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ABSTRACT In recent years, large language models (LLMs) have been employed significantly in different
domains of computing education. Nevertheless, these models have been focused on essential adherence
to their integration as coding assistants in computing education. However, attention has been switched to
thoroughly examining and analyzing LLM behavior, particularly in computing education for programming
tasks such as code generation, code explanation, and programming error message explanation. Therefore,
it becomes imperative to understand their behavior to examine potential pitfalls. This article addresses this
gap systematically and details how different LLM-based coding chatbots, such as ChatGPT, Codex, Copilot,
and others, react to various coding inputs within computing education. To achieve this objective, we collected
and analyzed articles from 2021 to 2024, and 72 studies were thoroughly examined. These objectives include
investigating the existing limitations and challenges associated with utilizing these systems for coding tasks,
assessing their responses to prompts containing coding syntax, examining the impact of their output on
student learning, and evaluating their performance as debugging tools. The findings of this review highlight
that it is premature to incorporate these systems into computing education due to their limitations that
may limit their effectiveness as comprehensive coding assistants for computer science students. These
limitations include issues with handling prompts containing code snippets, potential negative impacts on
student learning, limited debugging capabilities, and other ineffectiveness. The finding also reports multiple
research directions that can be considered in future research related to LLMs in computing education.

INDEX TERMS Large language models, computing education, code generation, code explanation,
programming error messages explanation.

I. INTRODUCTION
There is no denying the fact that the field of computer
science continues to evolve, so it is time to use the tools
and technologies that support learning and development
within it. One such innovation that has recently gained
significant attention is the emergence of Large Language
Models (LLMs). It is undeniable that LLMs have become
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integral to computer science education due to their diverse
capabilities, such as generating and explaining program-
ming code [1]. The recent advancements have significantly
enhanced machines’ capacity to understand and produce
content similar to humans [2]. Educators see the widespread
use of these models as a significant enhancement to students
and professionals in learning experiences across all levels
of education, from primary to tertiary. However, these
models play a role in improving reading and writing skills
for various purposes, including generating practice quizzes,
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FIGURE 1. Large language models in computing education as a coding chatbots.

producing programming-related content, and conducting
research tasks at an advanced level [3]. The interest in
intelligent code generators and AI-powered coding tools
has increased significantly in recent years. These are driven
by their potential to transform the programming landscape.
One of the examples that has captured widespread attention
is ‘‘GitHub Copilot,’’ a collaboration between GitHub and
OpenAI [4], [5].

The several coding chatbots, including OpenAI Codex [6],
Microsoft CodeBERT [7], Google Palm [8], and DeepMin-
dAlphaCode [9] are trained on an extensive collection of
source code to produce quality output from natural language
description. This capability puts them at the center of AI
coding assistants such as GitHub Copilot andAmazon’s Code
Whisperer, offering context-aware code suggestions to speed
up coding tasks. These tools are widely desired for pro-
gramming tasks such as code generation, code explanation,
and generating programming-based solutions for assign-
ments [10]. According to a recent study, LLM-generated
content can be used as a supplement to students-generated
content [11]. As shown in Figure 1, LLMs and related coding
chatbots are a focal point in computing education. Several
articles over the last five years have discussed different
opportunities and challenges given by these coding chatbots,
particularly in providing code generation, code explanation,
and programming error messages (PEMs) explanation for
both computer science educators and learners [1], [12], [13].

Further, output generated by LLMs on a given program-
ming prompt and usability concerns indicate that there is still
a great scope for enhancing and advancing these systems. For
example, a study of 24 ‘programmers’ discovered that [14],
despite preferring Copilot over the intelligent plugin, errors

remained in Copilot-generated code. Furthermore, program-
mers found larger code snippets challenging to understand,
change, and troubleshoot. Similarly, novices using Copilot
identified issues related to the software’s design [15]. The
studies have also been examining coding content generated
by LLMs since 2020. It has been discussed that LLMs have
been grappling with essential issues that could influence
various domains of computer science education, such as
producing generic outputs, lack of diversity, and exhibiting
inconsistency in their outputs [16], [17]. This emerging
role of these systems in computing education suggests that
the literature needs to be reviewed to see the capabilities
of these different coding chatbots based on LLMs for
different programming capabilities, such as generating code
in response to coding prompts from students, how well these
chatbots can explain complex codes, and what their strengths
andweaknesses are in debugging a given code. Therefore, this
systematic literature review (SLR) focuses on the behavioral
issues of LLMs while dealing with programming queries.

Through this investigation, we focused on current lim-
itations and challenges that might affect the effectiveness
of LLMSs in assisting students with programming tasks
(RQ-1). We also examined whether LLMs exhibit similar
responsiveness and adaptability to code-related inputs similar
to general English inputs (RQ-2). This systematic review also
investigates how LLMs impact computer science students’
learning experience and outcomes, focusing on the quality,
comprehensibility, and correctness of the outputs provided by
these models (RQ-3). Finally, the eligibility and capability of
LLMs as a debugging tool within computing education have
been evaluated (RQ-4). Additionally, this study investigates
the future gaps that still need to be addressed in the research
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related to the analysis of the current role of LLMs in
programming tasks and explores the problems and challenges
of adopting these tools as a programming assistant in
computer science education. Further, this review provides
findings that can help computer education researchers and
stakeholders observe the use of these tools for programming
activities.

A. MOTIVATION AND SCOPE
Based on current research, LLMs such as ChatGPT have
the potential to revolutionize many fields, such as education,
medicine, and science. Researchers have shown keen interest
in investigating and discussing the role of LLMs and how
they impact computing education and students [18]. Recent
evaluations have dug into specific applications of LLMs, such
as their utility in healthcare [19], banking [20], and code gen-
eration and explanation abilities in computing education [6].
Research also has addressed the potential opportunities
and challenges provided by ChatGPT in education and its
ability to enhance the programming learning experience [21].
During the workshops and studies, the researchers exhibit
the capabilities of LLMs like ChatGPT to assist teachers
and researchers in many academic activities, such as helping
in generating quality programming assignments, providing
good explanations of complex codes, and generating code
from scratch [22]. Additionally, LLMs can be beneficial
in creating educational content and improving the students’
engagement while also describing there is the need for a
particular set of skills among educators and learners to adopt
these tools for their academic tasks regularly [3]. An article
provides a detailed exploration of potential opportunities and
threats introduced by LLMs, such as ChatGPt for education
overall, highlighting their role in enhancing programming
skills among students [21]. As a result of this discrepancy,
there is an urgent need for an in-depth review of the state of
the art that synthesizes existing LLMs coding chatbots and
explores their implications, notably in programming tasks in
computing education. Therefore, the work aimed to analyze
the behavior of LLM chatbots from three perspectives: code
generation, code explanation, and PEMs explanation. This
enables computer education researchers and students to make
informed judgments and apply these models to everyday
tasks. Furthermore, identify future gaps to aid stakeholders
in understanding the possible benefits and limitations of
utilizing LLMs as a coding assistant in computing education.
Therefore, this SLR aims to provide valuable insights and
advance the field by identifying successful applications and
assessing their impact. This will help researchers drive further
development and exploration.

B. KEY CONTRIBUTION OF THE REVIEW
The main contributions of this review article are as follows:

• Providing a comprehensive overview of LLMs on three
different programming tasks.

• Following programming tasks, a detailed analysis
of different LLMs’ behavioral issues on receiving

TABLE 1. List of acronyms.

FIGURE 2. Evolution of LLM-based coding chatbots.

students’ programming prompts in the state of the
art.

• Following behavioral issues, we also highlight different
challenges and limitations of using LLMs for coding
tasks, including code generation, code explanation, and
programming error explanation tasks.

• This paper presents unique insights into the behavior and
effectiveness of LLMs as coding assistants for computer
science students. This review represents the first SLR
focusing on this topic.

• In the last, the article also contributes by providing
possible areas for future research in coding chatbots
within computing education. These suggestions can
guide readers in enhancing their research in this field and
advancing it further.

C. REVIEW ORGANIZATION
The rest of the study is organized as follows: Section II
presents the history of coding chatbots and summarizes
previous surveys on the same topic to contextualize the
study. Section III describes the current study’s methodology
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TABLE 2. Existing review articles. [CG stands for code generation, while ce is code explanation, and PEMs is used for programming error messages].

using the RISMA approach. Section IV discusses the study’s
key findings and their answers to the designed Research
Questions (RQs). Section V discusses future research direc-
tion, while Section VI presents key aspects and implications
of the current survey study, and Section VII addresses
the study’s limitations. Finally, Section VIII concludes the
current research.

II. PRIOR WORK
This section initially discusses the history of coding chatbots
and further synthesizes existing reviews to identify the
research gaps and emphasize the need for the current study.

A. HISTORY OF CODING CHATBOTS
The history of coding assistant software traces back to the
early days of computing when programmers sought tools
to streamline and enhance their coding processes. In the
1960s and 1970s, the emergence of integrated development
environments (IDEs) marked a significant milestone in cod-
ing assistance. These environments provided programmers
with features such as code editors, compilers, and debuggers.
These have laid the foundation for modern coding assistance
tools. As programming languages evolved and became more
complex, so did the need for more sophisticated coding aids.

As shown in Figure 2, the late 20th and early 21st centuries
witnessed rapid advancements in coding assistant software,
with the introduction of tools like auto-complete and syntax
highlighting. The rapid increase of open-source communities

also contributed to developing collaborative coding plat-
forms and version control systems, further empowering
programmers with code sharing, collaboration, and project
management tools. In addition, recent years have seen the
integration of artificial intelligence and machine learning
technologies into coding assistance software, enabling fea-
tures like predictive coding, automated refactoring, and
intelligent code suggestion. These features have marked the
dawn of a new era in coding assistance.

The launch of the Transformer model in 2017 continued
the evolution of LLMs. The Transformer could understand
long-term language relationships and allowed for parallel
training on several Graphical Processing Units (GPUs),
allowing it to train significantly larger models [29], [30].
Since 2018, the progress of LLMs has been rapid and
evolutionary, with significant advancements in research and
various applications. OpenAI introduces the GPT-2 language
model, which has 1.5 billion parameters. They first withheld
the complete model, reporting different concerns about mis-
use [31]; they eventuallymade it available to the public. Later,
in 2020, OpenAI published GPT-3 API, which allows users
to access and integrate GPT-3 into their applications, giving
a variety of the latest and valuable applications [32]. Several
advances in natural language processing and deep learning
have marked the evolution of LLMs. These models have
found applications in different areas, including computing
education and programming, and their progress continues to
influence the future of LLMs in programming contexts. This
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includes exciting opportunities and challenges that must be
considered in research.

B. EXISTING SURVEYS
Moreover, during our SLR preparation, we observed several
surveys addressing the utilization of LLMs in computer
science education, exploring their potential and challenges.
These surveys, detailed in Table 2, primarily examine
LLMs’ roles in education across various applications in
code generation, code explanation, and PEMs explanation.
Notably, there is a lack of recent SLRs pondering on
analyzing the behavior of different LLM tools for specific
programming tasks, as focused in this review. Thus, our
review uniquely concentrates on the current state-of-the-art
analysis of LLMs’ behavior as programming aids for these
three distinct tasks, representing a significant contribution to
computing education.

III. SYSTEMATIC LITERATURE REVIEW—MATERIAL AND
METHODS
This section aims to provide a clear and transparent summary
of this review’s techniques and search approaches for
discovering and evaluating relevant research. The goal was
to conduct a detailed study of LLMs’ activities as coding
chatbots in computing education, analyze and critically
evaluate the research findings, and reveal limitations and
challenges in current understanding concerning the research
topic.

A. METHODOLOGY
This systematic review utilized the Preferred Reporting
Items for Systematic Reviews andMeta-Analysis (PRISMA),
recognized as a minimal set of evidence-based items for
reporting systematic reviews and meta-analysis [33], [34],
having multiple advantages such as helpful to examine the
extensive database of research articles, clear to address RQs
and compelling to decide inclusion and exclusion criteria
for related work. As shown in Figure 3, the designed
methodology has three stages: input, pre-processing, and
output. The work presented by Ahmed et al. [35] inspired
the methodological steps and diagram. Each stage is
tightly linked to the next to ensure a thorough and open
examination. The sub-stages inside each of these stages
give a detailed clarification in Figure 3, which shows a
three-stage quality process of PRISMA for SLR inspired
by [36].
First, we designed our RQs and conducted a preliminary

scoping literature review. Our research topic was chosen
in response to the gaps in the literature and emerging
research areas that need further exploration. The RQs were
created to analyze the behavior of LLMs on programming
prompts. To achieve these objectives, reliable sources were
considered, including IEEE, ACM, ScienceDirect, Web of
Science (WoS), and SPRINGER. The search scope was
limited to academic publications released in the last few
years, particularly from 2021 to 2024, because LLMs are a

relatively new and rapidly evolving technology. Research in
the area of LLMs in education has significantly advanced
recently, with many groundbreaking studies. Following the
initial collection of articles, we screened the titles and
abstracts to exclude the studies that were not relevant. Then,
we full-text screen the reports to identify those that satisfy our
inclusion criteria defined in Table 6. The study documented
and disclosed the overall count of articles that underwent
the review process, from eligibility assessment to the final
evaluation. To ensure the overall quality of collected data,
we undertook a data extraction approach using a standardized
procedure form that gathered essential details from each
included article, such as types of tools, designed study, source
of data, and valuable findings. Finally, the included studies
were subject to SAR to determine each study’s suitability
level with targeted RQs.

B. RESEARCH QUESTIONS
This section introduced RQs designed to scrutinize a
particular objective of our study within a broader context.
Through developing these RQs, we aim to pioneer a fresh
perspective ofAI-powered coding chatbots in computing edu-
cation. We aspire to comprehensively analyze cutting-edge
developing concerns related to the behavior of LLM-based
coding chatbot applications from 2021 to 2024. The designed
set of RQs offers a thorough analysis of the topic of the
review, which covers underlying assumptions and possible
implications of findings. We aim to contribute to the existing
body of knowledge and provide valuable insights to education
stakeholders by thoroughly analyzing each research question.

• RQ-1 LLMs as a Coding Assistant: What are the
current limitations and challenges LLMs face that might
hinder their effectiveness as good coding assistants for
computer science students?

• RQ-2 LLM Prompt Generalization: Do LLMs react
similarly to code prompts as English prompts?

• RQ-3 Students Learning: In terms of output quality,
comprehensibility, and correctness, how do LLMs affect
computer science students’ learning experiences and
outcomes?

• RQ-4 LLMs as a Debugging Tool: Are LLMs eligible
and capable enough to be used as a debugging tool in
computing education?

The findings of the above RQs help readers understand
different issues related to the behavior of LLMs on pro-
gramming inputs. Further, by pointing out challenges and
constraints, the article helps readers understand the latest
problems regarding the above applications of LLMs and
how they can be overcome. This work also highlights the
performance of different LLMs related to programming tasks.
This contributes to readers’ understanding of performance
and accuracy issues in the LLMs so that researchers can work
on those to overcome them in the future. This information is
valuable for researchers currently working on AI research in
computing education.
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FIGURE 3. Methodology for articles selection.

C. SEARCHING KEYWORDS
To begin the investigation, we first look at the keywords
associated with ‘‘Large Language Models,’’ ‘‘Code Gen-
eration,’’ ‘‘Computing Education,’’ and ‘‘Copilot, Codex,
ChatGPT.’’ Furthermore, we extended our list of keywords.
It includes the terms ‘‘code explanation,’’ ‘‘programming
errors explanation,’’ and ‘‘Computer science students.’’ These
terms were developed with a view of the addressed topic
and research objectives. Boolean search operators such as
‘AND,’ ’OR,’ and ‘NOT’were used to collect propermaterial;
for reference, Table 4 lists searching keywords utilizing
logic operators. The research question RQ-1 focuses on
investigating the current limitations and challenges while
dealing with programming queries received from computer
science stakeholders. The search keyword contains words

like ‘‘LLMs,’’ ‘‘code generation prompts,’’ ‘‘limitations,’’ and
‘‘challenges.’’ This search query helps identify articles that
discuss different challenges and limitations LLMs face in the
state of the art.

Additionally, the RQ-2 search query aims to gather
information from many angles regarding prompts associated
with programming activities to see if these systems perform
well on prompts containing coding syntaxes, such as tasks
involving code generation, code explanation, and PEMs
explanations. Before moving to the last RQ, according to
the primary focus of RQ-3 to find quality issues and explore
students’ learning experience, the data has been collected
using the keywords ‘‘LLMs+code generation,’’ ‘‘Quality,’’
and ‘‘correctness.’’ It has been used in search queries to find
articles that have reported quality issues in the output of
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LLMs corresponding to code generation, code explanation,
and PEMs explanation tasks. In the end, RQ4 is about
analyzing the effectiveness of these tools for debugging
purposes when receiving PEM explanation prompts such as
run time and compile time error explanations. This helps
us understand whether these tools can be referred to as
debugging tools for computer science students.

We used Publish Perish software to perform a search for
data collection. This software allows us to retrieve and ana-
lyze data based on academic citation records. Table 3 presents
a detailed overview of results obtained for keyword searching.
The table records keyword-wise collective citations, year-
wise citations, citations per author, and finally, the index of
the articles. The table also highlights the emerging trend of
the topic of interest, which necessitates the critical analysis
for which this survey study is designed. Further, a word cloud
of extracted keywords is prepared, as displayed in Figure 4,
showing various key phrases from related publications as
initially collected. Each word’s size is based on its frequency
and relevance in the corpus, visually depicting the dominating
subjects and themes. This visualization shows the vast and
diverse body of knowledge in the field of LLM education,
illuminating the vital complex concepts being discussed in the
reviewed literature. The key concepts and ideas in education
can be better understood by analyzing the essential words
displayed in the word cloud.

FIGURE 4. Exploring the landscape of educational insights: A word cloud
of knowledge from topics discussed in the collected papers.

D. SNOWBALLING SEARCH
Our study used the snowballing search technique to find
potentially relevant articles. This technique involves exam-
ining the reference lists or citations of the collected articles
to increase the number of relevant articles. To improve
snowballing, it is necessary to consider reference lists and
citations and to analyze where similar works are referred
to and cited systematically. There are two approaches to
snowballing: backward and forward. Backward snowballing
involves looking through references, while forward snow-
balling refers to exploring quotations. Before snowballing,
a set of articles must be developed. After a quality assess-
ment, this study’s initial article list includes the remaining
65 papers. We followed forward and backward snowballing
techniques, resulting in 303 and 400 articles, respectively.
After removing duplicates, we were left with 150 articles

only, which were considered for a detailed analysis to check
the relevancy level. This way, we comprehensively analyzed
these articles and selected an additional seven to include in
our study.

E. INCLUSION AND EXCLUSION CRITERIA
When we first started our investigation, we used targeted
keywords in a thorough search that produced hundreds of
records. To guarantee the pertinence and quality of the
research we examined, we executed a systematic review
approach using PRISMA, shown in Figure 3. Therefore,
we designed specific inclusion and exclusion criteria in
Table 6, including selecting articles only written in English.
They were published within a particular time and utterly
accessible to the readers. The studies that did not pass the
finalized inclusion criteria were removed from the further
analysis. Following this process, we could conclude a specific
subset of quality articles that fulfill the inclusion criteria and
are entirely relevant to our research by using this rigorous
SLR method.

F. DATA EXTRACTION AND ANALYSIS
A thorough assessment of chosen research articles, including
in the bibliography, remains part of the current research.
We followed a synthesis approach to extract and synthesize
the related data using a methodological approach based on
essential features presented in Table 7. These features include
type of document, publishing source, research context, open
database assessment, article ID, article title, author names,
date of publishing, and count of citations. To efficiently
organize and assess the research data, we collected it and
synthesized it into an Excel sheet, which was later used in
the analysis in Python.

In summarizing data, we conducted several analyses in
the data synthesis section to gain insights about included
studies, such as examining the distribution of publications
per year, tallying the number of articles and citations per
publisher, tracking counts over different publication years,
and exploring additional relevant metrics. Our analysis
examined the volume of articles and citations aggregated
by publishers and years from 2021 to 2024, as shown in
Figure 5 and Figure 6, respectively. This initial step provided
a foundational understanding of publication trends over time.
Subsequently, we delved into the distribution of publications
among various publishers, along with aggregated citations,
and included articles by year detailed in Table 5. This
tabular analysis underscores the meticulous adherence of
our research selection process to our methodology, ensuring
comprehensive coverage across significant publishers. Fur-
thermore, publisher-wise average citation count is presented
individually in Figure 7. Additionally, publisher ranking and
the relative contribution of included articles are shown in
Figure 8 and Figure 9, respectively.In essence, this analysis
aids in uncovering trends, patterns, and insights related to our
research objectives.
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TABLE 3. Publish perish search record at actual for the year range of 2021 to 2024.

TABLE 4. Search queries for investigating Large Language Models in the context of code generation and computing education.

TABLE 5. Count of included articles and citation sum by publisher and
year.

TABLE 6. Inclusion and exclusion criteria.

G. SUITABILITY ASSESSMENT RUBRICS
This section introduces four suitability assessment questions
designed to evaluate the alignment of selected articles using
SAR scores to decide for final inclusion.

TABLE 7. Key features used for data extraction.

• (Q1) Is there explicit discussion within the article
regarding LLMs and their involvement in computing
education?

• (Q2) Does the article focus on LLMs coding chatbots?
• (Q3) Does the article outline potential hurdles associ-
ated with implementing LLMs like Codex, ChatGPT,
Copilot, etc., in coding chat-bot applications within
computing education?

• (Q4) Are the objectives and contributions in the articles
valid and aligned with our goals?

The design methodology’s interim step necessitates eval-
uating article quality based on the designed SAR, shown in
Table 8 and Table 9. We calculated the score based on the
following points:
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FIGURE 5. Count of articles by publisher and year.

FIGURE 6. Citation sum by publisher and year.

FIGURE 7. Publisher-wise average citation count.

• If the answer to a designed question is valid, Y is
counted, and each Y is assigned a 2.5 score. Ymaximum
could be mapped to 10 points, as seen in the formula
stated in Equation 1.

• If any selected article scored > 5 to 10, we chose that
article as the best fit, and the category was set to ‘‘High.’’

• To be classified as ‘‘Medium’’ level, the articles
must have scored between 3 and 5, whereas

FIGURE 8. Publisher ranking by total citations.

FIGURE 9. Relative contribution of publishers.

‘‘Low’’ articles must have a score of at
least 2.5.

In this analysis, most of the articles fell in the ‘‘High’’
category because of the topics’ recent advancement in the
research. We processed our articles using the inclusion and
exclusion criteria. Further details of the included articles
are shown in the SAR Table 8 and Table 9. As per the
PRISMA diagram 3, we initially input 85 articles to the SAR
step. During this step, 13 articles were found irrelevant, with
approximately zero scores. Furthermore, according to the
designed suitability criteria of SAR, there were 72 in total:
11 medium, 4 low, and the remaining 57 fell into the high
category. Such studies are the most relevant to answering our
research question.

T_Score_Yes =

(
4∑
i=1

YQi

)
× 2.5 (1)

where Y_Qi is the possible sum of all ‘‘Yes’’, ranging
from 1 to 4 counts depending on the individual article’s SAR
score.

TotalScore_Other = 10 −

(
4∑
i=1

NQi

)
× 2.5 (2)

where N_Qi represents the possible sum of ‘‘No’’ answers
when recorded answers are a mix of ‘‘Yes’’ and ‘‘No,’’ the
SAR questions were a beneficial framework for examining
the quality of articles. We processed studies from SAR before
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TABLE 8. Score of suitability assessment rubrics (SAR)- [Total score (t.
score) is equal to the addition of all Y, and all N used in 1 and 2 from
calculation: High-Class ranges=6 to 10, Medium-Class=3 to 5 and
Low-Class=2.5.] [Part 1 of 2].

going to the next step in methodology, complete reading,
as indicated in Figure 3. Understanding that they are just
one aspect of the SLR is essential. Additional factors that

TABLE 9. Score of suitability assessment rubrics (SAR)- [Total score (t.
score) is equal to the addition of all Y, and all N used in 1 and 2 from
calculation: High-Class ranges=6 to 10, Medium-Class=3 to 5 and
Low-Class=2.5.] [Part 2 of 2].

can impact the quality of publications include, but are not
restricted to, the study’s design, the sample size, the statistical
analysis employed, potential biases, and the overall relevance
and contribution of the research to the field.

H. INCLUDED STUDY’S STATISTICAL ANALYSIS
The original inquiry yielded 6039 items, all obtained between
2021 and 2024. Based on the original output, 1281 articles
were duplicated. Then, 13 articles were removed based
on the exclusion of erroneous years. After scanning them
by year and reviewing titles and abstracts, 4300 further
articles were removed, decreasing the output to 445. After
excluding 360 irrelevant articles, the study sample consisted
of 85 articles. As stated in Figure 3, we ultimately passed
85 articles through SAR criteria and retrieved a final most
relevant count of 72 papers in this study.

After answering individual RQs, we prepared a reference
map table that succinctly helps users understand this survey’s
statistical analysis. Table 10 presents a reference map that
reveals significant research activity and interest in exploring
the role of LLMs as coding assistants for computer science
students. Across four key RQs, 72 studies were identified,
distributed predominantly from 2021 to 2024. The most
studied research question, RQ-1, focusing on LLMs as coding
assistants, garnered the highest number of studies, followed
closely by RQ-4, examining LLMs as debugging tools. RQ-2
and RQ-3 investigate prompt generalization and students’
learning experiences, respectively. These findings underscore
the growing recognition of LLMs’ potential in reshaping
computer science education. They also highlight the need for
further research to address the challenges and opportunities
associated with their integration into learning environments.

IV. KEY FINDINGS
This section discusses the primary findings of this review.
This study includes four RQs. The first focuses on using
LLM Chatbots as coding helpers in computer education. The
second tackles the issue of prompt generalization in LLMs.
The third question focuses on determining the effect of using
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TABLE 10. Reference map related to RQs.

LLMs on students’ learning. In the final RQ, we look at the
role of LLMs as debugging tools in computer education.

A. LLMs AS A CODING ASSISTANT - ANSWER TO RQ-1
The findings of this review related to RQ-1 suggest that it is
too early to decide on LLMs as assistants to help in coding
tasks in computer science education because LLMs can not
be fully considered to identify all the issues available in
a code. Concerning computing education stakeholders [1],
[14], [22], [25], [27], [28], [39], [40], [44], [45], [47], [48],
[49], [51], [52], [53], [56], [57], [60], [61], [63], [66], [68],
[70], [71], [73], [75], [76], [78], [90]. Firstly, the ChatGPT’s
ability to perform debugging tasks and rectify errors is
currently limited, particularly regarding PEM’s explanation.
Therefore, it necessitates ongoing research and refinement
to enhance its efficiency and power for coding tasks [82].
It is the same with other coding chatbots on programming
queries, such as Codex, which provides code explanations
that cover the majority (90%) of the code; however, it still
exhibits inaccuracies, with 67.2% of the explanation lines
being correct. Though these errors in the output of LLMs on
programming inputs are frequently minor, straightforward,
and easily fixable by instructors or teaching assistants,
they raise a concern for the reliability of these tools for
understanding code and integration with traditional education
systems [10].
Furthermore, research comparing the quality of code

generated by Copilot with human-written code indicates
that while Copilot increases productivity in terms of the
number of lines of code, the quality of its output is generally
inferior, with higher failure rates on medium and complex
tasks [14], [75]. While the latest GPT models can produce
high-quality output on code generation and explanation
inputs, they still struggle with input containing large and
complex coding snippets. Also, these models face issues with
generalization, often underperforming on new and unseen
problems related to programming [81], [96]. Similarly,
research on Copilot’s performance on a public dataset of
166 programming activities reported a 47.6% success rate on
the first attempt, improving to 60% with natural language
changes to the problem description [76]. Nonetheless,
ChatGPT showed a 71.81%overall success rate on a Leetcode
dataset, successfully solving 84 out of 128 problems on
the first attempt but failing to generate correct answers for

36 problems even with feedback somehow [82]. Codex is
reported as good at performing moderately complex code
reading and writing tasks. Still, it struggles with more
complex requirements in the programming queries, likely due
to the absence of such scenarios in its training data [78]. These
findings underscore the current limitations and challenges
LLMs face, highlighting areas for improvement to make
them more effective coding assistants for computer science
students. Furthermore, Table 11 presents critical findings
related to RQ-1, highlighting supporting statements.

In conclusion, despite LLMs’ promising capabilities as
coding assistants, several constraints and obstacles were
recorded in this review that may restrict their effectiveness
as full coding assistants for computer science students.
The challenges addressed in this review are crucial for
maximizing the utility of LLMs in supporting students’
learning and development in computer science education.
At the moment, LLMs are capable of helping with code
generation, explanation, and debugging, but they have various
limitations when integrating into the traditional education
system. For example, LLMs can sometimes generate code
that looks correct but may contain bugs or logical errors and
may struggle to understand complex programming queries
with large code snippets as input.

Apart from that, LLMs rely on the clarity of user input;
ambiguous or poorly phrased programming questions can
lead students to prevalent or incorrect solutions. Students
must learn how to prompt with LLMswhile effectively asking
programming questions. LLMs’ inability to perform well
on unseen queries, including coding snippets, highlights the
necessity for constant improvement and evolution. However,
there is still room for improvement in the accuracy and quality
of the code generated by LLMs, particularly when compared
to human-generated code. Because of the complexity of
PEM explanation and debugging tasks, it is considered
more challenging to incorporate these LLMs into computing
education. Considering these obstacles, LLMs could improve
programming learning with further development in a positive
manner. To overcome these challenges and utilize LLMs
in programming tasks in computing education, researchers,
educators, and other stakeholders must work together to
address these difficulties and use LLMs to strengthen
computer science education. It is possible to integrate these
tools into computing education by overcoming the reported
weaknesses of LLMs to create more effective and efficient
coding assistants that can improve programming education
and practice in the future.

B. PROMPT GENERALIZATION- ANSWER TO RQ-2
The review’s findings, which align with RQ-2, show that
LLMs can typically handle both code and English prompts
well but somehow weaken queries contained in non-English
data, especially coding snippets. Also, their performance
varies depending on the complexity and specificity of
the task. For English prompts, LLMs excel at producing
cohesive and contextually relevant responses. They may hold
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TABLE 11. Key findings related to RQ-1.

conversations, answer inquiries, explain things, and even
create original material on various topics and genres [6],
[26], [38], [46], [58], [59], [62], [64], [83], [87], [88], [95].
They may, however, struggle with highly specialized or
domain-specific tasks because their training data does not
thoroughly cover every programming language.

A recent study examined the ability of LLMs, particularly
OpenAI Codex and GPT-3.5, to identify and respond
to students’ help requests in programming queries. Data
collection has been performed via an online programming
course at Aalto University, Finland, and included help
requests and code samples. The study results show that LLMs
struggle with queries containing data apart from English
letters, such as input with code snippets. This highlights the
need for a customized version of LLMs explicitly designed
for computer science students’ coding queries to use in
computing education [58]. Further examination of different

openAI GPT models revealed that, although these models
can generate code from natural language descriptions and
provide line-by-line explanations of code execution, they
are more effective with queries in everyday language than
those involving code snippets. This was particularly evident
in a study using MCQ assessment exercises from three
Python courses, which showed that LLMs perform better on
English language inputs than on code or symbol-containing
prompts [95].

While LLMs are exceptionally good at handling English
input, another similar finding is that they struggle with coding
prompts and special symbols, which leads to inaccurate out-
puts. In particular, GPT models underperformed on questions
that contain code snippets and MCQs compared to purely
natural language questions [83]. In addition, the research
highlighted similar limitations in GPT-3 models when
receiving coding snippets or any other non-English input,
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underscoring LLMs’ language dependency [6]. Becausemost
programming queries contain non-English data as input
to LLMs, these chatbots often produce lines with minor
errors that require later correction by a teacher or teaching
assistant. Regarding insights related to RQ-2, these findings
demonstrate that while LLMs can process both code and
English prompts, their responses significantly differ. Unlike
English, code’s fundamental structure and nature affect
how LLMs perceive and generate results. Understanding
these differences is crucial for effectively deploying LLMs
in various applications, from programming assistance to
natural language processing tasks. Furthermore, Table 12
summarizes key findings related to RQ-2 from several
studies.

In conclusion, RQ-2 shows how well LLms can handle
code and English questions while dealing with programming
queries. LLMS can come up with answers to different kinds
of questions, even ones that include code snippets. However,
how well they perform on receiving coding queries depends
on how well the students write the input. Even though
LLMs can make outputs that make sense and are essential
to the situation, they might have trouble with very specific
or domain-specific tasks, especially those that require code
inputs. These problems make it clear that more study and
development are needed to make LLMs better at knowing
and answering code-related questions with non-English data
in the input. This also reports areas that can be improved,
especially when making it easier for LLMs to understand
and respond to code inputs correctly by training them on
non-English datasets or datasets, including code snippets.

By fixing problems likewrong code reading and the limited
ability to work with non-English data, LLMs can become
more valuable and dependable tools for many tasks, such
as helping students with complex programming tasks in
computing education. Overall, some problems need to be
fixed, but looking into what LLMs can do opens up new and
better ways to teach programming in computing education in
the future.

C. STUDENTS LEARNING- ANSWER TO RQ-3
The RQ-3 of this review focuses on the impact of low-quality
outputs generated by LLM coding chatbots on the stu-
dent’s learning experience. It explores how such outputs’
inaccuracies, confusion, frustration, and misconception can
affect students’ understanding of programming concepts and
impede their learning progress. In response to RQ-3, the
literature highlights promising opportunities and challenges
that we will report in this section. A definite trend demon-
strates that students frequently struggle to manually perform
programming assignments, resulting in errors, wasted effort,
and frustration. [1], [3], [14], [22], [37], [40], [43], [44], [48],
[50], [51], [52], [53], [66], [67], [72], [78], [90]. To establish
a good learning environment for students and teachers, there
is an increasing demand for computer science education
technologies that may address these difficulties [77], [97].
As adopting these intelligent code generators becomes

increasingly prevalent in educational systems, especially for
novices, many educational opportunities and challenges are
being raised in the literature. It becomes imperative to gain
a deep understanding of such tools. Many studies focused
on usability and security aspects of the code generated by
Copilot [98]. Throughout this review, numerous articles have
highlighted concerns regarding the readiness of LLMs for use
in introductory programming classes.

A recent study found that without guidance from an
instructor, students can misinterpret potentially incorrect
outputs LLMs, which may adversely affect their learning
output [13]. Despite novice’s positive feedback about incor-
porating such technologies into future classrooms, there is
a chance that novices struggle with tools like Copilot [40].
Additionally, it has been revealed that GPT-3 has been
deemed inadequate for providing feedback on programming
tasks. Hence, it is suggested that the latest models, like GPT-
4, should focus on improving these capabilities [74]. A related
study shows GPT-3.5 can detect specific problems when
receiving PEM explanation queries. Still, it can also report
‘imaginary’ non-issues, potentially misleading students and
negatively impacting their learning outcomes [58]. Students
and instructors generally find these tools easy to use and
helpful for programming problems in computing education.
Still, different challenges, such as incorrect ormisleading out-
put, can negatively impact students learning [79]. However,
students and instructors believed that LLM-generated code
explanations can be supplementary materials for students to
study and understand code [11] in programming courses.
Codex, for instance, is considered a valuable tool for creating
programming exercises to enhance learning skills. However,
research reports it sometimes produces minor mistakes that
require instructor intervention, which need to be considered
and followed while integrating these tools into computing
education [10].

In the case of accuracy, length, and understandability of
content generated by LLMs vs student-generated content,
the study found that while the explanations were similar
in size, LLM-generated content differed in accuracy and
understandability as compared to student-generated con-
tent, which can affect the student’s learning in different
ways [11]. Another similar study compared LLM-generated
solutions for introductory programming tasks with student-
generated resources. The results indicated that the quality
of AI-generated content was equivalent to student-generated
content, suggesting that AI tools can serve as viable
alternatives to traditional learning resources, potentially
reducing the burden on students by providing straightforward
explanations and examples [44]. In some studies, the students
reported that LLM-generated code explanations can help
them understand complex code, positively impacting their
learning outcomes [12]. However, other articles note that the
complete reliance of students on these systems for program-
ming tasks can make students lazy and anxious, especially
when the systems fail to provide correct answers [85], or they
aren’t able to analyze the output of these systems critically.
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TABLE 12. Key findings related to RQ-2.

Overall, there are still possibilities that these systems may
only sometimes give correct answers for different reasons,
including proper prompting, etc. [85]. Further, findings
related to RQ-3 are emphasized in Table 13.

In Summary, the findings of RQ-3 can be focused since
the impact of LLMs on students’ learning experience and
outcomes has provided valuable insights into three crucial
aspects: output quality, comprehensibility, and accuracy. The
findings indicate that LLM-generated outputs contain high-
quality ideas, clear explanations, and correct answers, but
issues such as inconsistency, ambiguity, and errors remain.
Understanding these distinctions is critical for improving
the incorporation of LLMs into computer science education,
enabling richer learning experiences and improved student
results; nonetheless, LLM-generated content can serve as
supplementary material for students. Continued research and
development efforts are required to address these limitations
and realize LLMs’ full potential as revolutionary educational
instruments.

When incorporating LLMS into computing education for
programming tasks, some suggestions, such as evaluating
ethical values and upholding academic integrity, must be
carefully considered. It is crucial to highlight the productive
and accountable use of these systems based on the ethical
and moral principles advocated by educational institutions.
The primary concern should not be whether a student used
LLMs but how they used it. Just as instructors help with
homework, the aim is to ensure that kids use LLMs as
a tool for learning programming rather than as a way to

take shortcuts in completing their tasks. Submitting exact
solutions produced by LLMs in answer to a specific request
might raise concerns regarding academic dishonesty and the
absence of originality in the work in computing education,
which ultimately negatively affects their learning outcomes.
Hence, educators and institutions must advocate for rules
and practices that foster the utilization of ChatGPT to
enhance students’ comprehension, analytical reasoning, and
innovative thinking while upholding academic integrity. This
strategy promotes the proper utilization of AI technology
while maintaining the integrity and excellence of education.

D. LLMS AS A DEBUGGING TOOL- ANSWER TO RQ-4
Regarding RQ-4, which questions whether computer science
students may use LLMs as a debugging tool, the findings
show both challenges and opportunities for using these
tools in debugging tasks in computing education. These
tools offer a promising way to help and guide students
in debugging their code by providing context-sensitive
suggestions, identifying potential errors, and explaining
detected issues, which can ultimately benefit students in their
programming subjects [13], [41], [42], [55], [69], [74], [76],
[79], [82], [83], [84], [85], [86], [89], [91], [92], [93], [94],
[96]. According to [80], students can use LLMs to get help
understanding complex code and the root causes of errors
and gain a detailed understanding of advanced programming
topics [80]. Furthermore, LLMs can automate repetitious
debugging activities, ultimately saving students time and
allowing them to focus on more complex programming
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TABLE 13. key findings related to RQ-3.

tasks. Given these, employing LLMs as a debugging tool in
computing education can offer several significant obstacles
that need to be addressed before implementing these systems
into the education system. Several concerns are considered
risks, such as LLMs providing inaccurate or misleading
suggestions on PEM queries, leading to further confusion
or introducing new errors in students’ code [99]. This type
of output generated by LLMs can negatively affect students’
debugging skills overall.

A recent study released in 2023, [13] claims that LLMs
could be used as debugging tools to generate explanations
for PEMs and suggest effective fixes for buggy code, which
can be very helpful for new students to understand debugging
tasks. The team collected Python error messages in this
research and created code examples to generate these PEMs.
They employed prompt engineering using Codex to discover
prompts that could explain PEMs and propose solutions.
The results showed that most of Codex’s explanations
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TABLE 14. Key findings related to RQ-4.

for error messages were understandable, with successful
explanations ranging from 67% to 100%. However, some
of the explanations also contained unnecessary content like
repeated sentences and extra question marks, indicating that
PEM explanations and recommended fixes generated by
LLMs are not yet ready for production use in introductory
programming courses. There is room for improvement in
using LLMs for PEM explanations across different program-
ming languages to prepare these systems for integration with
the traditional education system. An important consideration
is that over-reliance on LLMs for debugging may cause
students to develop critical debugging skills and problem-
solving strategies, as they might become overly dependent
on automated tools instead of learning to troubleshoot inde-
pendently, which ultimately affects their learning skills [7].
Different steps have been taken in the research to analyze
these tools, such as in [84], researchers introduced a
method to help novice students understand compiler errors
using LLM-generated explanations. The team developed a
tool integrated with LLM APIs to explain mistakes in C
programming. Their results suggested that LLM-generated
explanationsweremore effective for compile-time errors than
run-time errors. This indicates that these systems can help
students understand a variety of errors and generate ideas to
solve those errors but at a supplementary level.

In summary, although utilizing LLMs as debugging
tools offers significant opportunities for computer science

students, several obstacles necessitate resolution. LLMs can
streamline troubleshooting processes, deliver contextually
relevant recommendations, and enhance understanding of
code. They can potentially improve students’ comprehension
of programming concepts. However, concerns continue
regarding the precision and dependability of LLM-generated
recommendations, as they may occasionally offer misleading
or erroneous data and vary the response precision on input
prompts. Additionally, an excessive dependence on LLMs
to rectify problems may impede students’ growth in critical
problem-solving abilities. Irrespective of these challenges,
continuous research and advancements in the capabilities
of LLM present the potential for future debugging tools
that are more efficient. LLMs have the potential to enhance
user comprehension and accuracy in their programming
endeavors, thereby positively contributing to the field of
computer science education. Further, this study presents a
Table14 that summarizes key findings related to RQ-4 from
various studies. These findings record supporting statements
of the research question.

V. FUTURE RESEARCH DIRECTIONS
This section outlines all the gaps found during this
review. These gaps provide a comprehensive understand-
ing of how various factors influence the effectiveness of
LLMs-generated content of programming prompts. These
findings also offer insights into usability issues and
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challenges computing education stakeholders face when
using coding chatbots.

• Performance Evaluation of Different GPT Models:
Investigating the performance of various GPT Models
to discern which is most suitable for code explanation
tasks is one of the most promising future gaps. Doing
comparative analysis in this direction can shed light
on the strengths and weaknesses of different versions
of GPT in facilitating adequate code comprehension
and learning outcomes [12], [86]. By focusing on this,
researchers can provide positive insights intowhichGPT
model produces the most accurate results and helps ask
programming queries.

• Novices Students Interaction: In the future, exploring
various ways of interaction of novices with LLMs
coding chatbots and understanding how novices engage
with LLMs can inform the creation of personalized
learning experiences and support mechanisms to boost
individual programming skills would be interesting [11],
[76]. This offers promising findings into usability issues
and learning challenges faced by novice students when
using different coding chatbots

• Reliability and Suitability of Feedback for PEMs
tasks: Another interesting future work found is to delve
deeper into the reliability and suitability of feedback
provided by LLMs for PEMs explanation tasks is
an interesting future concern [87]. It can offer the
potential for automating and scaling feedback provision
in programming education. Apart from that, focusing
on this research direction in the future can lead to
the development of robust evaluation frameworks for
assessing the reliability and effectiveness of LLM-
generated content.

• Generalization Issues in LLMs: Focusing on general-
ization issues with LLMs to assess their performance
across diverse input would be interesting in the future.
It is suggested that providing multiple unseen inputs
to LLMs to explore other issues related to their
ability to generalize learning and reasoning capability
is one of the promising future directions [96]. Also,
future studies should look into LLMs’ applicability
and effectiveness in contexts of non-English computing
education prompts. Investigate the ability of LLMs,
such as ChatGPT, to generate content and provide
assistance in languages other than English, catering to
varied linguistic backgrounds and educational environ-
ments [95]. Working on generalization issues in LLMs
in the future can help identify potential biases when
receiving non-English queries and unseen problems.
This can also expand the accessibility and inclusivity
of LLM-based educational platforms to the non-English
speaking population.

• Performance of LLMs on Programming MCQs:
A promising future that has been found during
this review is addressing the limitations and gaps
in assessing LLMs coding chatbots performance on

programming languages MCQs containing coding snip-
pets is much-needed action in the future [83].

• Complexity of Exercises and Project Specifications:
Exploring the potential of LLMs as coding assistants
for handling programming exercises and more complex
projects is a challenging future gap [10]. By covering
this gap in the future, we can avail ourselves of different
opportunities to automate the generation of computing
education material related to programming subjects and
others.

By focusing on these research directions, scholars can
enhance our comprehension of how LLMs function as
coding assistants in computing education. This advancement
can lead to more efficient, inclusive learning out-
comes. The identified future gaps shed light on possi-
ble hurdles, chances of improvement, and opportunities
for collaboration in computing education for interested
readers.

VI. KEY ASPECTS AND IMPLICATIONS
The current study systematically reviewed 72 recent studies
on the adaptability of LLMs’ different coding chatbots as
programming assistants in computing education. While the
majority of the reviewed studies in the literature focused
on examining the role of LLMs, primarily targeting only
ChatGPT and its role in different applications at the education
level [24], [81]. The findings of this SLR provide several
beneficial insights into using LLMs as a coding assistant
in computing education, which can guide instructors and
students in using these tools effectively. Regarding RQ-1,
we identified several limitations and challenges that could
impact the effectiveness of coding chatbots as programming
assistants for students in computing education. The findings
suggest that different chatbots have diverse strengths and
weaknesses. For example, according to the significant
findings of this review, ChatGPT can be effective for
general code generation and explanation but requires careful
verification for occasional inaccuracies in the output. These
findings align with some of the studies included in this
review [28], [62].

Similar findings related to ChatGPT reported in a recent
SLR focusing on the specific role of ChatGPT in educa-
tion highlighted that using ChatGPT in education presents
many challenges concerning its accuracy and reliability in
generated content [24]. Similarly, the Codex is helpful for
code generation but has limitations in debugging capabilities
and solving complex programming problems. However,
Copilot is considered a good starting point for programming
tasks, but it often generates code that requires significant
modifications and understanding. For RQ-2, which is related
to prompt generalization, it has been found that most of
all coding chatbots depend upon the quality of input for
generating accurate output, especially when it comes to
coding inputs; the behaviors of these chatbots are challenging
because of containing non-English content as compared to
queries with only English. These findings resonate with
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multiple studies reviewed during this SLR, such as [6],
[58], and [95]. Concerning RQ-3, we identified several
concerns related to students’ learning outcomes that must
be considered before using these systems in the traditional
education system. Findings show that novice students find
these chatbots very challenging to use in regular academic
activities, with some benefits of these tools for assisting them
in solving their programming assignments and questions
at the beginning of their journey. Using these coding
chatbots in computing education to teach code writing
and explain provides benefits that can increase students’
learning process, including self-confidence, motivation, code
writing skills, and academic success. This is also related
to some of the findings reported in studies included in this
SLR [40], [66].

Discussing RQ-4 for debugging tasks, debugging is a
complex task that often involves understanding the interplay
between various components, libraries, and systems. LLMs
might struggle with issues spanning different parts of a
system or involving complex dependencies. Therefore, the
findings suggest that in the case of debugging, the LLMs
should be used by more experienced students who can
refine and debug the outputs. Understanding the suggestions
received by these systems on debugging queries is chal-
lenging, which may be difficult for novices. In the case of
students, an instructor should be responsible for critically
analyzing output generated by LLMs for debugging and
providing instructions to the students accordingly. These
findings directly align with [13], [28], and [89], which are
included in this study.

In conclusion, it is beneficial to incorporate these tools
into computing education for programming tasks. Still,
instructors should consider LLMs like ChatGPT, Codex,
and Copilot as supplementary resources rather than replace-
ments for traditional teaching methods. If students are
monitored and guided properly, these tools can enhance the
learning experience by providing additional explanations,
debugging support, and code-generation examples. However,
they should not be relied upon exclusively due to their
limitations in accuracy and completeness. Students also need
critical evaluation skills to analyze the output generated by
LLMs in response to programming queries to avoid the
incorrect solutions generated by these systems. This can be
facilitated by informing instructors to design assignments
that require students to verify and explain the outputs
provided by LLMs. Apart from that, there is a demand
for training and workshops for students and instructors
to train them in practical, prompt engineering. Because
clear, specific, and well-structured prompts are essential
for obtaining accurate and helpful responses from LLMs.
Policymakers must also address the ethical implications of
using LLMs as programming assistants, including plagiarism
issues and students’ over-reliance on automated tools in
computing education. Establishing guidelines and policies for
using LLMs for programming assistance can help maintain
academic integrity.

VII. LIMITATIONS
There are some limitations to this systematic literature review.
It only covers the general role of different LLM coding
chatbots for code generation, code explanation, and PEMs in
computer science education. Still, a separate focus in each
task can become in the future, for example, just focusing
on code generation or explanation focusing in detail. Apart
from that, we purposefully covered only literature on coding
tasks in computer science education. However, the study
does not cover other aspects of analyzing the capabilities of
LLMs coding chatbots for different fields, such as software
engineering. Second, we only cover the literature published
between 2021 and 2024; future research should be addressed
to see the progress for a new study orientation in this area.

VIII. CONCLUSION
In conclusion, this systematic review investigated the behav-
ior of different LLM chatbots as a programming assistant
in performing activities, including code explanations, PEM
explanations, and other information for computer science
education learners. 72 articles were finalized, following a
rigorous PRISMA methodology, and most were published
between 2021 and 2024. This research demonstrates that
LLMs can be optimistically used as programming assistants
for numerous tasks. These systems can help students under-
stand the code and enhance their coding and debugging skills
in the future. The findings provide the current role of LLMs
as programming assistants in computer science education.
Likewise, the different performances and issues regarding
LLMs’ behavior on programming queries submitted by
subjected students are also discussed. After highlighting
the problems and opportunities of utilizing LLMs for
programming tasks in computer science, this survey has
contributed a lot to narrowing the research gap. It strongly
suggests new avenues of research in the area of study.

Ideally, the LLMs appear to be more effective chatbots
for learners and teachers to comprehend and debug the
code. Thus, this study suggests a potential for improvement
in using LLMs for various tasks in computer science
teaching; the possible areas for improvement have been
presented in section V. Being the latest systematic review
on the role of LLMs as programming assistants in computer
science education, this study advises that it is too early
to entirely rely on these systems for programming-related
tasks because literature has drastically reported diverse issues
regarding the correctness and reliability of the above-cited
systems’ behaviors on programming queries, so it is highly
recommended that human control should be integrated when
dealing with such systems in full swing.
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