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ABSTRACT Open Radio Access Networks (Open RANs), realized fully in software, require excessive
computing resources to support time-sensitive signal-processing algorithms in the physical layer. Among
them, multiple-input-multiple-output (MIMO) processing is a key functionality used to drive higher
connectivity in the uplink, but it is computationally intensive, triggering the need for hardware acceleration
to overcome the processing inefficiency of software-based solutions. Additionally, energy efficiency is
becoming a key focus in Open RAN to enable sustainable deployments that utilize available resources
efficiently. Because channel-inversion complexity increases polynomially with the number of users in
linear detectors, such as zero-forcing (ZF) and minimum-mean-square-error (MMSE), acceleration based
on channel-inverse approximations has gained significant attention. However, they unnecessarily multiply
the number of base station (BS) antennas to ensure accurate detection, leading to a drastic increase in power
consumption owing to the additional radio frequency (RF) chains employed. In contrast, linear detectors
achieve a sufficiently good performance with only twice the number of BS antennas as users. This work
introduces an exact-MMSE and soft-output hardware accelerator that includes an inversion-free, highly-
parallel QR decomposition (QRD) architecture and a low-complexity detector stage with per-cycle soft-
output generation, significantly improving the processing latency and throughput. The proposed architecture
is fully scalable to support diverse MIMO configurations. Implementation evaluations on a Xilinx Virtex
Ultrascale+field-programmable gate array (FPGA) demonstrate that the proposed exact solution can achieve
more than 2× improvement in hardware throughput over existing approximate designs. Moreover, the peak
throughput can be increased around 10-fold in slowly fading channels.

INDEX TERMS Open RAN, MIMO, matrix inversion, QR decomposition, FPGA, hardware acceleration.

I. INTRODUCTION
A. BACKGROUND
The Open Radio Access Network (Open RAN) [1] has
kick-started a radical transformation in the landscape of
wireless network infrastructure by enabling a growing
ecosystem of scalable, cost-efficient and standards-based
components [2]. The underlying principle of open interfaces
ensures interoperability and lends flexibility to mobile
network operators in choosing the best-of-breed components
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from a wide pool of solution providers to optimize per-
formance. This has also triggered research into leveraging
reconfigurable platforms, such as general-purpose processors
(GPPs), field programmable gate arrays (FPGAs), graphics
processing units (GPUs) [3], or an amalgamation of these,
to realize the computationally challenging functions of
the physical layer (PHY), as opposed to monolithic radio
access networks (RANs). These implementation options have
varying degrees of performance with respect to throughput,
latency, cost, flexibility and power consumption, leading to
a requirement-based implementation approach for each use
case. Nonetheless, the existing Open RAN solutions still fail
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to achieve the absolute performance of traditional baseband
units.

Multiple-input multiple-output (MIMO) [4], which is
particularly instrumental in improving the throughput and
connectivity gains of traditional RANs by spatiallymultiplex-
ing several users on the same spectrum resources, is com-
putationally intensive. This presents a significant challenge
to purely software-based Open RAN deployments owing to
their inherent inefficiency in performing advanced MIMO
computations for a higher number of users and bandwidths.
For example, standard-compliant solutions such as OpenAir-
Interface and srsRAN can support only up to two users,
while efforts such as [5] and [6] utilize several system-level
relaxations to support a higher number of users, such as
having the same channel realization for 16 and 32 subcarriers,
respectively. In addition to the resultant detrimental effects
on performance, these approaches noticeably sway from fifth
generation new radio (5GNR) standards and support only
a fraction of the bandwidth. Recently, a 5GNR and Open
RAN compliant GPP-based implementation was proposed
in [7], which facilitates power-efficient MIMO systems
with a large number of information streams but still leaves
substantial room for fully exploiting the channel capacity.
Alternatively, cloud-based servers can also operationalize
software-based implementations of the open distributed unit
(O-DU), but the considerable costs related to providing
adequate front-haul bandwidth for such deployments leads
to impractical scenarios [8]. This primarily results in O-DU
deployments on site, in close proximity to the open radio unit
(O-RU), which restricts the number of servers that can be used
to improve the processing capability owing to physical size
constraints.

From an algorithmic perspective, most existing Open RAN
solutions adopt linear MIMO processing approaches such as
zero-forcing (ZF) and minimum mean square error (MMSE)
[9], which simplify the detection problem by translating the
corresponding MIMO channel into several non-interfering
single-antenna channels. They also enable easier soft output
calculations in the form of log-likelihood ratios (LLRs)
and a simplified mechanism to adapt the modulation and
coding scheme (MCS) employed by each user according
to the channel conditions. This efficient radio resource
management (RRM) enabled by linear detectors simplifies
their integration in standards-based systems such as 5GNR.
Although non-linear techniques exist that can better exploit
the spatial characteristics ofMIMO channels by transforming
the maximum likelihood (ML) detection problem into a
tree search [10], they are exceedingly computationally
demanding. Fixed-complexity decoders [11] and K-best
detectors [12] reduce hardware complexity by curtailing the
search space and attaining near-optimal performance for
small-scale MIMO systems. However, their complexity and
processing latency (PL) are significantly higher than those
of linear approaches for an increasing number of users and
modulation orders. Additionally, adapting the MCS of each
user is not straightforward in non-linear receivers, which

FIGURE 1. Detection performance comparison in a CDL-B uplink channel
with 64-quadrature amplitude modulation (64-QAM), signal to noise ratio
(SNR) per receive antenna 15dB, UE speed 5km/h and low-density parity
check (LDPC) code rate 3/4.

makes their integration into 5GNR more challenging [13].
Therefore, linear approaches are generally preferred over
non-linear methods because of their easier integration and
efficient radio resource management. Additionally, they
can attain near-optimal performance when the number of
receive antennas at the base station (BS), NR, exceeds
twice that of the user equipment (UE), NT [14], [15].
However, linear methods require the direct inversion of
channel matrices, which scale polynomially in complexity
with the number of users, O(N 3

T ). Conventional matrix
factorization approaches such as QR decomposition [16],
Gauss-Jordan elimination [17], and Cholesky [18] can reduce
the complexity of inversion, but these are not trivial. Most
detector implementations based on field-programmable gate
arrays (FPGAs) or application-specific integrated circuits
(ASICs) have focused on linear approaches for small-scale
MIMO systems that support up to four users [18], [19], [20],
[21]. There has been limited interest in pursuing exact-linear
detectors for a large number of users due to the tremendous
resources needed for implementation.

Subsequently, iterative algorithms [22], [23], [24] have
emerged, particularly in the context of massive MIMO,
to circumvent costly inversions by converging to the MMSE
solution in a series of adaptations, with a complexity of
O(N 2

T ). Due to the much higher number of receive antennas
than users considered in these methods (i.e. NR ≫ NT ),
they can generally obtain near-MMSE solutions in few
iterations. As a result, there have been significant efforts to
develop efficient hardware architectures based on iterative
techniques such as the Neumann series expansion (NSE)
[25], Gauss-Siedel (GS) [26], Jacobi, and Steepest Descent
(SD) [27], [28]. However, in contrast to linear approaches
that guarantee near-optimal detection in MIMO systems
with NR = 2NT , approximation strategies have slow
convergence and low reliability. Even when NR is moderately
higher than NT , more iterations are required to attain
convergence, which can affect the overall throughput. Fig. 1
shows a comparison of the spectral efficiency achieved by
linear MMSE, approximation-based GS approach, and the
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TABLE 1. High-level comparison of MIMO detection approaches.

massively parallel non-linear (MPNL) [29] in a scenario with
4 user equipment (UEs) and an increasing number of BS
antennas. It can be seen that MPNL achieves the maximum
capacity when NR = NT whereas GS fails completely. When
NR is twice NT , MMSE matches the performance of MPNL,
whereas GS attains a spectral efficiency of only 50%. GS can
attain near maximum capacity only when NR is increased to
eight times NT . Increasing the BS antenna to user ratio (i.e.,
NR/NT ) in thismanner to enable the complexity gains of these
approximate-inversion detectors can adversely impact the
energy efficiency, owing to the considerable radio frequency
(RF) power required. This is further emphasized by the fact
that energy-efficiency is a priority in Open RAN systems
to achieve sustainable solutions [30]. Table 1 provides a
high-level summary of linear, approximation-based, and non-
linear approaches. Based on these considerations, linear
solutions can realize highly practical system deployments
and are better suited for MIMO processing owing to their
easier integration and relative simplicity compared to non-
linear approaches, and their power efficiency gains over
approximate solutions.

Therefore, enabling O-DU to support linear MIMO
processing for higher connectivity is of great practical
interest. Although specialized software acceleration solutions
targeting 5GNR systems exist [31], they are not adequate
for increasing connectivity and bandwidth considerations,
because of the significant processing power needed to reduce
the PL. To address this challenge, hardware acceleration has
emerged as a key solution to offload compute-centric opera-
tions of the O-DU to FPGAs, ASICs or graphics processing
units (GPUs) [32]. However, the major focus has so far
remained on small-scale MIMO systems [3] or accelerating
only fixed functions, such as channel decoding [33]. Since
matrix inversion complexity scales polynomially with the
number of users, this easily overtakes the complexity of
low density parity code (LDPC) decoding. Hence, significant
attention should be given to developing hardware accelerators
that can perform linear detection in MIMO systems with a
large number of users by striking a good balance between
hardware complexity and energy efficiency, which will be the
focus of this work.

B. MAIN CONTRIBUTIONS
The main contributions of this paper are highlighted below

1) A new highly parallel inversion-freeQR decomposition
(QRD) architecture was proposed based on the MMSE
criterion, which can directly yield the inverse of the
triangular (R−1) and the near-orthogonal component
of Q.

2) A reduced-complexity architecture was designed to
avoid matrix-matrix multiplication and compute the
equalized vector in tandem with the post-detection
signal-to-interference-noise ratio (SINR).

3) A novel highly efficient architecture is proposed that
performs log likelihood ratio (LLR) computation in two
stages, which enables significant resource sharing and
full unfolding of distance computations for each user
bit.

C. ORGANIZATION OF THE WORK
The remainder of this paper is organized as follows. The pre-
liminaries including a brief description of the MIMO system
model and aspects related to the soft-output MMSE detection
are discussed in Section II. Subsequently, in Section III,
the inversion-free parallel QR algorithm is presented in the
soft-output MMSE equalization framework, along with com-
putational complexity analyses and performance evaluations
with respect to state-of-the-art linear and approximation-
based methods. The results demonstrate the diminished
computational gains of approximation-based methods in
contrast to exact linear approaches when reliability is jointly
considered and justifies the need to accelerate linear MIMO
processing. Section IV discusses the hardware architecture
of the proposed accelerator in detail, with an emphasis
on careful optimization of the critical processing blocks.
The implementation results of the proposed architecture
on a Xilinx XCVU9P device are presented in Section V
with detailed discussions on scalability, processing latency,
throughput, power consumption, and software integration,
along with some insights on future directions. The conclusion
is presented in Section VI.

II. PRELIMINARIES
A. NOTATION
Boldface uppercase letters represent matrices and boldface
lowercase letters denote column vectors. Given matrix A,
the Hermitian transpose of A is represented by AH . Given
column vector a, ai denotes the ith element of a and
∥a∥2 denotes the l2-norm of a which can be defined as
∥a∥2 =

√∑
i |ai|

2. |A| denotes the cardinality of set A.

B. MIMO SYSTEM MODEL
Consider a multi-user MIMO-OFDM based uplink system
consisting of NT users served by an NR-antenna base station.
The user terminals individually encode their data streams
and map the encoded bits onto a finite set of constellation
symbols described by O, corresponding to B = log2 |O|

bits of information per symbol. Assuming perfect channel
state information (CSI) is available, the MIMO input-output
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relation can be mathematically represented as

y = Hs + n (1)

where y is the NR-dimensional receive vector belonging to
the complex space (i.e., y ∈ CNR ), H models the complex
NR×NT channel matrix, and s represents the transmit symbol
vector containing entries belonging to O. n denotes the NR-
dimensional i.i.d. complex Gaussian noise with a variance
2σ 2 per element.

C. MMSE DETECTION
The optimal detection strategy thatminimizes the hard-symbol
error rate is the ML formulation, as shown below.

s̃ML
= arg min

s∈ONT
∥y − Hs∥22 (2)

However, the prohibitive complexity of solving Equation (2)
does not make it employable in practice. Linear equalization
methods determine approximate solutions to theML problem
by relaxing the finite constellation constraint s ∈ ONT in
Equation (2) to the NT -dimensional complex space s ∈ CNT .
This enables the low-cost computation of an estimate s̃ that
is potentially close to the optimal solution, which can then
be sliced onto the closest constellation symbol inO to obtain
the hard-output. Alternatively, s̃ can be used to calculate the
reliability information in terms of LLR values, which yields
the soft outputs used by the channel decoder.

The zero-forcing formulation can be expressed simply as

s̃ZF = arg min
s∈CNT

∥y − Hs∥22 (3)

which is quadratic in s and has a closed-form solution
obtained by multiplying y with the pseudo-inverse of H.
MMSE equalization is then formulated by including a penalty
term that considers the noise amplification of the ZF solution,
as shown below.

s̃MMSE
= arg min

s∈CNT
∥y − Hs∥22 + 2σ 2

∥s∥22 (4)

The closed-form solution of the MMSE minimization prob-
lem is given by

s̃MMSE
= (HHH + σ 2INT )−1HHy (5)

Thus, the ZF and MMSE equalization correspond to a
transformationT of the receive vector y to yield the estimated
vector s̃, that is, s̃ = Ty. Assuming A = HHH + σ 2INT is
the MMSE filter matrix and ỹ = HHy is the matched filter
output, Equation (5) can be simplified to s̃MMSE

= A−1ỹ,
whereas the linear transformation matrix TMMSE is given by

TMMSE = (HHH + σ 2INT )−1HH (6)

Although this solution is efficient for conventional
small-order MIMO systems, the complexity of computing
HHH and the inverse of A rapidly scales up with the
increasing order of the MIMO system.

D. SOFT-OUTPUT DETECTION
Hard-output detection can be achieved by directly slicing the
MMSE estimates onto the nearest point in the constellation
map. However, systems employing forward error correction
(FEC) can exploit soft information to improve detection
accuracy. This necessitates computing the LLR values which
is typically performed using max-log approximation [18].

Li,b = ρi

(
min
a∈O0

b

∣∣∣∣ (s̃)iµi
− a

∣∣∣∣2 − min
a∈O1

b

∣∣∣∣ (s̃)iµi
− a

∣∣∣∣2
)

(7)

where O0
b and O1

b correspond to the sets of constellation
points for which the bth bit is 0 and 1 respectively, and ρi
corresponds to the post-equalization signal-to-interference
and noise-ratio (SINR). The channel gainµi can be computed
as µi = [A−1]Hi [G]i, where [A−1]i and [G]i represent the
ith row and column of A−1 and the gram matrix G = HHH
respectively [28].

III. INVERSION-FREE SOFT-MMSE EQUALIZATION
The exact solution of MMSE (4) demands huge compu-
tational resources particularly as the number of antennas
and users increases. As discussed earlier, approximate
solutions using GS [34] and conjugate gradient (CG) can
work at moderate complexity, but the excessively high NR
required to ensure convergence leads to energy-efficiency
concerns in practical scenarios. Exact-MMSE detection can
work sufficiently with a relatively lower NR but requires
algorithmic optimizations that facilitate lower hardware
complexity. In this regard, a hardware-friendly version of an
inversion-free parallel QRD-based soft-output exact-MMSE
detector is proposed.

A. INVERSION-FREE MMSE REFORMULATION
Traditional QRD based on modified Gram Schmidt (MGS)
was used in [16] to compute the Q and R matrices. However,
this requires additional circuitry to invert R that also includes
resource- and latency-intensive division operations. The
QRD-based detection extended to theMMSE criterion in [35]
yields an interesting observation. Consider an (NR+NT )×NT
dimensional matrix H which is constructed by appending a
scaled identity matrix to the bottom of H as follows

H =

[
H

σ INT

]
(8)

This augmented channel matrix H can be decomposed as

H = QR =

[
Q1

Q2

]
R =

[
Q1R
Q2R

]
(9)

whereQ1 andQ2 are obtained by partitioning the (Nr +Nt )×
Nt matrix Q. Therefore, A can now be rewritten as

A = (HHH + σ 2INT )

= H
H
H (10)

Consequently, employing the QRD of the augmented channel
matrix simplifies the computationally complex direct matrix
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inversion to a simple linear MMSE weight matrix T shown
below.

T = (H
H
H)−1HH

= (R
H
Q
H
QR)−1R

H
Q1H

= (R)−1(R
H
)−1R

H
Q1

= R
−1

Q1H (11)

In particular, computing T involves an upper triangular
matrix inversion, which only entails the complexity ofO(N 2

T )
compared with that of a full matrix inversion, i.e, O(N 3

T ).
Furthermore, it can be directly inferred from (9) that σ INt =

Q2R as H = QR must be satisfied. This implies that the
inverse of the upper triangular matrixR is a by-product of the
augmented channel QR decomposition with a simple scaling
factor, as shown below.

R
−1

=
1
σ
Q2 (12)

This avoids the explicit inversion of R and leads to further
simplification in computing T and the MMSE equalized
vector computation as follows

T =
1
σ
Q2Q1H (13)

s̃MMSE
= Ty (14)

Furthermore, it can also be observed that as σ −→ 0, the
corresponding MMSE estimate approaches the solution of
the ZF problem in (3). This implies that the parameter σ

determines the nature of the detection. Though employing the
QRD of the extended channel matrix H instead of H leads to
additional computations in the ZF case, it provides flexibility
in choosing either of the two methods by simply varying the
σ value, without requiring additional circuitry to invert R.
However, setting σ = 0 leads to Q2

= 0 which causes
the approach to fail. Instead, setting σ to an infinitesimal
value such that 1

σ
Q2 can be implemented with simple shift

operations, leads to a non-zeroQ2, which ensures that the ZF
solution can be computed.

Even with these hardware-friendly optimizations, an effi-
cient QRD of the extended channel matrix H is impor-
tant to overcome the fairly complex structure, strict data
dependencies and high resource consumption of exact
MMSE detectors for higher MIMO orders. Traditional QRD
based on the modified Gram Schmidt (MGS) algorithm is
widely popular owing to its column-based approach which
invokes a good degree of parallelism. Both systolic array
and iterative architectures have been pursued for QRD
implementation [36]. However, the MGS algorithm entails
a significant data dependency between the diagonal and
triangular processes that are serially run for the duration of
the algorithm. This data dependency can induce significant
latency if a straightforward implementation of MGS is
sought. The diagonal process (DP) in each iteration is
responsible for three major tasks: i.) computing the squared

norm of the currently selected column of H in iteration i,
ii.) determining the square-root of the squared l2 norm term
to yield ri,i, and iii.) producing the orthonormal columns qi
by dividing H by ri,i. The triangular process in turn, has
to carry out two major tasks: a.) compute the projection of
DP’s orthonormal column qi on the remaining columns ofH,
and b.) deduct the corresponding component of qi, that is,
ri,jqi from the respective column hi. Lookahead techniques
have been employed to speed up MGS processing for small-
scale real-valued matrices [37], [38], but these still require
significant additional processing to invert R, particularly for
an increasing number of users.

To tackle the PL challenges of these data dependent
computations from a hardware perspective, a highly parallel
QRD algorithm is proposed, which effectively parallelizes the
diagonal and triangular processes throughout the run of the
algorithm and thus leads to significant latency savings over
the traditional approach. This algorithm is discussed in detail
below with the pseudo code provided in Algorithm 1.

Algorithm 1 Parallel QR Decomposition Algorithm
1: procedure Parallel-QR( H, σ )
2: Initialization: H = [HH σ INT ]

H

3: for i = 1, · · · ,NT do
4: Compute the dot product of hi with itself, i.e., h

H
i hi

5: Compute the reciprocal square root of h
H
i hi given by

rsr
6: for j = i+ 1, · · · ,NT do
7: Compute the inner product of hi with hj (r

parallel
i,j )

8: end for
9: Compute current qi by multiplying hi with rsr

10: for j = i+ 1, · · · ,NT do
11: Compute ri,j by multiplying rparalleli,j with rsr
12: Deduct the contribution of ri,jqi from hj
13: end for
14: end for
15: Outputs: Q = H|1:NR,:,R−1

=
1
σ
H|NR+1:NR+NT ,:

16: end procedure

Beginning with the first iteration, the diagonal process
initiates the complex dot product of h1 with itself and
computes the inverse square root quantity rsr, shown on
Step 4 of Algorithm 1. Simultaneously, an inner loop begins
parallel computation of rparallel1,j by the complex dot product
of h1 with hj where j varies from 2 to NT , shown on steps
5-7 of Algorithm 1. Once rsr is computed, it is multiplied
with h1 to obtain q1. Simultaneously, rsr is also shared with
the parallel triangular processes to produce the respective
coefficients ri,j that are needed subsequently to eliminate
the contribution of q1 from each of the remaining columns,
as shown in steps 9-12 of Algorithm 1. This parallelization of
diagonal and triangular processes continues until algorithm
termination. The final Q can simply be partitioned to obtain
Q1 and Q2 matrices that will be used to determine the
MMSE equalized vector according to equations (13) and (14).
Compared to traditional QR decomposition strategies that
require inversion of R to yield the MMSE estimate, this
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FIGURE 2. Bit error rate versus average SNR per receive antenna for 4 User Equipment (UE) and increasing number of BS antennas.

FIGURE 3. Bit error rate versus average SNR per receive antenna for 8 User Equipment (UE) and increasing number of BS antennas.

approach ensures hardware-friendliness by circumventing
explicit inversion circuitry. While the advantages of this
parallel QRD method can be understood from an algorithmic
perspective, a careful scheduling of the individual operations
and suitable trade-off between area and latency also need to
be exploited, as will be laid out in the architecture discussion
in Section IV.

Since MMSE detection inherently involves a trade-off
between noise amplification and interference, the computa-
tion of post-detection signal-to-interference and noise ratio
(SINR) for each layer is essential to generate correct soft
outputs. To this extent, the error covariance matrix needs to
be computed which generally involves the inversion ofA, this
is simplified by incorporating some of the earlier identities,
as shown below.

8MMSE = E{(s̃MMSE
− s)(s̃MMSE

− s)}

= σ 2(HHH + σ 2INT )−1

= σ 2(H
H
H)−1 (from (10))

= σ 2R
−1

R
−H

= Q2Q2H (15)

Since the diagonal entries of the error covariance matrix
yield the post-detection SINR quantities per stream, the upper
triangular structure ofQ2 leads to much fewer computations.

η = diag(Q2Q2H ) (16)

This simplification leads to a significant reduction in
the hardware complexity to find the per-stream SINRs
and can be performed as soon as the parallel QRD is
completed.

To efficiently extract soft-information from the equalized
output, the following simplified expression of the LLR
computation in Equation (7) is given from [18].

LLR(bik,j|s
i,H) ≈

1
ηi

(
min
s∈S0

∥s̃ − si∥2 − min
s∈S1

∥s̃ − si∥2
)
(17)

where s̃ is the MMSE equalized output, S0 and S1 represent
the subsets of constellation points in which the jth bit of
the corresponding symbol is 0 and 1 respectively, and ηi is
the post-detection SINR for the ith stream. This involves the
calculation of squared Euclidean distances and minimizer
functions which can unravel with higher modulation orders
and number of UEs. Reference [39] exploits the Gray map-
ping of constellation symbols to propose a low-complexity
LLR computation scheme that avoids multipliers by using
a piecewise linear mapping [18]. In this paper, the max-log
approximation in (17) is adopted for LLR calculations and
a hardware reuse scheme in presented in Section IV that
significantly curtails the resource consumption, in contrast to
straightforward implementations.
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FIGURE 4. Bit error rate versus average SNR per receive antenna for 16 User Equipment (UE) and increasing number of BS antennas.

FIGURE 5. Number of complex multiplications for ZF, MMSE and
approximation-based detectors for 64 BS antennas and different number
of users.

B. ERROR-RATE PERFORMANCE
In order to evaluate the detection error-rate performance, vari-
ous antenna-user configurations are tested usingMonte-Carlo
simulations assuming Rayleigh fading channels. Fig. 2 plots
the achieved uncoded bit error rate (BER) of the MMSE and
existing approximation-based algorithms versus the average
signal to noise ratio (SNR) per receive antenna for different
number of BS antennas, when the number of user equipment
(UE) is 4. It can be observed that for twice the number of
UEs, most approximation algorithms cannot minimize the
BER even with higher SNR and more iterations, while their
performances only improve when the number of BS antennas
is at least eight times that of the UEs. It can be seen that in this
case, GS and optimized coordinate descent (OCD) with K =

3 approach theMMSE performance only when the number of
receive antennas is 32 (i.e. 8 times NT ). Even in this setting,
CG with K = 2, 3, OCD with K = 2 and Neumann with
K = 3, fail to meet the MMSE performance for higher
SNR and require more iterations to converge if at all. Figs. 3
and 4 capture a similar trend with increasing number of BS
antennas when that of the UEs is 8 and 16 respectively.

The observation that MMSE performs well with NR just
twice that of NT in many practical cases is very significant

TABLE 2. Computational complexity in terms of complex multiplications
and divisions.

from the energy efficiency perspective as the approximative
algorithms trade-off the inherent MMSE capability for lower
hardware complexity by unnecessarily increasing the number
of BS antennas. This gives rise to a corresponding huge
increase in RF power which is often ignored, but has severe
cost and environmental limitations.

C. COMPUTATIONAL COMPLEXITY
Like the reliability of a MIMO detection approach, computa-
tional complexity is also an equally important characteristic
that needs to be evaluated. In this subsection, the computa-
tional complexity of algorithms are described in terms of the
number of expensive floating-point operations like complex
multiplications and divisions. Though hardware implementa-
tions based on fixed-point require an in-depth consideration
of suitable optimizations for resource- and latency-intensive
operations, the computational effort required for performing
complex multiplications and divisions can serve as a reason-
able estimate of an algorithm’s complexity.

Table 2 compares the computational complexity in these
terms for traditional ZF and MMSE; approximation algo-
rithms like GS [25], NSE [26], Conjugate Gradient (CG) and
Coordinate Descent [28]; and the proposed method. It should
be noted that the computational effort of finding the Gram
matrix (given byG = HHH) in the approximation techniques
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FIGURE 6. Top-level architecture of MMSE MIMO detector.

is also included for fair comparison.K refers to the number of
iterations that are employed in the approximation algorithms.
It can be seen that the proposed parallel-QR based MMSE
detector entails slightly more multiplications than traditional
MMSE but reduces the number of divisions from 2NT to
just 1.

Fig. 5 shows the rise in complex multiplications with the
number of users while fixing the number of BS antennas as
64 and K = 3 for all approximation algorithms. It can be
seen that exact linear detectors namely, ZF, MMSE and the
proposedmethod have the highest complexity with ZF requir-
ing slightly fewer multiplications. The approximate inversion
based techniques can curtail the hardware complexity by a
factor of roughly 4 in case of GS and CG for any number of
users. NSE can also attain a four-fold reduction in complexity
whenNT = 4, 8, but this does not scale as the number of users
rises. CD needs slightly more computations than GS and CG
in all cases.

However, if the detection reliability is also taken into
account while evaluating the computational complexity,
it was observed that MMSE reaches near-optimal perfor-
mance when NR = 2NT while the approximation algorithms
generally require NR = 8NT . Fig. 7 shows the computational
effort required under these practical considerations. It can
be observed that the computational gains of the approximate
inverse-based methods almost disappear in these settings,
which further enhance the importance of exact-inversion
methods.

IV. HARDWARE ARCHITECTURE DESIGN
In this section, the microarchitectural design of the reformu-
lated MMSE detector is described in detail. The architecture
was designed to conveniently enable parameterization of
various MIMO configurations. The principal components

FIGURE 7. Number of complex multiplications for ZF, MMSE and the
proposed algorithm with number of BS antennas = 2NT and
approximation-based detectors with number of BS antennas = 8NT .

of the soft-MMSE detector are the parallel QRD block,
MMSE filter or equalizer block, and the LLR computation
block. Fig. 6 shows a high-level overview of the proposed
architecture. The channel matrix H, receive vector y and
regularization parameter σ are assumed as inputs to the
architecture. The memory mapper and demapper modules are
simple binary counters whose behaviours are controlled by
a control unit (CU) to store and retrieve the corresponding
augmented channel and Q matrices when necessary. The CU
is also responsible for issuing appropriate control signals to
facilitate seamless interaction between and within all blocks.
The channel preprocessor block consists of parallel function-
ing diagonal process (DP) and triangular process (TP) blocks,
which will be discussed later, and are internally pipelined
to support multi-carrier processing. The interconnect block,
composed of several multiplexers, behaves like a switch
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FIGURE 8. Hardware architecture of (a) Diagonal Process and
(b) Triangular Process blocks.

matrix, which is responsible for apportioning the input data to
the respective DP and TP blocks based on the current iteration
of each subcarrier.

A. PARALLEL QRD BLOCK
As soon as a valid channel matrix is available at the
input, the memory mapper block uses σ to generate the
extended channel matrix H, which is written to the channel
memory. When the channel preprocessor is ready to start
performing the decomposition, the demapper retrieves the
channel matrices sequentially from storage. The preprocessor
comprises hardware blocks that execute the diagonal and
triangular processes in parallel. Fig. 8 shows the internal
architecture of the diagonal process (DP). The first stage
of (NR + NT ) complex multipliers performs conjugate
multiplication of hi with itself using two real multipliers for
each product term. The generated terms are then passed to an
adder tree that can be pipelined to reduce critical path delay.
The number of pipeline stages is dependent on the desired
frequency of operation and number of adder inputs, NR+NT .
The successive adder stages should have a sufficient bit width
to avoid overflows.

The next processing step in the pipeline is reciprocal
square root computation. This can be implemented using an
optimized Newton-Raphson block without the requirement
of any scaling operations [40]. Two Newton-Raphson iter-
ations were implemented in a pipelined manner to improve
accuracy. This quantity is then passed to the other triangular
processes as well as the second set of (NR + NT ) complex
multipliers in DP to produce the orthonormal column qi.

The triangular processes (TP) in each iteration can be
parallelized by a maximum factor of NT − 1 at most, with
the number of processes declining as the algorithm proceeds
to subsequent iterations. With the proposed reformulations
in Algorithm 1, the parallel TPs begin execution at the start
of every iteration, unlike the traditional case, where DP
execution is required to be completed. Fig. 8b shows the

internal hardware architecture of the TP block. The first stage
of complex multipliers must perform the multiplication of
h
H
i with hj, which typically requires four real multipliers

and two adders. Owing to the replication of the TP block
for parallel processing, an optimized stage is employed that
uses only three multipliers and five adders to save hardware
resources [41], as shown below.

(a+ bi)(c+ di) = ac− bd + ((a+ b)(c+ d) − ac− bd)i

(18)

A fully pipelined version of this multiplier can be realized
with a latency of 6 clock cycles. The complex product terms
now need to be passed to a pipelined complex adder tree
unit that pipelines the successive adder stages to yield the
corresponding rparalleli,j term with a latency of log2(NR + NT ).
Upon receiving the reciprocal square root from the DP block,
the triangular coefficient ri,j can be computed, at which time
qi is available from the DP. The second stage of the optimized
complex multipliers computes the product of ri,j with qi
and subtracts the resulting entity from buffered channel
coefficients hj.
While all DP and TP blocks are active in the first iteration,

a finite-state machine (FSM) within the preprocessor uses
appropriate signals to incrementally disable TP blocks in
subsequent iterations. The orthonormal columns generated in
each iteration were stored in registers until the final orthonor-
mal column was computed. At this point, the columns of Q
are stored into the memory. The proposed structure permits
interleaved pipelining of channel subcarriers to considerably
improve throughput in addition to reducing latency. For
instance, a block ofP subcarriers can be sequentially retrieved
by the channel preprocessor, where P is related to the latency
of parallel processes. After NT iterations, the computed Q
matrices are stored sequentially into memory, whereas the
preprocessor begins retrieving the next block of subcarriers
from the channel storage.

B. EQUALIZER BLOCK
The stored Q can be partitioned to yield Q1 and Q2 which
need to be multiplied according to Equation (13) to generate
theMMSEfiltermatrix. The complexity of thismatrix-matrix
multiplication is given byO(NRN 2

T ) complex multiplications
andO(NRNT ) complex divisions. This straightforward imple-
mentation leads to significant hardware complexity, but this
can easily be overcome by a simplified application ofT to the
receive vector.

First, a transformed receive vector denoted by ỹ can be
computed as ỹ = Q1Hy. This can be accomplished by
first passing these quantities into a network of NR complex
multipliers. Subsequently,NT number ofNR-input adder trees
is employed to deliver ỹ to the next stage. Subsequently,
Q2 is multiplied by ỹ in a similar manner to deliver the NT -
dimensional vector. Because 1/σ can be pre-computed, this
is succeeded by a layer of NT constant multipliers to yield the
MMSE equalized vector.
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FIGURE 9. Equalizer block architecture.

FIGURE 10. LLR computation block architecture for the ith equalized
symbol assuming 4-QAM with 2 bits per user.

Simultaneously, the equalizer block is also tasked with
computing the post-detection SNR according to Equa-
tion (16). Because this needs to be computed only once for
every channel matrix, NT complex multiply-and-accumulate
(MAC) units are used to determine the SINR estimates for
each layer. A high-level overview of the equalizer block
architecture is shown in Fig. 9.

C. LLR COMPUTATION ARCHITECTURE
To significantly reduce the resource consumption of the
traditional max-log approximation-based design from Equa-
tion (17), the LLR computation block is constructed using
two stages, as shown in Fig. 10. In the first stage, the partial
Euclidean distance (PED) between the ith equalized symbol
of s̃ and the corresponding quadrature amplitude modulation
(QAM) constellation symbols is computed. The minimum
PED is extracted to determine the overall PED across all
the equalized symbols given by PDML. The second stage
consists of O(log2(QAM )) partial-distance calculators with
respect to the number of bits per user. These blocks use
intermediate computations from the first stage, as shown in
Fig. 10 as PDarray, which leads to significant computation
reuse and hardware savings. The entire process is highly
pipelined and properly synchronized to deliver LLR values
in every clock cycle after the pipeline is flushed.

The LLR computation block is highly reconfigurable
for various numbers of users and modulation orders. The
reduced-complexity design made possible by the significant
reuse of PED computations enables FPGA implementations

FIGURE 11. Coded BER versus SNR for varying fixed-point precisions in a
32 × 12 MIMO uplink detection.

by limiting the number of digital signal processing (DSP)
slices needed for higher MIMO dimensions.

V. IMPLEMENTATION RESULTS AND DISCUSSION
This section evaluates the FPGA implementation of the
proposed accelerator and compares the design with recent
approximative detectors for massive MIMO in the literature.
The parameterized design enables us to analyze the perfor-
mance of the accelerator for different MIMO settings and
modulation orders.

A. FPGA IMPLEMENTATION RESULTS
First, a fixed-point analysis was performed to evaluate the
impact of different quantization formats on the detection
performance of the architecture. Clustered Delay Line (CDL)
channel models with the ‘B’ profile are adopted for realizing
a 32 × 12 MIMO uplink system with a carrier frequency
of 3.5 GHz, a subcarrier spacing of 30 kHz and a delay
spread of 300 ns. Low-density parity code (LDPC) decoding
with code rates of 5/6 and 64-QAM modulation were
employed. Fig. 11 shows the degradation in the coded
BER for different fractional precisions with respect to the
floating-point implementation. It is observed that a fractional
precision of 13 bits achieves the closest possible performance
to the floating-point curve and is thus chosen for our
implementation.

The proposed architecture is written using the Verilog
hardware description language (HDL) in a parameterized
manner to support any fixed MIMO configuration. The
design is first implemented for two MIMO configurations
supporting four and eight number of users with 64 BS
antennas to compare with state-of-art approximation-based
detectors that also support four and eight users respectively.
The design is implemented on a Xilinx Virtex Ultrascale+
XCVU9P FPGA device considering a MIMO system with
64-QAM modulation order and the performance metrics are
listed in Table 3. One of the key performance measures used
in the literature is hardware throughput (HT) in megabits per
second (Mbps), which can be calculated as follows

HT =
SC × NT log2(QAM) × fclk

Latency of computing equalized output
(19)
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TABLE 3. Comparison of the SQRD preprocessing accelerator with state-of-art FPGA-based designs.

FIGURE 12. VCU118 resource utilization trends for different modulation
orders and MIMO sizes in terms of LUTs/100, FFs/100 and DSPs.

where the architecture-specific multiple subcarrier inter-
leaved processing is denoted by SC (e.g., 24 in [28], 18 for the
proposed design, and 1 in other cases), NT is the number of
users, QAM is themodulation order, and fclk denotes themax-
imum clock frequency of the design. The hardware efficiency
was measured in terms of the throughput (Mbps) divided by
the number of look-up tables (LUTs) and flip-flops (FFs).
Wu et al. [25] presented Cholesky decomposition-based
detectors for 64× 4 and 128× 8, which were able to achieve
hardware data throughputs of 301 Mbps and 603 Mbps
respectively. Reference [26] presented anNSE-based detector
for 128 × 8 MIMO which achieved 621 Mbps, while [24]
used an improved GS method to improve the throughput
to 732 Mbps. Reference [42] proposed a tridiagonal matrix
inversion (TMA) detection that achieved 630Mbps data rates.
Reference [28] demonstrated a high-throughput optimized
CD (OCD) detector that attained 376 Mbps throughput with
comparatively fewer resources. Reference [43] proposed an
intra-iterative interference cancellation (IIC) scheme that
achieved a higher hardware throughput of 915 Mbps.

Although FPGA implementations of traditional MMSE
detection for higher number of users are non-existent to the

best of our knowledge, the proposed accelerator can support
these higher MIMO configurations on a single FPGA with
certain tradeoffs. The proposed 64 × 4 detector achieved
more than 3 times the throughput achieved by [25] for
supporting four users. It also has better hardware efficiency
in terms of throughput per LUT. The proposed 64×8 detector
achieved a hardware throughput of 1.745 Gbps, which is
almost twice that of the best-performing detector for NT =

8 in [43]. Although the hardware efficiency is not high
compared to [28] and [43], it is comparable to that of the other
detectors. Furthermore, the proposed detector can potentially
attain superior BER performance compared to approximative
detectors, particularly when the number of BS antennas is
lower (Figs. 3a and 3b).

B. DISCUSSION
1) SCALABILITY
The parameterized architecture described in this work enables
the rapid evaluation of diverse MIMO configurations to
ensure scalability of the architecture. In particular, the
hardware description can support any NR, NT and mod-
ulation order without affecting the design functionality.
This facilitates the synthesis and evaluation of multiple
configurations to understand the effect of the number of users
and modulation orders on the hardware complexity of the
proposed architecture. Vivado synthesis was performed for
the XCVU9P FPGA device on the VCU118 evaluation board.
Fig. 12 shows the LUT/100, FF/100, and DSP utilization for
8×4, 16×8, 24×12 and 32×16 detectors. It is observed that
the 8 × 4 and 16 × 8 architectures sit very well in hardware
with less than 40% DSP, 25% LUT, and 15% FF utilization.
For the 24 × 12 case, DSP usage crosses 80% for 64-QAM,
whereas LUT and FF usage are approximately 30% and 20%
respectively. When the architecture is extended to 32×16,the
DSP usage reaches a maximum, whereas the FF utilization
is around 35-40%. It must be noted that the LUT utilization
in Fig. 12 increases for 64-QAM because DSP resources on
VCU118 are exhausted and LUTs are utilized to implement
multiplications. It can be observed that for a fixed number
of users, the hardware consumption increases linearly for
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TABLE 4. Latency analysis of the design stages for different NR , NT and
modulation orders.

FIGURE 13. Processing latency and hardware throughput versus the
number of users for a 64-QAM MIMO system with 32 BS antennas.

higher modulation orders, namely, 4-QAM, 16-QAM and 64-
QAM. This was mainly due to the complexity of the LLR
computation block which increases significantly for higher
bits per user because of the extensive parallelism required.
Alternatively, for a fixed modulation order, increasing the
number of users also scales up hardware consumption owing
to the highly parallel QRD and equalizer architectures.

2) PROCESSING LATENCY AND THROUGHPUT EVALUATION
The processing latency for each stage of the proposed design
was examined carefully, and is tabulated in Table 4. It can
be observed that the parallel-QRD block consumes the most
clock cycles and is linearly proportional to NT . The equalizer
and LLR computation blocks are relatively inexpensive in
terms of the clock cycles. It should be noted that because of
the semi-pipelined nature of the parallel-QRD architecture,
a block of 16 + log2(NR + NT ) subcarriers can be processed
iteratively and sequentially stored into memory at the end of
the first stage, while the next block starts being processed.

Assuming slowly varying MIMO uplink channels
with 32 BS antennas and 64-QAM, one channel estimate
per slot is sufficient to reliably decode the transmitted
bits [44]. In this scenario, a single instance of the LLR
computation block accepting a new equalized vector in
every clock cycle can attain a peak data rate of 2.4 Gbps.
This is because, while the next block of channel estimates
is being processed, the equalizer and LLR blocks can
operate on multiple data symbols corresponding to the
previous sub-carrier block. Fig. 13 shows the variation in the
processing latency and hardware throughput in such a channel

FIGURE 14. Power consumption in Watts versus the number of users for
a 32 BS antenna MIMO system.

for an increasing number of users, considering 10 data
symbols per subcarrier. The high hardware throughput arises
from the highly pipelined equalizer and LLR computation
blocks. Reference [34] achieved an improved throughput
of 127 Mbps to 607 Mbps considering 10 received vectors
per subcarrier in a slowly fading channel. Under similar
considerations, the proposed design can achieve significantly
higher throughputs of approximately 11 Gbps, which is
greater than that in [34] considering the highest level of
parallel processing. This also implies that the hardware
efficiency of the proposed architecture in terms of throughput
per LUT and FF can be significantly improved comparedwith
the reported figures in Table 3.

3) FPGA POWER CONSUMPTION
To understand the impact of the design parameters on the
energy consumption, Fig. 14 shows the increase in dynamic
power with an increasing number of users in a MIMO system
with 32 BS antennas and 64-QAMmodulation. The dynamic
power was estimated using the Vivado Power Estimator. It is
observed that the dynamic power scales linearly with the
number of users.

4) SOFTWARE INTEGRATION
Fig. 15 shows the high-level hardware overview of the
interaction between the host software and the Gen 3 × 16-
based FPGA accelerator considering a 16 × 8 MIMO uplink
system operating at 100MHzwith 30 kHz subcarrier spacing,
per-slot channel estimates, and 12 data symbols. In our tests,
we used the Xilinx DMA (XDMA) subsystem configured in
memory-mappedmode to interact with our top-level wrapper.
Xilinx DMA drivers running on an Ubuntu 20.04 OS were
used to establish communication with the FPGA. The host-
to-card (H2C) interface responsible for writing channel data
and received vectors to the FPGA and the card-to-host (C2H)
interface responsible for reading LLR data from the FPGA
have measured latencies of 300µs and 175µs respectively
for 50 MHz bandwidth, while the FPGA processing time is
approximately 45µs. It is worth mentioning that the PCIe
data transfer burden is several-fold higher for approximate
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FIGURE 15. Hardware overview of PCIe-based interfacing.

inverse-based methods owing to the much higher NR needed
to facilitate the detection of eight users. This unnecessarily
increases the PCIe latency, affecting real-time capabilities
and does not make them suitable for lookaside acceleration.

5) FUTURE DIRECTIONS
Some interesting directions for further research to extend the
capabilities of the proposed accelerator are briefly discussed.
Complexity-reduction techniques for simplifying LLR cal-
culations are being investigated to save DSP resources and
potentially extend the accelerator to support higher MIMO
dimensions. Dynamic partial reconfiguration (DPR) is also
being actively investigated to make the accelerator run-time
flexible to different MIMO dimensions.

There is also a great deal of interest in implementing com-
putationally complex massively parallel non-linear (MPNL)
detectors [29], [45], [46], [47], which can greatly boost the
energy efficiency of Open RAN systems by supporting the
same number of users as exact-MMSE solutions with half the
number of BS antennas.

VI. CONCLUSION
In this paper, a hardware-friendly, parallel QRD-based soft-
output exact-MMSE accelerator is proposed that achieves
low processing latency and high throughput. The design
scales well to support different MIMO configurations and
modulation orders. The implementation results on a Xilinx
Virtex Ultrascale+ device demonstrate significant through-
put improvements over state-of-the-art approximation-based
detectors supporting eight users, in addition to the superior
BER performance achieved when the number of BS antennas
is lowered. The achievable throughput of the proposed
architecture can be further improved from 1.745 Gbps
to 11 Gbps by considering slowly fading channels with
multiple transmitted symbols per channel state information.
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