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ABSTRACT For marine ranching, efficiently and accurately detecting, tracking, and enumeration of benthic
organisms can help farmers understand the growth and population changes of marine products, avoid high-
risk tasks, and analyze changes in the marine ecological environment. To address the problems of target
occlusion, low detection accuracy, and numerous small targets in existing marine organism detection models
in complex seabed environments, an improved YOLOv5+DeepSORT algorithm for detecting and tracking
benthic organisms is proposed. This algorithm integrates the Global Context Block attention mechanism
with the BottleneckCSP module to form a new BottleneckCSPGC module, enhancing feature extraction
capabilities. Replace the original loss function with the Normalized Wasserstein Distance (NWD) loss
function to improve the detection accuracy of small targets. Finally, experimental results show that the
accuracy on the underwater dataset reached 87.1% mAP@0.5 and 53.3% mAP@0.5:0.95, which are 1.8%
and 4.0% higher than YOLOVS, respectively. The use of DeepSORT for tracking and counting provides

technical support for marine ranching supervision.

INDEX TERMS Benthic organisms, YOLOVS5, DeepSORT, global context block, NWD loss function.

I. INTRODUCTION
The ocean is a treasure trove of resources and strategic space
that supports future development [1]. Benthic organisms play
a crucial role in marine ecosystems [2], and efficient and
accurate identification and counting of these organisms can
help analyze changes in the marine ecosystem, enabling
timely responses. Currently, the identification and counting
of benthic organisms primarily rely on manual observation
or analyzing underwater images, methods that are both haz-
ardous and inefficient. Therefore, it is imperative to find a
fast, accurate, and safe alternative to manual observation and
counting.

With the rapid advancement of deep learning and computer
vision, more and more researchers are focusing on using
underwater robots for visual environment perception [3].

The associate editor coordinating the review of this manuscript and
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Further tasks such as object detection and tracking, like
drainage pipe defect detection [4] and underwater moving
target detection with artificial lateral line systems [5], are also
being conducted. In terms of object detection, Xiao et al. [6]
proposed a lightweight feature extraction module called
GGS, which combines traditional down-sampling algorithms
with depthwise separable convolution down-sampling, and
introduces a parameter-free attention mechanism to extract
multi-scale features from input data, focusing on target
information. Compared to the YOLOvVS5s source code, their
model reduces parameter size by 94%, doubles detection
speed, and the weight file is only 1.08M, 92% smaller, the
disadvantage is that the detection accuracy has decreased.
Liu A new YoLoWaternet (YWnet) model was proposed by
Liu et al. [7],which introduces a Convolutional Block Atten-
tion Module (CBAM) to enhance feature extraction from
blurred images in the initial stages of the network. They also
created a new feature fusion network called CRFPN to convey
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important information and detect underwater objects. This
model features a new type of feature extraction module, the
Skip Residual C3 module (SRC3), and employed a decou-
pled head to separate the regression and classification tasks,
improving detection efficiency. The EloU loss function was
used to accelerate convergence. Experiments show that the
YWnet algorithm achieves a detection accuracy of 73.2%
mAP and 39.3% mAP50-95 on underwater datasets, repre-
senting an improvement of 2.3% and 2.4% over YOLOVS,
but the downside is that the increase in parameter size has
slowed down the model’s inference speed. In terms of object
tracking, Azhar et al. [8] used the Deep SORT framework
to create a people tracking system for crowd monitoring.
Unlike object detection frameworks like CNN, this system
can not only detect people in real time but also use learned
information to track their trajectories until they leave the
camera’s frame. The system uses YOLO for people detection
and then processes detected people frame-by-frame using
Deep SORT to predict their movement paths. The system
can successfully detect and track the movement paths of
individuals at an average speed of 2.59 frames per second
(FPS). However, the drawback is that the low frame rate may
cause the video stream to appear discontinuous, affecting the
viewing experience, especially in scenarios requiring real-
time monitoring. Qiu et al. [9] proposed a pedestrian counting
scheme based on YOLOvV5 and DeepSORT for multi-object
detection and tracking. Using network weights trained on
the COCO dataset, they combined the YOLOVS detector and
DeepSORT tracker to detect and track pedestrians, counting
the number of entries and exits to control the number of
floating individuals. Experiments conducted in streets and
subway stations demonstrated that this algorithm is suitable
for tracking and counting in high-density crowds, providing
high system accuracy and robustness while maintaining real-
time performance. The disadvantage is that it may perform
poorly in other more complex or special scenarios, such as at
night or under extreme weather conditions.

Based on the aforementioned research, this paper proposes
an improved YOLOv5+-DeepSORT algorithm for the detec-
tion and tracking of marine benthic organisms. The algorithm
effectively addresses issues present in existing marine organ-
ism detection models under complex seabed environments,
such as target occlusion, low detection accuracy, and the
prevalence of small targets. The improvements in target
detection focus on two main aspects:

Firstly, by integrating the Global Context Block (GC)
attention mechanism with the BottleneckCSP module, form-
ing a new BottleneckCSPGC module, we enhance the feature
extraction capability, thereby improving the model’s ability to
detect occluded targets. Secondly, we replace the original loss
function with the Normalized Wasserstein Distance (NWD)
loss function, which increases the detection accuracy for
small targets. Building on this foundation, DeepSORT is used
to track benthic organisms, with an additional feature for
counting their numbers.
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Il. RELATED WORK

A. OBJECT DETECTION ALGORITHMS

The development of object detection technology based
on convolutional neural networks (CNNs) has accelerated
recently, surpassing traditional methods in many detection
applications [10]. These technologies can be broadly catego-
rized into two types: Single-stage (One-Stage) and two-stage
(Two-Stage) object detection algorithms represent two main
approaches in the field. The Regions with Convolutional Neu-
ral Networks Features (R-CNN) series is a typical example
of two-stage object detection algorithms [11], such as Fast
R-CNN [12], Faster R-CNN [13], and Mask R-CNN [14].
These algorithms are known for their high detection accu-
racy but relatively slow detection speed. On the other hand,
The Anchor-Free series [15], Single Shot MultiBox Detector
(SSD) series [16], and You Only Look Once (YOLO) series
[17] are representative of one-stage object detection algo-
rithms. While these detection algorithms generally have
lower accuracy, they are known for their fast detection speed
and are widely used in the industry.

In 2014, the R-CNN (Regions with Convolutional Neural
Networks) was proposed for two-stage object detection,
marking the entrance of object detection into the deep learn-
ing era. However, due to its long computation time, it was
not practical for real-world applications. Building on this
foundation, researchers subsequently introduced algorithms
such as SPP-Net, Fast R-CNN, and Faster R-CNN, which
improved computation speed by over a hundred times, mak-
ing them viable for practical use. As these algorithms were
increasingly used, their limitations became more apparent,
particularly their poor detection capabilities for small objects.
To address this, researchers developed various methods based
on feature fusion, such as FPN, Cascade R-CNN, and M2Det,
significantly enhancing small object detection performance
in images.

To overcome the long computation time associated with
two-stage object detection algorithms, a one-stage object
detection algorithm based on the YOLO series was proposed.
Over time, YOLOvV2, YOLOv3, and YOLOv4 gradually
addressed the issues of inaccurate bounding box localization,
poor small object detection performance, and low algorithm
accuracy found in YOLOvI1. However, the introduction of
the anchor mechanism in YOLOv2 brought new challenges,
such as difficult parameter settings and severe imbalance
in the positive and negative sample ratio. To tackle these
issues, researchers proposed a series of anchor-free algo-
rithms including CornerNet, CenterNet, FCOS, and Fove-
aBox, which further improved the accuracy and speed of these
algorithms.

B. OBJECT TRACKING ALGORITHMS

Object tracking algorithms are a category of techniques used
to detect and track the location and movement trajectories
of specific targets (such as people, vehicles, animals, etc.)
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in video sequences. These algorithms are widely used in
fields such as surveillance, security, autonomous driving, and
robotics.

1) SINGLE OBJECT TRACKING (SOT)

KLT (Kanade-Lucas-Tomasi) Tracking Algorithm: Based on
optical flow, it utilizes feature points of the target for tracking.
Suitable for small range movements and scenes with minimal
lighting changes, its advantages include low computational
requirements and strong real-time performance. However,
it is not robust against occlusion and significant target
movements.

CSRT (Discriminative Correlation Filter with Channel and
Spatial Reliability): A target tracking algorithm based on cor-
relation filtering that enhances tracking robustness through
channel and spatial reliability. Its strengths lie in handling
target deformation and lighting changes, but its disadvantages
include high computational complexity, making it unsuitable
for real-time tracking.

2) SIAMESE NETWORK

A twin network based on deep learning, it uses similarity
measurements for target tracking, such as SiamFC,
SiamRPN, etc. Its advantages are its effectiveness in handling
complex scenes and variable targets, but it requires a large
amount of data for training and high computational resources.

3) MULTI-OBJECT TRACKING (MOT)

SORT (Simple Online and Realtime Tracking): A simple
online multi-object tracking algorithm that combines a
Kalman filter and the Hungarian algorithm for data associ-
ation. Its advantages include simplicity in implementation
and fast computation speed, making it suitable for real-time
applications. However, it is not robust to changes in target
appearance and occlusion.

4) DEEPSORT

Builds on SORT by adding deep learning features to utilize
target appearance information for more accurate association.
It is robust against target occlusion and appearance changes,
suitable for high-density scenarios. However, it has the dis-
advantage of high computational complexity and substantial
hardware requirements.

5) 10U TRACKER

A simple multi-object tracking method based on the intersec-
tion over union (IoU) of target bounding boxes. Its advantages
are simplicity in implementation and fast computation speed.
Its disadvantage is that it handles target occlusion and over-

lapping poorly.

C. PRINCIPLES OF YOLOv5 OBJECT DETECTION
ALGORITHM

YOLOVS uses deep convolutional neural networks (CNN5s)
as feature extractors, transforming input images into feature
maps that represent various characteristics of the images.
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Anchor boxes, which are predefined rectangular boxes, are
then used to predict the positions and classes of the objects.
The algorithm predicts the offsets for each anchor box
and the class probabilities of the objects. These predictions
are made using the feature maps output by the network.
For each anchor box, the algorithm predicts the bound-
ing box and the class probability of the target. The final
object detection results are obtained through decoding and
post-processing these predictions. YOLOVS uses a loss func-
tion called YOLO Loss to measure the disparity between
the predicted results and the ground truth labels. This loss
function includes aspects such as localization loss and class
probability loss. The model is optimized by minimizing this
loss function [18]. YOLOVS has released four different ver-
sions of object detection networks: YOLOvS5s, YOLOvS5m,
YOLOVS51, and YOLOvV5x [19]. The structures of these four
models are essentially identical, with the primary differences
being the depth and width parameters, depth_multiple and
width_multiple, respectively. In this paper, the YOLOVSs
version is used to improve the object detection algorithm, and
DeepSORT is used to improve the object tracking statistics.

D. PRINCIPLES OF THE DEEPSORT OBJECT TRACKING
ALGORITHM

DeepSORT is a multi-object tracking algorithm based on
deep learning and is an improved version of SORT (Simple
Online and Realtime Tracking) [20]. DeepSORT uses an
already tracked targets from the previous frame, thus
achieving multi-object tracking.

In DeepSORT, a deep neural network is used to extract
features of the targets. The input to this network is the image
region of a target, and the output is a vector representing
the target’s features. DeepSORT also uses a convolutional
neural network (CNN) for feature extraction of the targets and
employs the Hungarian algorithm to associate the detection
results in the current frame with the Kalman filter to estimate
the positions and velocities of the targets, reducing errors
during the tracking process.

In each frame, DeepSORT first extracts features from the
detection results using a CNN and calculates the similarity
between all the detection results in the current frame and
the already tracked targets from the previous frame. Then,
the Hungarian algorithm is used to associate the detection
results in the current frame with the already tracked targets
from the previous frame. Finally, new targets are created
for unmatched detection results, and the existing targets are
updated during the tracking process.

Using DeepSORT can achieve accurate tracking of marine
benthic organisms, which is crucial for studying their behav-
ior, interactions, and movements over time. Additionally,
traditional monitoring of benthic organisms requires a signifi-
cant amount of manual labor and time. DeepSORT automates
this process, allowing for continuous and long-term mon-
itoring without the need for constant human intervention.
This automation is particularly important in harsh and remote
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underwater environments. Moreover, using DeepSORT to
track and count marine benthic organisms helps researchers
understand changes in population numbers within a marine
area and assess the impact of environmental changes such as
pollution, climate change, and habitat destruction.

IIl. MATERIALS AND METHODS

The original YOLOvS5s algorithm model’s network structure
and loss function are designed for general scenarios, resulting
in suboptimal performance in certain specific applications.
However, due to its clear and simple network structure and
relatively low detection accuracy, there is significant potential
for improvement. Therefore, this paper proposes modifica-
tions to YOLOvSs to address the challenges of detecting
benthic organisms in complex underwater environments.
Additionally, a counting function is added to DeepSORT to
facilitate more comprehensive tracking and analysis.

A. IMPROVED YOLOv5S ALGORITHM

1) GLOBAL CONTEXT BLOCK ATTENTION MECHANISM

The Global Context (GC) block originates from the GCNet
paper, and its core idea is to utilize non-local information for
modeling. This allows the block to extract relevant informa-
tion from the global context, thereby enhancing the model’s
feature extraction capability [21]. This allows the model to
capture global contextual relationships (or features), thereby
enhancing its feature extraction capabilities. The Global
Context Block combines the benefits of a simplified non-local
(SNL) block and a lightweight computational squeeze-and-
excitation (SE) block. Additionally, by incorporating the
structure of SENet, this method significantly reduces the
model’s computational load, making it a plug-and-play, loss-
less module.

In the simplified non-local (SNL) block, shown in
Figure 1(a), the transformation module contains the most
parameters, including a 1 x 1 convolution with C x C param-
eters. When this SNL block is added to higher layers, the
number of parameters in this 1 x 1 convolution, C x C =
2048 x 2048, dominates the parameter count of this block.
The SE block, shown in Figure 1(b), achieves lightweight
characteristics by replacing the 1 x 1 convolution with a
bottleneck transformation module, significantly reducing the
parameter count from C x Cto2x C x C/r, where r is the bot-
tleneck ratio, and C/r is the hidden representation dimension
of the bottleneck. By setting the initial compression rate tor =
16, the number of parameters in the transformation module is
reduced to 1/8 of the original SNL block. Due to the increased
optimization difficulty caused by the two-layer bottleneck
transformation, layer normalization is added inside the bottle-
neck transformation (before ReLU) to simplify optimization
and act as a regularizer to improve generalization.

The detailed architecture of the Global Context (GC)
block is shown in Figure 1(c), The formula is shown
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in (1):

N eka.i
z; = X; + W,oReLU(LN(W,; Z N—xj)) 1)
J=1 Zp eWixm
m=1
where x; represents the input of the ith element, and
W, is thewweight matrix applied to the transformed input.
kXj
8(-) = W, nReLU(LN(W,1(-))) represents a bottleneck trans-
formation. Specifically, GC blocks include: (a) a global
attention pool for contextual modeling; (b) bottleneck shifts
to capture channel dependencies; (c) Broadcast element addi-
tion for feature fusion. Feature maps are represented by their
feature dimensions, e.g., C x H x W denotes a feature map
with C channels, height H, and width W. (X) represents matrix
multiplication, € represents broadcast element-wise addi-
tion, an (©) represents broadcast element-wise multiplication.

aj = is the weight of the global attention pool,

2) BOTTLENECKCSPGC MODULE

The BottleneckCSP module is a typical residual block struc-
ture. It includes a convolution layer in the middle of the
residual unit to reduce the number of channels, facilitating
module connections and reducing computational complexity.
Each residual unit in the BottleneckCSP module consists
of two standard 3 x 3 convolution layers and one 1 x 1
convolution layer. Additionally, the BottleneckCSP module
introduces a cross-stage partial connection (CSP) structure,
which enables information transfer between different stages,
thereby improving the model’s performance.

Shallow features that are easily overlooked become diffi-
cult to extract when the network structure is deep. To address
this, we propose a new feature extraction structure, Bot-
tleneckCSPGC, which combines the Global Context Block
with the BottleneckCSP structure. This integration, illustrated
in Figure 2, allows for better extraction of useful features
through global relationship modeling.

Firstly, the input feature map is processed through the
global attention mechanism module (GC) in the first branch.
Then, it passes through a 1 x 1 convolution layer, reducing the
number of channels to the hidden channels c_. Subsequently,
it goes through a sequence of multiple Bottleneck blocks,
where each Bottleneck block’s input and output channels
are the hidden channels c_. This is followed by a 1 x 1
convolution layer for channel adjustment. Simultaneously,
in the second branch, the input feature map is also processed
through the global attention mechanism module (GC) and
then through a 1 x 1 convolution layer for channel adjustment.
At the end of both branches, the feature maps are concate-
nated, and the concatenated feature map is processed through
a batch normalization layer and the SiLU (Sigmoid-Weighted
Linear Unit) activation function. Finally, the processed fea-
ture map is passed through another 1 x 1 convolution layer
for channel adjustment, resulting in the final output feature
map.
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3) NORMALIZED WASSERSTEIN DISTANCE (NWD) LOSS
FUNCTION

The default loss function in YOLOVS is not an optimal metric
for small objects. Therefore, we replace it with a new metric
that measures the similarity of bounding boxes using the
Wasserstein distance. The boundary box is modeled into a
two-dimensional Gaussian distribution, and the similarity of
the Gaussian distribution is derived by using the standard-
ized Wasserstein distance measure, and the similarity of the
Gaussian distribution is studied on this basis [22]. NWD loss

function as shown in equation (2):
VW35 (Nay Np)

NWD (Ng, Np) = exp e (@)

Context
Modeling
CxHxW (T ~

.

IxHxW
Cxfigw HWxIx]

Transform

(a)Simplified NL block

FIGURE 1. Architecture of the main modules.
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(b)SE block

N, and N, represent two bounding boxes being com-
pared, W22(./\/a, Np) is the second-order Wasserstein distance
between these two bounding boxes, and C is a normalization
constant, typically set to the diagonal length of the bounding
boxes to ensure that the distance scale remains within a
reasonable range.

The biggest advantage of Wasserstein distance is that it
measures the similarity between distributions, even when
there is no overlap or very little overlap. In addition, NWD
is less sensitive to objects of different scales, and is more
suitable for measuring the similarity between small objects.

4) OVERALL FRAMEWORK
YOLOVS is a fast and flexible method for object detection
consisting of a backbone network, PANet, and detection

Context
CxHxW Modeling

Context
Modeling

Transform

Transform

(c)Global context (GC) block

T _'._'-_'-—l

FIGURE 2. Structure of BottleneckCSPGC.
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FIGURE 3. YOLOv5 network architecture.
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heads, as shown in Figure 3. PANet is a recurrent pyramid
structure composed of convolution, upsampling, and
CSP2_X modules, enabling feature fusion. The detection
head is responsible for object detection and localization.
By incorporating improved modules into YOLOVS, the
enhanced network framework is illustrated in Figure 4.

B. STATISTICS ON THE NUMBER OF DEEPSORT TARGET
TRACKS

To add a counting functionality to the existing DeepSORT
tracking, we establish a dictionary to store all the IDs that
have appeared. Whenever an ID appears, we check if it exists
in the dictionary. If it does, the count for each category
remains unchanged. If the ID does not exist, we determine
which category it belongs to, increment the count for that
category by one, and store the new ID in the dictionary. These
steps are repeated until the end of the video. The overall
flowchart for DeepSORT tracking and counting is shown in
Figure 5.

IV. EXPERIMENTS AND DISCUSSIONS

A. DATASETS AND EVALUATION INDICATORS

We utilized two marine benthic organism datasets for our
study. The dataset 1 is from the Underwater Robot Picking
Contest, which includes images of holothurian, echinus,
scallop, and starfish. Additionally, we incorporated images
captured from manual observations at a Weihai aquaculture
farm. These images were used for training and evaluating
our object detection model. The second dataset comprises
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synthetic models of the aforementioned four types of organ-
isms, which were purchased online and placed in an exper-
imental water tank for image capture. These images were
used for training and evaluating our object tracking and
counting model. The dataset 1 contains 8,919 training images
and 991 testing images, while the dataset 2 contains 1,078
training images and 120 testing images. We evaluated our
models using the test sets and conducted ablation studies.
Furthermore, we compared our results with those of other
state-of-the-art models. We used the standard COCO metric,
mean Average Precision (mAP), to assess the accuracy of our
models.

Convolutional Neural
Network (CNN)

-
Yes
Deepsort tracking. soew categories.
o -
-4> Target forecasting No -

— Smoothing

FIGURE 5. Overall flow chart of DeepSORT.

B. DETAILS OF THE EXPERIMENT
The experimental environment is shown in Table 1. Parameter
Settings:
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For the improved YOLOvS5s network, we used the default
parameter settings of YOLOvSs. We replaced the original C3
module and the loss function. The training was conducted for
200 epochs with a batch size of 8.

C. EVALUATION METRICS

In our experiments, Precision is used to evaluate the true
detection capability of the model. The effectiveness of the
model’s detection is measured using mAP0.5:0.95 (mean
Average Precision [0.5:0.95]), which represents the average
precision across all detection categories at IoU thresholds
ranging from 0.5 to 0.95 in increments of 0.05. Recall is used
to indicate the probability that positive samples are correctly
predicted as positive. The Miss Rate (MR) is used to evaluate
the extent of missed detections by the model. The F1-Score is
employed to comprehensively assess the impact of Precision
and Recall on the model’s performance, with its value being
positively correlated with the model’s performance. These
indicators are calculated as shown in equation (3), (4), (5)
and (6) below.

- TP
Precision = —— 3)
TP 4 FP
TP
MR=1—-Recal=1 - ——— “)
TP + FN
n
> AP;
mAP = =1 5)
n
2 x Precision x Recall
F1-Score = — (6)
(Precision + Recall)

TP is the number of samples that are correctly predicted
to be positive. FP is the number of samples that are marked
as negative and predicted to be positive. FN is the number of
samples labeled as positive and predicted as negative. APi is
the average accuracy of the prediction class. N is the number
of classes. In addition, FLOPs and Params, which measure the
accuracy of the model, are also used to represent the amount

TABLE 1. Experimental environment.

of computation and the number of parameters of the model,
respectively.

D. SET THE SPECIFIC PARAMETERS OF THE NWD LOSS
FUNCTION
When we use the NWD loss function, we need to select
the size of the iou_ratio, iou_ratio represents the percent-
age of the IoU metric that decreases the small target when
it is large in the dataset, i.e., increases the NWD metric.
‘We use the NWD loss function of different sizes and iou_ratio
on the YOLOVS5s source code to train dataset 1, and the
training results under different parameters are shown in
Table 2.

From the overall analysis in Table 2, it can be concluded
that the training effect is best when iou_ratio = 0.5, so we
chose it.

E. COMPARISON OF DIFFERENT LOSS FUNCTIONS

We also constructed different loss functions for comparison,
and trained them on dataset 1 to test the efficiency of NWD
loss [23]. A number of loss functions were also tested, includ-
ing CloU loss [24], VF loss [25], alpha-iou loss [26], and
SIoU loss [27].

As can be seen from Table 3, the NWD loss function is
the best fit for our model, with P, R, and mAPO.5 reach-
ing optimal values of 86.7%, 78.2%, and 85.7%, respec-
tively. CloU reached 85.3% and 49.3% in mAPO0.5 and
mAPO0.5:0.95, respectively, and SIoU reached 85.0% and
48.8% in mAP0.5 and mAP0.5:0.95, respectively. However,
the results of VF and Alpha-IoU are poor, and the accuracy of
mAPO.5 is only 83.4% and 83.1%, which may be due to the
complex image and more information of small targets in the
presence of underwater objects, resulting in poor regression
convergence. This method is not affected by scale factors
and is suitable for measuring the similarity between small
targets. Compared to other loss functions, it is more suitable
for underwater multi-small target detection.

parameters configuration
System environment Windows10
CPU Intel(R) Core (TM) i5-12490F
GPU NVIDIA GeForce RTX 3060
Deep learning framework Pytorchl.11.0
CUDA 12.5.51

TABLE 2. Training results for different parameters.

iou_ratio size P (%) R (%) mAP0.5 (%) mAP0.5:0.95 (%)
0.3 86.3 77.2 85.5 47.8
0.4 84.8 77.6 85.3 48.1
0.5 86.7 78.2 85.7 48.5
0.6 86.4 76.8 85.2 48.3
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TABLE 3. Comparison of different loss functions.

Loss function P (%) R (%) mAP0.5 (%) mAP0.5:0.95 (%)
CloU 86.6 78.0 85.3 493
VF 84.2 76.3 83.4 49.0
Alpha-IoU 82.8 77.0 83.1 49.1
SloU 85.7 76.8 85.0 48.8
NWD 86.7 78.2 85.7 48.5

YOLOvVS ours

FIGURE 6. Comparison of heat map effects.

F. ABLATION EXPERIMENTS

To verify the effectiveness of the proposed algorithm’s
improvements based on YOLOVS, as well as the impact of
the BottleneckCSPGC module and NWD loss function on the
detection of small, numerous, and occluded marine benthic
organisms, ablation experiments were conducted on Dataset
One. The results are shown in Table 4.

Ablation experiments demonstrate that the BottleneckC-
SPGC module and NWD loss function, when used individ-
ually, provide varying degrees of slight improvement over
the original YOLOVS code in certain aspects. When both
components are used together, the performance is even better,
with increases of 1.3%, 2.9%, 1.8%, and 4% in accuracy,
recall, mAPO.5, and mAP0.5:0.95, respectively, compared to
the original YOLOVS. To clearly illustrate the advantages of
our improved algorithm in marine benthic organism detec-
tion, Figure 6 compares the heatmap results of our improved
algorithm with YOLOVS, and Figure 7 shows the test results
in different scenarios selected from dataset 1.

From the comparative analysis in Figure 7, it can be seen
that our network can accurately identify the missed and false
detection of the YOLOVS5 network caused by occlusion and
low visibility, and at the same time detect some small targets,
and combined with Table 4, it can be seen that the accuracy,
recall rate, and average accuracy of our improved network are
improved compared with the original YOLOVS.

G. COMPARATIVE EXPERIMENTS

In order to evaluate the effectiveness of the algorithm
designed in this paper, it is compared with other advanced
algorithms. YOLOv4 [28], YOLOv7 [29], YOLOx [30]
and YOLOvS were selected for training on dataset one,
respectively.
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YOLOvV5S ours

FIGURE 7. Comparison of the detection effects of the two networks.

As shown in Table 5, our proposed model outperforms
other models, achieving the best performance. Compared
to YOLOv4, our model’s mAPQ.5 increased by 29.9% and
mAPO0.5:0.95 increased by 24.7%. Compared to YOLOV7,
mAPO.5 increased by 15% and mAPO0.5:0.95 increased by
13.8%, with our model having only a quarter of the parame-
ters of YOLOv7. Compared to YOLOx, mAPO.5 increased
by 8.5% and mAP0.5:0.95 increased by 9.1%. Finally,
compared to YOLOvS, mAPO.5 increased by 1.8% and
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TABLE 4. Ablation results of different models.

BottleneckCSPGC NWD P (%) R (%) mAP0.5 (%)  mAP0.5:0.95 (%)
x x 86.6 78.0 85.3 493
N x 85.8 78.6 86.3 50.1
x v 86.7 78.2 85.7 48.5
v v 87.9 80.9 87.1 53.3
TABLE 5. Comparison between different networks.
model P(%) R(%) mAPO0.5(%) mAP0.5:0.95(%) Parm(M) GFLOPs(G)
YOLOv4 80.9 33.2 57.2 28.6 64 142
YOLOV7 83.0 66.1 72.1 39.5 36.5 103.2
YOLOx 90.8 64.1 78.6 44.2 8.939 26.763
YOLOV5 86.6 78.0 85.3 49.3 7.03 16
ours 87.9 80.9 87.1 53.3 8.237 18

mAP@0.5 Comparison

mAP@0.5:0.95 Comparison

— YoLovs
00 ours

MAP@0.5:0.95

— YoLOv5
00 ours

0 25 50 75 100 125 150 175 200

Epoch

FIGURE 8. Comparison of the accuracy of YO

= allclasses 0853 mAP@0.5

YOLOvV5S

FIGURE 9. mAPs of different classes of YOLOv5 and ours.

mAPO0.5:0.95 increased by 4%. A comparison of precision
between our model and the second-best YOLOVS is shown in
Figure 8, and Figure 9 compares the accuracy of different cat-
egories. These results demonstrate that the proposed model
has a comprehensive ability for underwater target detection.

H. DEEPSORT TRACKING STATISTICS
To better verify the accuracy of the tracking statistics,
we randomly arranged simulated models of holothurian,

VOLUME 12, 2024
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Epoch

LOv5 and ours.

Precision-Recall Curve

holothurian 0,887
echinus 0.903
scallop 0.795

— starish 0.897

08 — alllasses 0.871 MAP@05

echinus, scallop, and starfish in an experimental water tank
(Figure 10). We used Dataset 2 for training the detection and
tracking weights. The tracking module achieved an accuracy
of over 90%. The tracking and statistical results are depicted
in Figure 11 (the picture is a frame captured from the video,
and the red font in the upper left corner is the number of
statistical results), with the detailed statistics presented in
Table 6.

Figure 11 is a frame extracted from the video, with
real-time tracking statistics displayed in red text in the top left
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TABLE 6. Statistical results.

category True value Statistical value
holothurian 13 13
echinus 11 11
scallop 40 38
starfish 10 10

FIGURE 10. Experimental water tank.
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FIGURE 11. Tracking statistics results.

corner. Each detection frames has a unique ID that remains
consistent and does not change as the camera moves. The
count is entirely accurate. According to the overall track-
ing and statistical results presented in Table 6, the count
of holothurian, echinus, and starfish in our experimental
setup matches the actual numbers exactly. Only the count
of scallops is off by two. Overall, the experimental results
demonstrate good accuracy and strong tracking and statistical
capabilities.

V. CONCLUSION

This paper proposes an improved YOLOvS5-DeepSORT-
based algorithm for target detection and tracking, designed
specifically for marine benthic organism detection and
counting in complex underwater environments. To achieve
more accurate underwater target detection, we introduce
an innovative BottleneckCSPGC module to enhance feature
extraction for underwater targets. Additionally, we incor-
porate the Normalized Wasserstein Distance (NWD) loss
function to improve detection performance for small targets.

113876

Experiments conducted on Dataset One demonstrate that
our improved network outperforms other state-of-the-art
detection algorithms. Furthermore, we added a counting
functionality to DeepSORT and validated it using Dataset
Two. The experimental results indicate that the counting
accuracy is high.

‘We have currently completed the collection and creation of
the dataset and have innovated the network architecture for
training. On this basis, we integrated DeepSORT and added a
counting feature. In the future, we will also consider deploy-
ing to mobile devices. However, in complex underwater target
detection, image blurring remains a significant challenge
affecting detection accuracy. Future research should focus on
collecting high-quality underwater datasets and developing
new data augmentation algorithms specifically for under-
water images to improve image quality. Addressing these
challenges is crucial for advancing underwater target detec-
tion and the accurate monitoring and counting of marine
benthic organisms.
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