum feature combination which is an integration of stage-1 and Variational
Mode Decomposition (VMD) based features. This study employed a simplified Long Short Term Memory
(LSTM) neural network and proposed a single-step forecasting model to predict multivariate time series
data. Three performance indicators are used to evaluate the effectiveness of forecasting model: 1) root mean
square error (RMSE), 2) mean absolute error (MAE), and 3) R-squared (R2). The results demonstrate the
effectiveness of proposed approach with 13% improvement in performance (in terms of R2) and the lowest
error scores for both RMSE and MAE.

INDEX TERMS Air quality, feature engineering, variational mode decomposition, machine learning,
predictive model.

The associate editor coordinating the review of this manuscript and
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I. INTRODUCTION
Air pollution is one of the major global environmental
health issues caused by the rapid rise in urbanisation and
industrialisation. It has become the biggest threat to our health

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 114073

https://orcid.org/0000-0001-9024-9843
https://orcid.org/0000-0001-6259-5458
https://orcid.org/0000-0002-2338-6247
https://orcid.org/0000-0001-5913-2858
https://orcid.org/0000-0001-7315-0382
https://orcid.org/0000-0002-4703-4836
https://orcid.org/0000-0002-8751-9205


F. Naz et al.: Two-Stage Feature Engineering to Predict Air Pollutants in Urban Areas

and the environment we live in. Around 99% of our global
population breathes air that contains high levels of pollutants
and leads to increased morbidity and mortality [1], [2].
From neurological, respiratory, cardiovascular, andmetabolic
to reproductive, every system in the body is affected by
air pollution. Each year 6.7 million premature deaths are
recorded worldwide, with low and middle income nations
accounting for 95% of these deaths [3]. However, to mitigate
the effects of pollution on health, environment, economy, and
climate, the United Nations (UN) has established sustainable
development goals (SDGs) such as 3, 7, and 11. These goals
set targets for 2030 with the aim to reduce deaths, illness,
and adverse environmental effects in cities by facilitating
access to clean and sustainable energy, transportation, and
urbanisation with green and blue spaces. The WHO recently
released air quality guidelines to establish evidence based
global targets to protect public health by enhancing air
quality [1]. Likewise, the government of the United Kingdom
(UK) has set a goal to curtail 35% of air pollution
by 2040 [4].

Generally, air quality is influenced by numerous factors
involving local geography, weather, and sources of emissions.
In Northern Ireland (NI), major sources of pollutant emission
mostly revolve around the combustion of fossil fuels at
domestic, transportation, and industrial levels [5]. Pollutants
like Nitrogen Dioxide (NO2) and Sulphur Dioxide (SO2)
are directly released into the air because of combustion
processes involving fossil fuels (e.g. coal and oil) in
transportation, industrial, commercial, power refineries, and
electrical supply sectors. In various regions of the UK,
particularly NI, coal is regarded as a significant domestic
energy source which explains why these gases are found
predominant in emissions. Exposure to these gases irritates
the respiratory tract which increases the likelihood of
cough, infection, mucus formation, and chronic lung disease.
Additionally, also causes damage to our ecosystem with
acid rain, reduced photosynthesis, chlorophyll degradation,
damage to foliage, acidification of water, and soil which
subsequently leads to a decline in biodiversity. In terms
of Ozone (O3) at the ground level, unlike other man-made
sourced emissions, it is indirectly emitted in the air because of
a photochemical reaction formed between Nitrogen dioxide
and volatile organic compounds in the presence of sunlight.
It takes hours or days to form and rural areas are the onesmost
affected due to its long range movement far from its original
site of emission. High exposure toO3 damage airways, irritate
eyes and nose, and necessitates hospitalisation. In addition,
also cause damage to forest, plant species, and biodiversity.
Particulate Matter (PM) which includes PM2.5 and PM10,
is typically classified based on the particle size. For instance,
a particle less than 2.5 µm diameter is referred to as PM2.5,
and a particle smaller than 10 µm in diameter is referred to
as PM10. Particulate matter particularly PM2.5 is considered
one of the primarily focused pollutants which pose the
greatest threat to human health and the environment. In the
UK, primary PM is emitted directly into the air because

of man-made sources primarily by fuel combustion, engine
emission from road transportation, tyre, and brake wear,
and other non-exhaust emissions from industries. Whereas,
secondary PM is formed by chemical reactions in air from
the emission of certain pollutants such as SO2, Nitrogen
Oxide (NOX ), Ammonia (NH3), and organic compounds
sourced from either vegetation or combustion. Both short
and long term exposure cause cardiovascular and respiratory
diseases along with cognitive decline, other ill health effects,
and mortality [6]. In addition, the WHO and Committee on
the Medical Effects of Air Pollutants (COMEAP) recently
reviewed that exposure to PM2.5 is strongly associated with
adverse health impacts [7]. In addition, few recent studies
also look into monitoring and modelling of aerosol and air
pollution [8], [9], [10], [11], [12].

Identification of pollutants, their sources of emission,
and accurate prediction of their concentration is vital and
facilitates the authorities and governing bodies in making
evidence-based decisions. They can further put policies and
controls in place, where needed to prevent further loss, help
public demand, and build healthier communities to improve
air quality. Interdisciplinary collaboration of experts with
other stakeholders is fundamental to tackling such challenges
and helps in educating and public awareness [13]. As we
know, all of this is a result of utilising different energy
sources to facilitate our lives, in return giving rise to pollution
and deteriorating air quality, health, environment, ecosystem,
and climate. At this point, experts and measures alone are
never enough to resolve this challenge until the public
accepts responsibility for their actions and adopts healthy
lifestyle modifications, such as walking, cycling, or taking
public transport whenever possible instead of driving a car.
Additionally, switching to electric cars, using renewable
power sources (combustion-free), authorised low emission
fuels and installing exempted fireplaces to control smoke,
ensuring the boiler is up to date, and having adequate home
insulation can all help. Positive incremental improvement
is seen in NI air quality compared of what it was even
before the industrial revolution via strict successful policies
implementations on the emission of certain pollutants from
major sources [14]. A few of the successful policies
adhered to in NI include the introduction of smoke control
areas with the strict usage of only authorised fuels for
appliances and exempted fireplaces. Similarly in London
(the capital of England) after a successful trial of the Low
Emission Zone (LEZ) scheme, the Ultra Low Emission
Zone (ULEZ) is recently expanded now and resulted in a
significant i.e., 50% reduction in NO2 emission and 5 times
fastest pollution reduction compared to other parts of UK
since 2016-2020 [15].

The main contributions of this study include:
• We propose a two stage feature engineering approach.
In stage-1, we have considered features that are available
in the dataset and created new features to capture
dependencies of features with target pollutants. A total
of 22 features are generated among categories like
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meteorological, temporal, statistical and air pollutants.
In stage-2, we further used variational mode decom-
position (VMD) to generate new features to capture
dependencies with respective pollutants in discussion.

• We experimentally evaluated and comprehensively anal-
ysed all feature combinations for target pollutants and
proposed a unique optimum feature combination that
can improve a simplified forecastingmodel performance
in terms of root mean square error (RMSE), mean
absolute error (MAE), and R-squared (R2).We proposed
a two stage feature selection method which in stage-1
performs feature selection using correlation and opti-
mises the performance of forecasting model by further
integrating VMD based features (i.e. based on selection
of optimum number of IMFs) in stage-2.

• We provide a detailed performance evaluation of opti-
mum feature combination for a total of 5 pollutants
(NO2, SO2, O3, PM2.5, and PM10) by considering a
simplified LSTM based forecasting model and inves-
tigated the key features that can influence various
pollutants differently.

The remainder of the paper is organised as follows: related
work and contributions are provided in Section II. Section III
describes the dataset and Section IV provides details about
two stage feature engineering. Model training and testing are
discussed in SectionV. Results and discussion are provided in
Section VI and finally, the paper is concluded in Section VII.

II. RELATED WORK
Machine learning (ML) has revolutionised many scien-
tific domains to tackle intricate engineering challenges,
particularly ML-based feature engineering and regression
models play a pivotal role in air pollution forecasting.
It shows notable progression in research because of its
accurate prediction, low-cost implementation, and flexible
adaptability. To handle high dimensional large-scale data
gathered from 35 air quality monitoring stations situated in
Beijing, a light gradient boosting machine model is proposed
in [16]. In addition to air pollutants, statistical, temporal, and
meteorological features, they used the following 24 hours
of weather prediction data as predictive data features to
predict the PM2.5 concentration for the following 24 hours.
Based on the correlation of features, the performance
of the model is compared with other models such as
Adaptive boosting (Adaboost), gradient boosting decision
tree (GBDT), extreme gradient boosting (XGboost), and
deep neural network (DNN) and findings revealed that
their model outperformed others under indicators such as
symmetric mean absolute percentage error (SMAPE), mean
square error (MSE) and MAE. In [17], short term forecasting
hybrid approach combining convolutional neural network
(CNN) and bidirectional gated recurrent unit (GRU) was
proposed to predict PM2.5 concentration in Beijing. Several
feature combinations were tested based on the correlation
analysis of time series data and found that the performance
of the proposed model is better when historical data of

pollutant and meteorological factors such as temperature,
dew point, wind direction, and speed are used. When
compared with shallow ML models and GRU, the suggested
model demonstrated a notable improvement in terms of
error score. An encoder-decoder LSTM model is proposed
with Genetic algorithm (GA) feature selection to predict
PM2.5 concentration using two datasets collected fromHanoi
and Taiwan [18]. The datasets comprised of meteorological
and air pollutant features. Several feature combinations were
tested and the results showed that the best combination relied
on wind, temperature, radiation, PM2.5, and PM10. Their
proposed approach enhanced prediction accuracy usingMAE
as an assessment metric. In a similar study, a multitask
learning model using LSTM autoencoder is presented to
predict PM2.5 time series across Beijing city at several
locations. LSTM was intended for learning spatial-temporal
PM2.5 time series features and autoencoder for encoding
meteorological parameters. The dataset was collected from
18 air quality and 13 meteorological monitoring stations.
While meteorological time series includes temperature,
pressure, humidity, wind speed, and direction, air quality data
covers the spatiotemporal aspects of numerous sites [19].

A hybrid deep learning model is proposed which combines
multiple one-dimensional (1D) CNN and bi-directional
LSTM (BiLSTM) to predict single-step and multi-step
(48 hrs) PM2.5 concentration using two datasets [20]. The
dataset includes hourly meteorological and air pollutant
attributes collected over four years. Local trends and spatial
features are extracted using 1D-CNN, while LSTM is
used to learn spatial-temporal dependencies. The results
indicated good forecasting ability when compared with SVR,
LSTM variants, CNN, and RNN. Similarly, in another study,
a hybrid ML approach is proposed to predict PM2.5 con-
centration following the consequences of conflict in the
city of Kiev [21]. They proposed optimising multilayer
perceptron neural network (MLPNN) using electromagnetic
field optimisation (EFO) algorithm to get better prediction.
Three distinct sources of data were gathered, and the
data included temporal, air pollutants, and meteorological
aspects. In addition, principal component analysis (PCA)
is used to reduce the data and choose the helpful factors.
Though the study had certain limitations, however, the
results demonstrated the competency of the models for
use in real-world scenarios in Kiev. In [22], Dual LSTM
is proposed which combines the single and multi-factor
prediction models. Both models used sequence-to-sequence
(seq2seq) technology which contains an encoder and decoder
while an extreme gradient boosting (XGBoost) regression
tree is opted for integration. The dataset contains hourly based
spatiotemporal features collected from multiple stations
in Beijing. Experimental results indicated improvement in
error under five assessment indices in comparison to other
models. Moreover, another study proposed a dual-stage
attention based on conversion-gated LSTM (DA-CG-LSTM)
to predict air quality and traffic flow. To improve the ability
of the model to capture short term mutation information,
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a hyperbolic tangent function is introduced in input and
forget gates. Additionally, dual staged attention is added
in terms of input and temporal attention. Experimental
results show a 50% lower error rate in comparison to
dual-staged attention recurrent neural network (DA-RNN)
and transformation-gated LSTM (TG-LSTM) [23].

Recent research shows the superiority of hybrid models
based on decomposition and ensemble over the single
forecasting model. For instance, a recent study proposed a
dual layer decomposition and the feedback of the model
learning effect for the prediction of PM2.5 concentration [24].
Initially, ensemble empirical mode decomposition (EEMD) is
used for decomposing PM2.5 time series followed by sample
entropy (SE) methodology and then VMD is employed where
SE is higher than the average value. Awavelet neural network
(WNN) model is established for each sub-series prediction
which is later combined to get the final prediction. Addi-
tionally, the network frame structure and prediction ability
of the model are improved using feedback of the learning
effect. In another study, a VMD based BiLSTM model is
proposed for single-step prediction of PM2.5 concentration
in various cities of China [25]. In this work, BiLSTM is
employed separately for all sub-series decomposed by VMD
and concatenated all at last to get the final prediction.
Results based on comprehensive analysis with other EMD
and VMD based models show improvement in prediction
accuracy and error. This study recommends VMD over other
signal processing techniques in combination with BiLSTM.
A novel hybrid model is proposed for AQI prediction
using three datasets collected from Beijing, Tianjin, and
Shijiazhuang [26]. Here, a secondary decomposition is
proposed which is based on empirical wavelet transform
(EWT) for the initial decomposition of AQI time series
and VMD for the second decomposition of the sub-series
with larger entropy values. In addition, optimal features
are extracted using an imperialist competitive algorithm
(ICA), and the echo state network (ESN) model is used
for the prediction of each sub-series and obtaining the final
prediction by integration.

In [27], the parameters of VMD and LSTM models are
optimised based on enhanced versions of sparrow search
algorithms (SSA) for a single-step AQI prediction. The
dataset is used from three different locations in China
and the proposed model performance is evaluated on test
data and validation data for generalisation ability. In the
proposed model, LSTM is used for each IMF (intrinsic
mode function), also known as sub-series, and it is found
that SSA based VMD-LSTM model has better prediction
and generalisation performance. In [28], SE is introduced
to reduce the total number of IMFs and AQI from two
cities in China is predicted using LSTM models. The
AQI prediction is obtained by summing the prediction
from each LSTM model. An optimal hybrid model based
on secondary decomposition and air pollutant factors for
forecasting AQI is proposed in [29]. Primarily, wavelet
decomposition (WD) is used to decompose the AQI series

into high and low frequency sub-series. High frequency
series are further decomposed by VMD-SE to smooth
the series and later LSTM is adopted for modelling each
decomposed sub-series. While for low frequency series, the
least squares support vector machine (LS-SVM) along with
bat optimisation algorithm is employed and also considered
the effect of air pollutant factors such as NO2, SO2, CO,
PM2.5 and PM10. The final result is attained by aggregating
the predictions of forecasting models for each sub-series.
In [30], Dung Beetle Optimisation is used to optimise the
VMD decomposition and XGBoost model for PM2.5 single-
step prediction. By using correlation, feature filtering is
performed and further features are categorised based on
the frequency of IMFs and a combination of XGBoost
and informer models are used for prediction. Although
aforementioned studies have investigated different aspects
of feature engineering, feature selection focuses on a single
pollutant only (e.g. mostly PM2.5) and complex forecasting
models. However, still requires careful consideration to
understand the relationship between the target and features
and how this information can be used to define a set of
optimum features which can improve the performance of a
simplified forecasting model. In addition, it is important to
find such optimum features for a wide range of pollutants
which can allow forecasting using a very simplified common
model.

III. DATASET
In this study, the dataset used is comprised of over
50,000 samples measured by an air quality monitoring
station situated in Belfast city center, Northern Ireland
from 2015 to 2020 [31], [32]. This dataset includes hourly
concentration levels of meteorological data and air quality
parameters. Meteorological data involves temperature (◦C),
wind horizontal and wind vertical whereas air quality
parameters include NO2, O3, SO2, PM2.5, PM10, Nitric
Oxide (NO), NOX and Carbon Monoxide (CO).
Table.1 provides statistical information such as total count,

mean, standard deviation, minimum and maximum value of
meteorological data. The mean and standard deviation of
all parameters ranges from -2.15 to 8.27 and 3.66 to 4.50,
respectively. In addition, minimum and maximum values of
all parameters fall between -19.75 to 0 and 15.85 to 24,
respectively. The statistical descriptions of the pollutants
being predicted in this work are listed in Table. 2, albeit the
dataset contains more than these. The NO2 concentration has

TABLE 1. Statistical description of meteorological data.
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TABLE 2. Statistical description of air pollutants in µg/m3.

a mean of 26.12 with a standard deviation of 17.87 and the
values vary from 1 to 203. However, SO2 has the lowest
mean and standard deviation among all which is 1.55 and 1.6,
respectively.

IV. FEATURE ENGINEERING
There is widespread agreement that models attempt to reach
the limit determined by data and features in ML. Therefore,
the goal is to find the optimum set of features by exploring
their respective strength from the given time series data
with expectations to have significant improvement in model
prediction, training time, and complexity. In this study,
we grouped features into four types based on characteristics
which include meteorological, temporal, statistical, and air
pollutants. In meteorological features, we have considered
temperature, wind horizontal and wind vertical since high
temperature affects the airflow and strong winds modify
the concentration of various pollutants, thus both impact
the air quality [16], [33]. In terms of temporal features,
datetime index contained in the dataset is utilised to create
nine additional features. Initially, datetime index is split
into hour, day, and month features. Since day, month, and
hour are cyclical variables, trigonometric functions such as
sine and cosine are applied to them to create six additional
features including month_sin, month_cos, day_sin, day_cos,
hour_sin, and hour_cos. With this encoding, the model
is better able to capture the cyclic temporal relationships
which further enhance the model performance [34]. Table. 3
provides list of notations along with description used in this
study. For a given feature z(t), trigonometric features can be
generated using (1)-(2):

zsin(t) = sin(2πz(t)/P), (1)

zcos(t) = cos(2πz(t)/P), (2)

where P is the period which is 12, 24, and 31 for month, hour
and day data, respectively.

In the statistical feature, we only considered the mean of
the previous two hours of the pollutant being predicted. Air
pollutant features include eight pollutants NO2, O3, SO2,
PM2.5, PM10, NO, NOX , and CO. In addition, a lag feature
is created which is based on the previous hour concentration
value of the pollutant being predicted. In summary after
feature engineering, a total of 22 features are introduced
including 3 meteorological, 9 temporal, 1 statistical, and 9 air

TABLE 3. List of notations with description.

pollutants to be used as an input to the model as per relevance
with the targeted pollutant as listed in Table. 4.

A. CORRELATION BASED FEATURE SELECTION
Given the fact that irrelevant features not only increase the
training time but also add to computational cost, appropriate
feature selection is critical for better prediction. For this
reason, a filter mechanism is required that performs feature
selection independent of the chosen forecasting model.
In this work, we have considered a Pearson correlation-based
feature selection which is recommended when dealing with
numerical features and to confirm collinearity between
features and target [35]. The Pearson correlation coefficient
r between feature z(t) and target output x(t) is defined as:

r =

∑M
i=1(zi − z̄)(xi − x̄)√∑M

i=1(zi − z̄)2
∑M

i=1(xi − x̄)2
, (3)

where zi and xi are ith data samples, z̄ and x̄ are the mean and
M is a total number of samples.

All the features with positive correlation are selected in
this work. Table. 4 shows the correlation of the features,
all positively correlated features are tinted green (dark and
light), while negatively correlated features are represented
in lime tint. In, addition, dark green represent the best
feature combination found for each pollutant (more detail is
discussed in Section V(2). For instance, in case of NO2, all
positively correlated features include air pollutants with lag
feature, mean from statistical, month_sin, month_cos, day,
hour from temporal, and wind vertical from meteorological
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are considered. Whereas, negatively correlated features such
as temperature, wind horizontal, day_sin, day_cos, month,
hour_sin, hour_cos, and O3 are eliminated and not considered
in the prediction of NO2.

TABLE 4. Correlation of all features w.r.t target pollutants.

B. VARIATIONAL MODE DECOMPOSITION BASED
FEATURE GENERATION
VMD is a signal decomposition method which decom-
poses a real-valued signal U (t) into a finite number of
narrowband sub-signals uk (t) (also known as IMFs or sub-
series) [36]. In this method, each IMF is represented by
amplitude-frequency modulated signal as:

uk (t) = Ak (t)cos(φk (t)), (4)

U (t) =

K∑
k=1

uk (t) + R, (5)

where Ak (t) is envelope, φk (t) is phase, K is the total
number of IMFs, R is a residual signal and instantaneous
frequency can be found as φ′

k (t) which is non decreasing
and varies around the central frequency of the respective
mode. In recent years, VMD method has gained much
attention as a new feature engineering method in different
applications [37], [38], [39]. In this work, we aim to use
VMD method to generate additional new features based on
the hourly lag of the pollutant being predicted and investigate
an optimum number of IMFs required which can further
improve forecasting model performance. Fig. 1 shows an
example of lagNO2 decomposition using 3 IMFs and residual
data however careful consideration is required to select
parameter K so that such features can improve forecasting
model performance.

V. MODEL TRAINING AND TESTING
This section provides details about the data preparation, two
stage feature engineering with selection and model training
and testing of the single-step forecasting model. Fig. 2
shows the workflow of model training and testing with key
components.

FIGURE 1. Decomposition of lag NO2 into IMFs and Residual plot.

FIGURE 2. Workflow of model training and testing with two stage feature
engineering and selection approach.

1) DATA PRE-PROCESSING
In general, datasets may have outliers, missing or recurring
values known as invalid values. Outliers are extreme or
unusual values that differ significantly from the rest of the
dataset. As outliers can affect the overall distribution of
data, outliers may need investigation and must be treated
carefully to enhance the model performance. Likewise, it is
also important to remove or replace any invalid or missing
values with some estimated values prior to modelling. In this
study, the interquartile range method (IQR) is employed to
pre-process the outliers and invalid values are removed from
the dataset [40]. However, for the missing values data is
pre-processed by grouping them into day, month, and hour.
Missing values are then filled in by taking an average of
the available concentration values on the same month, day,
and hour across all years of the dataset. Following this
approach, a greater spread of values is reached for the missing
data. In addition to already existing features in the dataset,
the lagged feature is also created by taking the pollutant’s
previous hour concentration into account alongside splitting
datetime index into day, month, and hour for additional
features. Fig. 3 depicts the pre-processing workflow of the
dataset. A sample of NO2 is depicted in Fig. 4 before
and after pre-processing data, representing the inclusion of
missing values. After the pre-processing, additional features
are generated as discussed in the section IV. Fig. 5 provide
full data of NO2 after pre-processing.

2) TWO STAGE FEATURE SELECTION
This study emphasis on the prediction of fivemajor pollutants
i.e. NO2, O3, SO2, PM2.5 and PM10. The factors affecting
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FIGURE 3. Pre-processing of dataset.

FIGURE 4. NO2 data sample (over 2 months) representing addition of
missing values.

FIGURE 5. NO2 data from 2015-2021 after addition of missing values.

these pollutants may differ or be identical in some cases.
Interestingly, only a few of these predictors can be relied
upon, and those that are effective for one pollutant might not
be for another. Since the effectiveness of the model depends
on the inputs, it is imperative to identify optimal features for
each of these pollutant predictions. Fig. 6 shows our proposed
two stage feature selection approach to attain the optimum
combination of features. In stage-1, several experiments are
conducted with all possible combinations among all features
(positively correlated only) categories to determine the best
stage-1 combination and their effectiveness is analysed and
evaluated using a simplified LSTM model based on RMSE,
MAE, and R2 scores. We kept the same model parameters
during all the experiments to ensure that performance can
be evaluated due to changes in all combinations of features.
We are only reporting here the best stage-1 combinations
for each target pollutant after all the experiments. The best
stage-1 combination for NO2 is made up of features from
lag, temporal and meteorological categories. It achieves the
highest R2 score in comparison to other combinations and the
least error in terms of MAE and RMSE.

In stage-2, the best combination of stage-1 is integrated
with IMFs and residual from VMD method. We have

performed experiments in seek of an optimum number
of IMFs i.e. K for each pollutant. We have considered
IMFs up to ten along with residual and the efficacy of
each combination is evaluated using ML model (same
model as in stage-1 for performance evaluation) using the
performance indicators (i.e., R2, MAE, and RMSE). In the
experiments for each pollutant, we have combined the best
stage-1 combination and increased the value of K to obtain
performance indicators. The value of K is selected where
model has obtained the optimum performance. Table. 5
provides summary of performance evaluation on the selection
of the optimum value of K for NO2. It indicates that when
NO2 is decomposed into three IMFs and integrated with the
best stage-1 combination, it achieved the highest performance
across all indicators and is therefore considered to be the
optimum combination for NO2. The effectiveness of our
proposed approach is also examined by comparing how
well it performed when using just only lag as a feature,
the best stage-1 combination or features based on VMD.
A performance comparison for NO2 is shown in Fig. 7,
where it can be observed that the optimum combination
outperforms the other combinations based on lag, best
stage-1 combination, and VMD features (i.e., K = 3).
In terms of R2, only lag or VMD features are not sufficient.
However, the stage-1 combination improved the performance
by 5% (w.r.t to lag feature performance), which can be further
enhanced using optimum combination in stage-2 up to 86%.

A summary of optimum combinations for all pollutants
taken into consideration is provided in Table. 6. This
demonstrates exactly which stage-1 combination and IMF
count work best for each pollutant. It can be observed that
lag contributed to the prediction of all pollutants; aside
from this meteorological feature is found to be effective
for NO2 and SO2. Temporal features, on the other hand,
are shown to be helpful for NO2 and PM2.5, air pollutants
for SO2 and PM10, while the statistical feature is for SO2.
Furthermore, the best stage-1 combination for all pollutants
is highlighted using dark green tint in Table. 4 and is also
summarised in Table. 6. In addition, Table. 6, list the optimum
IMF found for each pollutant to be combined with its the
best stage-1 combination to produce optimum combination
for each respective pollutant. The best stage-1 combination
for NO2 is based on lag in conjunction with temporal
(day, month_sin, month_cos, hour) and meteorological (wind
vertical) features. In contrast, just lag functioned for O3.
For SO2, the best combination includes lag along with
meteorological (wind horizontal and vertical), statistical
(mean of the preceding two hours), and air pollutants (NO2,
PM2.5, PM10, NO, NOX , and CO). For PM2.5, combination
of lag and temporal (day, month_sin, month_cos, hour,
hour_cos) is found best stage-1. Lastly, for PM10, lag and
air pollutant (NO2, SO2, PM2.5, NO, NOX , and CO) proved
to be the best of stage-1 combination. From the foregoing
insight, it is evident that all features except lag require careful
selection, and that the value of K may vary according to the
pollutant being anticipated.
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FIGURE 6. Two Stage Feature Selection.

TABLE 5. Selection of optimum number of IMFs for VMD
decomposition (NO2).

FIGURE 7. Comparison of different combinations to produce optimum
combination for NO2.

TABLE 6. Summary of Stage-1 combinations and IMFs to produce
optimum combinations.

3) MODEL PARAMETERS AND TUNING
Prior to training the model, the dataset is split into training,
validation, and testing sets with ratios of 70%, 20%, and 10%,
respectively. In each split, the indices are kept higher than the

previous set, which will avoid shuffling (i.e., inappropriate
in time series). The input features are normalised using
Min-Max normalisation and is defined as:

znorm =
z− zmin

zmax − zmin
, (6)

where zmin and zmax are the minimum and maximum
values.

In this work, we are considering a simplified LSTM
forecasting model as shown in Fig. 8. The input layer
passes features to the model and we have used a LSTM
layer with 25 cells, followed by a dropout layer which
randomly drops out the number of cells to handle overfitting
with the rate of 0.1. A fully connected dense layer with
a linear activation function is used to produce an output.
Adam optimiser is used during the training of the model
and the optimal parameters of the simplified LSTM model
is found after several trials to achieve better prediction
accuracy on the given training dataset. The summary
of the parameters with architectural details is given in
Table. 7.

FIGURE 8. Architecture of simplified LSTM model.

TABLE 7. Summary of model parameters.

In recent years, LSTM has been effectively used in
various fields for predicting time series data such as energy
demand [41], economics [42], wireless communications [43],
and road safety [44]. A functional diagram of the LSTM cell
is illustrated in Fig. 9 which is composed of three gates: a)
input gate, b) forget gate and c) output gate [45]. The previous
cell state d(t − 1) can influence the current state of the cell
d(t) and the amount of influence is controlled by the forget
gate output e(t). Similarly, the amount of influence by the new
information s(t) on d(t) is managed by the output of input gate
l(t). The final output g(t) of the cell is produced by combining
d(t), s(t) and the past hidden state of the cell g(t − 1).
Eq. (7)-(12) provide a mathematical representation of a
LSTM cell as follows:
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FIGURE 9. LSTM Cell.

e(t) = σ (wess(t) + wegg(t − 1) + be), (7)

l(t) = σ (wlss(t) + wlgg(t − 1) + bl), (8)

d̃(t) = tanh(wd̃s s(t) + wd̃gg(t − 1) + bd̃ ), (9)

y(t) = σ (wyss(t) + wygg(t − 1) + by), (10)

d(t) = e(t)d(t − 1) + l(t)d̃(t), (11)

g(t) = y(t)tanh(d(t)), (12)

where b is the bias factor, w is the weight and activation
functions are σ and tanh to produce respective gate output.

4) PERFORMANCE AND ERROR INDICATORS
The efficacy of the ML forecasting model is assessed in this
study using three statistical evaluation indicators namely R2,
MAE and RMSE and mathematically expressed in Eq. (13),
(14) and (15) as follows:

R2 = 1 −

∑T
i=1(qi − q̂i)2∑T
i=1(qi − q̄)2

, (13)

MAE =
1
T

T∑
i=1

∣∣qi − q̂i
∣∣ , (14)

RMSE =

√√√√ 1
T

T∑
i=1

(
qi − q̂i

)2
, (15)

where T is the total number of samples in test data, qi, q̄
and q̂i are the target output at the ith sample, mean derived
from target output samples and predicted output at the ith

sample, respectively. Both MAE and RMSE are used to
measure the prediction error of the forecasting model and
indicates the extent to which model match target output in
its predictions. Meanwhile, R2 is another standard statistical
indicator used to represent the goodness fit of forecasting
model. Generally, models with higher R2 score (nearly 1)
and lower MAE and RMSE values indicates better prediction
performance.

VI. RESULTS AND DISCUSSION
This section includes findings along with the related discus-
sions over experiments on the proposed two stage feature

engineering and selection method using a simplified forecast-
ing model for the considered pollutants. The effectiveness of
the proposed approach is examined and verified by making
a comparison of the optimum features generated using the
proposed approach with the best stage-1 combination of
features and lag of pollutant being predicted. To improve
clarity and better understanding, we are showcasing the
forecasting model prediction from the testing data spanning
only a week. Using test data for NO2, Fig. 10 illustrates
the forecasting model performance over a week when using
optimum features as an input to the model.

The results show that for NO2, our proposed optimum
combination via two stage feature engineering and selection
method outperform over all performance indicators in com-
parison to stage-1 combination and lag. In two stage feature
selection method, the optimum combination of features for
NO2 is based on the lag of the pollutant being predicted along
with the added benefits of the best stage-1 combination of
features which includes meteorological and temporal features
as well as VMD features (K = 3). After experimenting with
several feature combinations across the four types depicted in
Table. 4, the best combination for stage-1 is chosen. However,
the optimum combination significantly improved the perfor-
mance by 11% compared to the 5% improvement attained
by stage-1 combination with respect to lag (using target
pollutant) in terms of R2. Thereby, achieving the highest
R2 score of 86% in comparison to 80% and 75% attained
by stage-1 combination and lag respectively. In addition,
the RMSE and MAE evaluation scores attained by optimum
combination indicate the least error values comparatively
others. Under the RMSE indicator, the evaluation score
is dropped by 0.92 and 1.75 compared to using stage-1
combination and lag respectively. However, in terms ofMAE,
the error is reduced by 0.68 and 1.53 with respect to stage-1
combination and lag. Fig. 15, 16, 17 illustrates comparison of
the proposed methodology for NO2.

The forecasting model predictions over testing data for O3,
SO2, PM2.5, and PM10 are shown in Fig. 11, 12, 13, 14,
respectively. In case of O3, our proposed method yet
performed best under all evaluation indicators. We expe-
rienced O3 a singular case wherein no combination of
features was found helpful in improving the prediction in
comparison to lag. Since the accuracy achieved from all
feature combinations of stage-1 was equal to lag, we only
integrated lag with 4 IMF from VMD decomposition to
get the optimum combination, leaving stage-1 null. This
resulted in 87% accuracy in terms of R2, while the error
scores for RMSE and MAE were 6.85 and 4.88, respectively.
For SO2 time series data, the recommended methodology
attained 69% accuracy in terms of R2 with corresponding
RMSE and MAE error values of 0.51 and 0.36. The optimum
combination includes lag, meteorological, statistical, and air
pollutants features in addition to 4 IMFs. These sub-series
incorporated lag, meteorological, statistical, and air pollutant
features to determine the optimal combination. Similarly,
for PM2.5 and PM10, our proposed method consistently
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FIGURE 10. Comparison between actual and predicted data of NO2 over
a week.

FIGURE 11. Comparison between actual and predicted data of O3 over a
week.

FIGURE 12. Comparison between actual and predicted data of SO2 over a
week.

performed better than stage-1 combination and lag and
resulted in securing 86% and 76% accuracy respectively,
in terms of R2. Furthermore, error score is found 2.19 and
1.17 for PM2.5 and 4.88 and 2.38 for PM10 under the
RMSE and MAE assessment indicators, respectively. The
summary of the performance comparison of the single-step
forecasting model for all pollutants obtained by different
feature combinations methods in terms of RMSE, R2 and
MAE is presented in Fig. 15, 16, 17, respectively.

Table. 8 summarises the proposed approach so that its
effectiveness can be evaluated. In case of NO2, using an
optimal combination, the forecasting model achieved 11%
more improvement with respect to R2, in comparison to
5% using stage-1 combination. However, For O3, a 3%
improvement resulted from the usage of the optimum com-
bination of features. Furthermore, among all the pollutants,
SO2 attained the maximum performance improvement using

FIGURE 13. Comparison between actual and predicted data of
PM2.5 over a week.

FIGURE 14. Comparison between actual and predicted data of PM10 over
a week.

FIGURE 15. Comparison of features in terms of RMSE.

FIGURE 16. Comparison of features in terms of R2.

optimal combination which is 13% more than 2% gain
by stage-1 combination of features. Lastly, for PM2.5 and
PM10, the stage-1 combination could only enhance the
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FIGURE 17. Comparison of features in terms of MAE.

TABLE 8. Overall performance improvement based on proposed two
stage feature engineering and selection w.r.t R2.

performance by 1%, whereas the optimal combination of
features made 6% and 8% more improvement respectively.
To summarise the findings based on evaluation indicators,
it can be easily concluded that performance attained by
the proposed two stage feature engineering and selection
approach is consistently improved along with the lowest
error scores for all the pollutants in comparison to stage-1
combination and lag.

VII. CONCLUSION
Feature engineering is a fundamental step towards effective
modelling, particularly in the domain of time series prediction
and has a substantial effect on the performance of the model.
This study provides a comprehensive investigation of the
effectiveness of the proposed two stage feature engineering
and selection inspired by their correlation andVMDapproach
for accurate prediction of 5 major air pollutants, which are
beneficial in assessing air quality. Given the fact that there is
no standard set of known features for a specific pollutant pre-
diction. Optimum feature combinations may work differently
for different pollutants and require customisation. In this
work, we created new features and categorised them all into
four major types (meteorological, temporal, statistical, and
air pollutants) and generated 22 features in total. For stage-1,
positively correlated features are selected and it is found that
different pollutants require different feature combinations
and such features can improve model performance by 1-5%
compared to lag-based prediction. Moreover, performance is
further enhanced by integrating stage-1 features with features
of VMD (only for the optimum value of K ) to form the
optimum feature for a respective pollutant. It is observed
that such an optimum combination can bring an overall

performance improvement of 3 to 13%. Our findings through
results demonstrated that with the optimum selection of
features, a simplified forecasting model is sufficient and has
shown significant improvement in terms of RMSE,MAE, and
R2 scores.
The demonstrated two stage approach can play a critical

and important role in the urban planning such as traffic
management, establishment of new industrial or residential
areas and public health such as disease management,
hotspot identification and reliable forecasting can leads to
evidence based decision and policy making. However, further
investigation is required to develop better integrated approach
where new feature engineering approaches can be developed
to improve performance over the longer time horizon such as
over next 24 hours or even longer. Another possible direction
could be to investigate hybrid decomposition approach by
taking benefit of different signal decomposition methods.
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