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ABSTRACT Predicting the price of soybean meal futures has always been a hot topic in the financial market.
It is influenced by many factors and has complex nonlinear characteristics, which makes it difficult to predict
accurately. This paper proposes a prediction model for soybean meal futures price based on CNN-ILSTM-
SA,which consists of CNN (Convolutional Neural Network), ILSTM (Improved Long Short-TermMemory),
and SA (Self-Attention mechanism). CNN can well perform feature extraction on the input time series data.
The ILSTM model presented in this paper removes the output gate of LSTM (Long Short-Term Memory)
and improves the forget gate and input gate, thus reducing ILSTM’s complexity, shortening training time,
and improving learning ability. SA can get the correlation between different input terms and predicted
values, and assign different weight coefficients according to the correlation level to improve prediction
accuracy. To verify the CNN-ILSTM-SA’s effectiveness, we compare it with eighteen baseline models, and
the experimental results show that it is optimal. The MAE (Mean Absolute Error) of CNN-ILSTM-SA is
39.0441, the smallest of all models. As the data of the soybean meal futures price fluctuates in the range
of 3500-4500 in experiments, the proportion of the MAE value of 39.0441 is 0.87%-1.15%, which is at an
extremely low level; R2 (R-square) is 0.97487, which is closest to 1; The training time is 157.64s.

INDEX TERMS CNN, ILSTM, self-attention mechanism, soybean meal futures, price prediction.

I. INTRODUCTION
Soybean meal plays an important role in China’s agriculture
and animal husbandry. Soybean meal futures trading groups
are huge, active, and have strong seasonal characteristics.
Several factors (including weather conditions, supply and
demand, international trade policy, and monetary policy)
affect the soybean meal futures price. The interaction of these
factors makes the fluctuation of soybean meal futures price
more complicated, and it is difficult to accurately predict the
price trend by simply analyzing one aspect [1]. In addition,
the trend of soybean meal futures price has a complex nonlin-
ear relationship that is difficult to capture by traditional linear
models. Therefore, it is significant to establish an efficient
prediction model for soybean meal futures price combined
with deep learning models.

Accurately predicting soybeanmeal futures price is achiev-
able with the ongoing advancements in machine learning.
CNN’s proposal has achieved great breakthroughs in time

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

analysis and other aspects. However, when the amount of
data is large, the problems of ‘‘gradient disappearance’’ and
‘‘gradient explosion’’ often occur in model training. The
proposals of GRU (Gated Recurrent Unit) and LSTM can
alleviate the above problems [2], [3].

The analyses of LSTM and GRU find that they decided
to forget and retain historical and input data by introducing
gate control technology. However, due to the large number
of LSTM weight parameters and the complexity of model
calculation, the training time will increase when the soybean
meal futures data shows large volatility in the time dimension.
Based on this problem, this paper presents an improvedmodel
of ILSTM based on LSTM by studying LSTM, GRU, and
time series data. This model removes LSTM’s output gate
and improves the forget gate and input gate, so the training
time is shorter, and the learning ability is stronger. This
paper proposes a prediction model for soybean meal futures
price based on CNN-ILSTM-SA. In this model, CNN can
well extract feature values, and SA can analyze and calcu-
late the correlation between various data and the predicted
value. Eighteen models (including CNN, LSTM, ILSTM,
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CNN-LSTM, GRU, LSTM-GRU, CNN-GRU, DT (Decision
Tree), RF (Random Forest), MLP (MultiLayer Perceptron),
IRF-LSTM (Improved Regularization Function-LSTM),
ARFIMA-LSTM (Autoregressive Fractional IntegralMoving
Average-LSTM), LSTM-LightGBM (LSTM-Light Gradient
Boosting Machine), Bi-LSTM (bidirectional-LSTM),
CEEMDAN-LSTM (Complete Ensemble Empirical Mode
DecompositionwithAdaptiveNoiseAnalysis-LSTM), CNN-
ILSTM, CNN-LSTM-SA, and CNN-GRU-SA) are intro-
duced as baseline models to verify the effectiveness of
CNN-ILSTM-SA. MAE, R2, and training time are used to
evaluate the prediction results. Experimental results show that
CNN-ILSTM-SA performs better than other models.

The following are this paper’s main contributions:
(1) In terms of algorithms, ILSTM improves the algorithm

of LSTM’s forget gate and input gate. The 1-tanh func-
tion is introduced after the forget gate, which improves
the model’s ability to retain information. A new ALSG
(Avoid Learning-Saturation Gate) is proposed, and
ct−1 and ALSG are introduced into the input gate
algorithm, which solves the model training oversatura-
tion problem and improves the sensitivity of the model
to input data.

(2) In terms of network structure, compared with LSTM,
the ILSTM presented in this paper removes the output
gate, reduces the weight parameters to four, and bias
parameters to two under the premise of guaranteeing
the accuracy of the prediction for soybean meal futures
price. ILSTM has reduced computational complexity
and has shorter training time.

(3) This paper presents a prediction model for soybean
meal futures price based on CNN-ILSTM-SA. CNN
performs feature extraction on the input time series
data. SA analyzes the correlation between different
input terms and the predicted value, assigning different
weight coefficients according to the correlation level.
Compared with the other eighteen forecasting models,
the CNN-ILSTM-SA composite model performs best
and can improve the prediction accuracy of soybean
meal futures price.

II. RELATED WORK
Neural network models have been widely used at home
and abroad in recent years. In 2015, Sundermeyer et al.
used artificial neural networks to predict word language.
The prediction accuracy was high, but the prediction time
was long [4]. In 2019, Moon and Kim utilized LSTM to
forecast the stock market index and its volatility, but they
still needed to solve the problem of long predicting time [5].
Wang et al. used the network model composed of LSTM
and GRU to forecast the PM2.5 of four cities with good
prediction results [6]. Bukhari et al. used ARFIMA and
LSTM to predict financial market, overcoming the overfit-
ting problem of neural networks [7]. Nabipour et al. used
DT, bagging, RNN, LSTM for comparative experiments, and
the experiments showed that LSTM produced more accurate

results [8]. Sun et al. proposed a RF (Random Forest)
to predict the air pollution index. The air pollution index
changes greatly with the season, and the prediction time is
increased [9]. Tong et al. used the DT combination model
to predict hormone receptors, and the experiment results
proved that the combined model was more accurate than a
singlemodel [10]. Yang et al. utilized CNN-LSTM to forecast
the concentration of suspended particulate matter in Seoul,
and the experiment results showed that CNN-LSTM had a
superior prediction effect [11]. Chang et al. utilized LSTM to
forecast changes in air pollution, and it was challenging to
obtain high-precision prediction due to the single prediction
model [12]. Zhang et al. utilized LSTM to forecast the futures
price of new energy. They used diversified data to improve the
forecast accuracy, which would increase the model training
time [13]. Wen et al. presented an air pollution forecast
model based on CNN and LSTM to improve the forecast
accuracy [14]. Zhu et al. utilized an attention-based CNN-
LSTM model in the PM2.5 prediction process [15]. Wen and
Zhu et al. employed CNN to address LSTM’s feature extrac-
tion limitations. However, due to its numerous parameters,
LSTM often requires extensive training time. Shu et al. used
LSTM to identify human horizontal movements, but there
was still the problem of long training time due to complex
data features [16]. In 2021, Suebsombut et al. utilized LSTM
to forecast soil moisture, and the results showed that the
LSTM model performed well. However, when the dataset
was large, the training time also increased [17]. Bhimavarapu
used IRF-LSTM to enhance the performance of rainfall pre-
diction [18]. In 2022, Tian et al. presented a hybrid model
of LSTM and LightGBM to forecast the rise and fall of
stocks. Although the accuracy has improved, the prediction
time is still long [19]. Li et al. utilized Bi-LSTM to fore-
cast soil cracks in pneumatic subsoiling. The effect was
obvious, but the prediction time was relatively long [20].
Zhou et al. utilized the CEEMDAN-LSTM for carbon price
prediction, and the prediction results were stable and reli-
able [21]. Yu et al. applied LSTM to effectively forecast
the competitiveness trend of China’s machinery equipment
export [22]. Liu et al. used LSTM to predict vehicle lane
changes, significantly improving prediction accuracy. The
training time will increase significantly when the data set
is too large [23]. Kervanci et al. utilized a hybrid model of
LSTM-GRU to forecast Bitcoin’s price, which can effectively
reduce the prediction error. However, it still did not solve the
problems of long training time and many parameters [24].
As mentioned above, this paper will be based on the existing
research results, strive to improve the above deficiencies, and
join innovative research.

III. MODELS
A. SA
SA is a commonly used attention mechanism for time series
data processing, which allows the model to assign different
weights to elements in the input series, capturing their
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dependencies [25]. The principle of the SA mechanism is
shown in Fig. 1.

FIGURE 1. SA mechanism.

The SA mechanism is carried out through the following
calculation steps: For each element in the input sequence,
SA calculates k i (key vector), qi (query vector), vi (value
vector) of the i-th eigenvalue, which are obtained by multi-
plying the element ai with the trained weight matrices wq,
wk, wv. The calculation formulas are shown in Formulas (1),
(2), and (3).

k i = wk · ai (1)

qi = wq · ai (2)

vi = wv · ai (3)

αij and zij denote the similarity and weight factor of eigen-
value i and j, respectively. αij is obtained by dividing the
dot product of qi and k i by a scaling factor

√
d (usually the

square root of the dimension of k i).
∑n

j=1 exp(α
ij) denotes the

exponential operation of e on αij. The calculation formulas
are shown in Formulas (4) and (5).

αij =
qi · k j
√
d

(4)

zij =
exp(αij)∑n
j=1 exp(αij)

(5)

bi denotes the SA layer’s output, which is the eigenvector
obtained by the sum of the vi vector of the i-th eigenvalue
multiplied by the weight factor zij. As shown in Formula (6).

bi =

∑n

i=0
zij · vi (6)

B. ILSTM
LSTM contains three types of gates (input gate, forget gate,
and output gate) through which it stores and updates informa-
tion to mine long-term dependencies in time series data [26].
GRU only contains two gates (update gate and reset gate),
where the update gate combines the input and forget gates
of LSTM [27]. This paper proposes a new ILSTM model
based on gate control technology. The ILSTM’s structure
is different from that of LSTM and GRU. The structure of
ILSTM is shown in Figure 2. The ILSTM first proposed in

this paper consists of a forget gate and an input gate. ILSTM
is based on the LSTM and has been improved and optimized
in algorithm and structure. It is a brand-new model with
improvement, innovation, high prediction, and high accuracy.

ILSTM improves the input gate and forget gate in terms
of algorithm. The first is the forget gate, which can control
the forgetting and retention of information. The σ (x) is the
sigmoid function. The input data at time step t is denoted
by xt . The previous time step t−1’s hidden layer is denoted
by ht−1. Wfh represents the ht−1’s weight of forget gate,
Wfx represents xt ’s weight, bf represents the forget gate’s
bias, the forget gate ft is shown in Formula (7).

ft = σ
(
Wfh · ht−1 +Wfx · xt + bf

)
(7)

FIGURE 2. ILSTM structure.

The output range of the forget gate in LSTM after passing
through the sigmoid function is (0, 1). Through the study
of functions, we can know that the range of values of tanh
functions between (0, 1) is (0, 0.76), and the range of values
of 1-tanh functions between (0, 1) is (0.24, 1).

The ILSTM presented in this paper adds the 1-tanh func-
tion after the forget gate, so that the output range of the forget
gate is changed to (0.24,1), as shown in Formula (8).

nt = 1 − tanh(ft ) (8)

The value range of nt is (0.24,1).
The mainline forgetting.. kt [28] is calculated by ct−1 and

nt , where ct−1 is the cell state information of the previous
time step t−1, kt denotes the effect of information on the
current cell state ct , as shown in Formula (9).

kt = nt×ct−1 (9)

The introduction of the 1-tanh function helps to reduce
information loss in the cell state so that the model can bet-
ter retain important information. This improves the model’s
learning efficiency and stability and allows it to adapt better
to various sequence data processing tasks.

The second is the improvement of the input gate. ILSTM
introduces ct−1 to the input gate algorithm. The function of
the input gate is to control how much of the current input
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data xt is stored in the memory cell, that is, how much can be
saved in ct . The introduction of ct−1 can improve the ability
of ILSTM’s input gate to capture the long-term dependence
in the sequence. In terms of information transfer, it also helps
ILSTM retain and transfer information about the previous
state, better understand the overall context of the sequence
and improve the ability to model the data. As shown in
Formula (10), where Wih andWix are the weights of ht−1 and
xt of the input gate, respectively, and bi denotes the bias of
the input gate.

it = σ (Wih · ht−1 +Wix · xt + ct−1 + bi) (10)

According to the saturation property of the sigmoid func-
tion, when x is less than −6 and greater than 6, the value
of the sigmoid activation function will approach 0 and 1,
respectively. That is to say, when the input value is large or
small, the derivative of the sigmoid function will tend to zero,
resulting in the problem of gradient disappearance.

Therefore, ILSTM introduces ALSG in the input gate,
which can alleviate this problem to a certain extent. The
function of ALSG is to map the sigmoid function’s output
to the tanh activate function to expand the range of output
values. This operation enhances input data’s sensitivity and
increases the amplitude of gradient propagation, which helps
alleviate the problem of gradient disappearance, as shown in
Formula (11).

ALSG = tanh(it ) (11)

The introduction of ALSG aims to improve the sensitivity
of the input data through nonlinear mapping when dealing
with larger or smaller input values, thereby alleviating the
sigmoid function’s supersaturation problem.

According to the Formula (12), ct is the information saved
from the beginning to the present.

ct = kt + ALSG (12)

ht denotes the information saved at the current time. ct
determines how much information can be retained through
the tanh function, as shown in Formula (13).

ht = tanh(ct ) (13)

In terms of structure, ILSTM removes the output gate
compared with LSTM and has a simple structure compared
with GRU.

In terms of parameters, the parameters of ILSTM are opti-
mized. Compared with LSTM, ILSTM reduces the number of
the weight parameters from eight to four and the number of
the bias parameters from four to two. Compared with GRU,
ILSTM reduces the number of the weight parameters from
six to four and the number of the bias parameters from three
to two.

ILSTM enhances the overall learning ability by improving
the internal unit structure of LSTM and optimizing weight
and bias parameters.

C. CNN-ILSTM-SA
Fig. 3 shows the CNN-ILSTM-SA’s structure. The model has
five layers. The first layer is the data input and data prepro-
cessing layer, which requires preprocessing operations such
as normalization processing and 3D time series construction
of the raw data. The second layer is the CNN layer, which
inputs the normalized data into the convolution layer of CNN
for calculation, selects the important feature data, and then
enters the pooling layer for data dimensionality reduction
operation to realize the feature extraction of soybean meal
futures data. The third layer is the prediction layer, which
inputs data into the ILSTM layer for calculation. The fourth
layer is the SA layer, which uses SA to calculate the attention
value of the data at different moments for the predicted
value and obtain the output data. The last layer is the out-
put layer, which de-normalizes and outputs the calculation
results. CNN-ILSTM-SA has fully realized the prediction of
soybean meal futures price.

FIGURE 3. Prediction model for soybean meal futures price based on
CNN-ILSTM-SA.

IV. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
In this paper, all the training and prediction experiments of
soybean meal prediction models are carried out in the same
operating environment of the same computer, and Table 1
displays the specific hardware and software environments.

TABLE 1. Experimental hardware and software environments table.

B. DATA COLLECTION AND PREPROCESSING
Through the research and analysis of the existing market, the
economic factors affecting soybeanmeal futures price mainly
come from two aspects. On the one hand, corn is a substitute
for soybean meal, and its market fluctuations will affect
soybean meal futures price. On the other hand, fluctuations in
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TABLE 2. Part of the raw data.

TABLE 3. Experimental data.

the soybean meal futures market will fluctuate with changes
in the domestic and foreign economies. The influencing fac-
tors selected in this paper include Corn futures price (Corn),
Standard & Poor’s 500 Index (SPX), Dow Jones Indus-
trial Average (US30), Nasdaq Composite Index (NAS100),
Shanghai Composite Index (SH), USD/CNY Exchange rate
(USDCNH).

In this experiment, 1,508 DCE (Dalian Commodity
Exchange) soybean meal futures and related influencing fac-
tors data from November 1, 2017, to January 11, 2024,
are used as experimental data. The data are sourced from
‘https://tushare.pro/’. Part of the raw data of soybean meal
futures data is shown in Table 2.

The following is the processing of the raw data used in this
experiment:
(1) Data alignment. Soybean meal futures belongs to the

Chinese market, while some influencing data comes
from the international market. Due to different legal
holidays at home and abroad, the closing date of the
futures market varies, resulting in the inability of some
data dates at home and abroad to correspond. There-
fore, aligning the influencing factor data with soybean
meal futures data is necessary.

(2) Data filling. Datamay be lost during data collection due
to storage failures and other reasons, such as the data of
November 23, 2022. Since futures trading data changes
smoothly over time in most cases and the value does
not change suddenly, this experiment uses the average
data value from the previous two trading days to fill
themissing part. Experimental data after data filling are
shown in Table 3.

In this experiment, Input data’s time is taken as a series,
and the two-dimensional segmentation and three-dimensional
construction are carried out. For example, suppose that there
are X pieces of soybeanmeal price data and influencing factor
data, and the three-dimensional construction is carried out
according to step=1 and sequence length=5. The soybean
meal price data and influencing factor data from the first
to the fifth trading day constitute the Y1 layer. The soybean
meal price data and influencing factor data from the second
to the sixth trading day constitute the Y2 layer, and so on to
obtain the X-4 layer (Y1, Y2. . .YX−4) data. In each layer, the
predictionmodel takes the soybean price data and influencing

FIGURE 4. Construction method of the three-dimensional time series.

factor data of the first four trading days as input and takes the
closing price of soybean meal price data of the fifth trading
day as output for training, verification, and evaluation. The
construction method of the three-dimensional time series is
shown in Fig.4.

C. DATASET SEGMENTATION AND EVALUATION INDEX
This experiment’s training, validation, and test sets’ data
ratios are 6:2:2. This division avoids model overfitting on a
specific dataset.

This experiment uses MAE, R2, and training time as com-
prehensive evaluation indexes of the model. TheMAE is used
to quantify the average absolute error between the predicted
value and the true value, as shown in Formula (14).

MAE =
1
n

∑n

i=1
|yi − ŷi| (14)

where n is the number of samples, ŷi is the model predicted
value of the i-th sample, and yi is the true value of the i-th
sample. The smaller the MAE value, the lower the deviation
between the model-predicted value and true value, and the
higher the prediction accuracy.

The R2 describes the degree of similarity between the true
value and the predicted value [21], as shown in Formula (15).

R2 = 1 −

∑n
i=1 (ŷi − yi)

2∑n
i=1 (ȳ− yi)2

(15)
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where n is the number of samples, ŷi is the model predicted
value of the i-th sample, yi is the true value of the i-th sample,
and ȳ is the average of the true values. The closer the value of
R2 is to 1, the better the model fits the data.

Training time is the time to train the model using the train-
ing and validation set data. The smaller the training time, the
better the model performs regarding computational resource
utilization and algorithm efficiency.

D. ADJUSTMENT OF MODEL PARAMETERS
In order to adjust the parameters, this experiment uses a com-
bination of the hyperparameter optimization technique (grid
search optimization algorithm) and empirical mode. Parame-
ter optimization aims to improve the model’s expressiveness
by finding a set of suitable parameters. Table 4 displays the
details of the parameters for the final experimental setting.

TABLE 4. The details of the parameters.

E. EXPERIMENTAL ANALYSIS
In this paper, eighteen models are used as the baseline
models. The comparative experiments are carried out in the
same experimental environment and using the same experi-
mental data. Table 5 displays the experiment’s results. The
experimental results show that CNN-ILSTM-SA has the best
prediction effect. The introduction of CNN and SA slightly
increases the composite model’s training time, but the pre-
diction accuracy is improved. Fig.5 illustrates the MAE, R2,
and training time of each model.

TABLE 5. Experimental results.

Through the evaluation indexes of the prediction results of
each model, it can be found that:

(1) LSTM, GRU, and ILSTM are all variants of RNN in
essence, and ILSTM has the best fitting effect after
improving the internal control unit. Compared with
LSTM, the R2 of the ILSTM is 0.015 higher and the
MAE is 8.40 lower. Compared with GRU, the R2 of
ILSTM is 0.014 higher and MAE is 12.04 lower. Fig.6
illustrates the comparison between the true value and
the predicted value of the three models.

(2) ILSTM is an improved model based on LSTM, and its
prediction effect is better than simple composite LSTM
models. The MAE of ILSTM is 7.8707 lower than
that of IRF-LSTM, 6.8288 lower than that of LSTM-
GRU, 5.8667 lower than that of LSTM-LightGBM,
and 5.1740 lower than that of ARFIMA-LSTM,
2.7623 lower than that of Bi-LSTM, and 1.5219 lower
than that of CEEMDAN-LSTM. The R2 of ILSTM is
0.01718 higher than that of IRF-LSTM, 0.01266 higher
than that of LSTM-GRU, 0.01060 higher than
that of LSTM-LightGBM, 0.00768 higher than that
of ARFIMA-LSTM, 0.00155 higher than that of
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FIGURE 5. Comparison of MAE, R2, training time.

FIGURE 6. Comparison of true and predicted values of ILSTM, GRU, LSTM.

Bi-LSTM, and 0.00632 higher than that of CEEMDAN-
LSTM.

(3) After the introduction of CNN and SA, the compos-
ite model can capture various features of the input
data more comprehensively and improve the learning
ability of complex relationships. Compared with the
single model, the MAE of combined LSTM, GRU,
and ILSTM is decreased, and R2 is increased. Fig.7
illustrates the comparison of the two indexes after
combining CNN and SA with a single model. Among
all compared models, CNN-ILSTM-SA performs best
withMAE of 39.0441, R2 of 0.97487, and training time
of 157.64s. The MAE of CNN-ILSTM-SA reaches
around 40. Although this value is large, we should
consider the specific case of the experimental dataset

and the prediction task. In this paper’s experimental
data, soybean meal futures’ prices fluctuate between
3500 and 4500, and the proportion of MAE around
40 is 1.42%-0.89%, which is very small. Compared
with CNN-LSTM-SA and CNN-GRU-SA, theMAE of
CNN-ILSTM-SA is decreased by 11.79% and 13.58%,
respectively, and the R2 is increased by 0.99% and
0.82%, respectively. Fig.8 illustrates the comparison
between the true value and the predicted value of the
models.

(4) When all parameters are the same and epoch=50,
ILSTM has the shortest training time and the best
performance in a single model. Compared with LSTM
and GRU, the training time of ILSTM is increased
by 25.8% and 8.49%, respectively. The composite
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FIGURE 7. The comparison of the two indexes after combining CNN and SA with a single model.

FIGURE 8. Comparison of the true value and predicted value of the composite model.

models of ILSTM performed well. Compared with
CNN-LSTM and CNN-GRU, the training time of
CNN-ILSTM is increased by 23.83% and 7.44%,
respectively. Compared with CNN-LSTM-SA and
CNN-GRU-SA, the training time of CNN-ILSTM-
SA is increased by 26.82% and 8.49%, respectively.
Experiments show that ILSTM removes the output gate
and controls the weight parameters and bias parameters
less than those of LSTM andGRU is very effective. The
training time comparison is shown in Fig.9.

V. DISCUSSION
Through comparative experiments, we can find that the fit-
ting degree of the prediction results of the recurrent neural

network model is higher than the traditional regression pre-
diction model. Though the traditional regression model can
achieve a high-precision prediction of linear data, because the
soybean meal futures data is a nonlinear and nonstationary
time series, it is difficult for the traditional prediction model
to learn the deep information of the data, and the traditional
regression model has poor prediction effect on soybean meal
futures price.

Under the same data set and experiment conditions, the
comprehensive evaluation indexes of the CNN-ILSTM-SA
are better than those of other models. Compared with LSTM
and GRU, ILSTM can significantly shorten the training
time due to the reduction of parameters while maintaining
higher prediction accuracy. CNN-ILSTM-SA compared with
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FIGURE 9. Training time comparison.

ILSTM, the introduction of CNN and SA improves prediction
ability.

The reasons for improving the prediction accuracy of
CNN-ILSTM-SA are as follows:
(1) The construction of a composite model makes up for

the shortcomings of a single model in some aspects.
CNN can well perform data feature extraction. SA can
get the correlation between different input terms and
predicted values, and assign different weight coeffi-
cients according to the correlation level to improve
prediction accuracy.

(2) ILSTM introduces the 1-tanh function in the forget
gate, which changes the output range of the forget gate
to (0.24,1) so that the forget gate’s output value is in a
more obvious range. Thus, more input data character-
istics are retained, and the model’s learning ability is
improved.

(3) In the improvement of the LSTM’s input gate, ct−1 is
added to the input gate algorithm, which is the cell
state information of the previous step t-1. The intro-
duction of ct−1 makes the model’s input gate have a
higher memory effect on the current data retention,
and the introduction of ALSG improves the model’s
sensitivity to the input data, greatly reduces the degree
of oversaturation, and makes the model learn more
thoroughly.

ILSTM and CNN-ILSTM-SA have a great improvement in
model training time because:
(1) The structure of the ILSTM model is simple. ILSTM

consists of the input gate and the forget gate. Compared
with LSTM, ILSTM removes the output gate.

(2) ILSTM has fewer parameters. Compared with LSTM,
ILSTM reduces the weight parameters from eight
to four and the bias parameters from four to two.
Compared with GRU, ISLTM decreases the weight
parameters from six to four and the bias parameters
from three to two.

VI. CONCLUSION
This paper presents a prediction model for soybean meal
futures price based on CNN-ILSTM-SA. Compared with
eighteen baseline models, CNN-ILSTM-SA has the best
comprehensive evaluation of prediction results. In this paper,
ILSTM is presented for the first time. Under the premise of
guaranteeing high prediction accuracy, ILSTM is improved
and optimized, which alleviates the problems of ‘‘gradi-
ent explosion’’ and ‘‘gradient disappearance’’ caused by
long-term data dependence in RNN. Compared with LSTM
and GRU, ILSTM’s training time is 25.8% and 8.49%
shorter, respectively, and its prediction accuracy is the high-
est. In addition, the introduction of CNN compensates for the
shortcomings of ILSTM feature extraction. The introduction
of SA can obtain the correlation between different input terms
and predicted values, and assign different weight coefficients
according to the correlation level to improve the prediction
accuracy. This paper’s conclusions are as follows:
(1) The experiment results show that ILSTM has an excel-

lent prediction performance. ILSTM is an improved
model of LSTM, which removes LSTM’s output gate
and improves the forget gate and input gate. By intro-
ducing the 1-tanh function into the forget gate, and
adding ct−1 and ALSG into the input gate algorithm,
the prediction accuracy of ILSTM is improved. The
prediction accuracy of ILSTM is higher than that of
LSTM and GRU.

(2) The CNN-ILSTM-SA compensates for the shortcom-
ings of the single prediction model, such as insufficient
feature data extraction and insufficient learning of his-
torical data. The prediction model for soybean meal
futures price based on CNN-ILSTM-SA performs best
in this experiment.

(3) The design and parameters of the model are improved
and optimized. ILSTM has four weight parameters and
two bias parameters, which are smaller than LSTM
and GRU, and significantly improve CNN-ILSTM-
SA’s prediction speed.

CNN-ILSTM-SA is of great significance to the price
prediction of China’s soybean meal futures. It can help par-
ticipants grasp the movement regularity of the soybean meal
futures market in general, make reasonable decisions, and
promote the steady and healthy development of the market.
However, because weather and climate factors also impact
soybean meal futures price, our next work considers process-
ing weather and climate-related factors data into time series
and using it as an input item of the prediction model to further
improve the prediction accuracy.
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