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ABSTRACT Discovering potential drug-target interactions is crucial for advancing pharmacology. In recent
years, the development of large-scale DTI datasets has propelled advancements in DTI prediction
computational methods. Various deep learning approaches for interaction prediction often rely on sequence
data or structural complexity, yet the synergistic integration of diverse bioinformatics and binding site
data remains underexploited, constraining prediction precision. Therefore, a novel approach to integrate
available data is required to enhance DTI prediction performance. In this paper, we present a novel
aggregation prediction model named MDiDTI, designed to facilitate multi-attribute dual interaction learning.
The multi-head self-attention interaction network extracts substructure information of drug molecules and
pocket information of targets from biomedical data, enabling spatial-level learning of structural attributes.
Meanwhile, the dual-weight mapping network aggregates the chemical semantic features of drug-target
pairs, facilitating semantic attribute learning at the sequence level. Lastly, the model combines structural and
semantic attributes to compute the interaction values for DTI tasks. Performance evaluation metrics were
conducted on three mainstream datasets: BioSNAP, BindingDB, and Human. Experimental results indicate
that MDiDTTI outperforms existing methods and serves as a reliable and highly generalizable tool for DTI
prediction.

INDEX TERMS Drug target interaction, self-attention network, dual-weight mapping network, multi-
feature, joint attention.

I. INTRODUCTION

The drug development process is time-consuming and
expensive. Drug-target interactions (DTIs) are a key part of
the drug discovery and development process, describing the
interactions between a drug molecule and the target on which
it acts. The study of DTIs is crucial for the repurposing of
existing drugs as well as for the discovery of novel drugs.
With the rapid advancement of proteomics and drug molecule
research, the quantity of drug databases measured by wet
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experiments is also increasing. Although traditional manual
experiments and clinical experiments are reliable methods for
predicting DT, this approach is not practical [1]. Therefore,
it has become crucial to explore the interaction mechanism
of DTIs, assist wet laboratory techniques, and develop more
effective computational methods [2].

Developing a method that can predict DTIs with both
efficiency and accuracy represents a substantial challenge
[3]. Molecular docking simulation (MDS) is one of the
early computing methods [4]. Although this method has
been initially applied to drug-target interaction prediction,
its application is limited due to its complex operation and
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high computational cost [5]. The emergence of data-driven
methods, has successfully overcome some challenges in the
drug design and development process and has been widely
studied and applied [6]. For example, Yamanishi et al. [7]
proposed to apply bipartite graph technology to DTI pre-
diction. They transformed the task of predicting interactions
into a supervised learning problem of bipartite graphs and
proposed a statistical learning method that can combine
chemical structure information and genomic information of
drugs. The results show that this method exhibits certain
robustness in four categories of drug target sets. Laarhoven
et al. [8] utilized a kernel least squares-based classifier for
interaction prediction, and the input to the model included
only the drug-target interaction network. Although traditional
machine learning methods have achieved good performance,
these methods cannot abstract and automatically extract
features.

Deep learning algorithms can automatically extract impor-
tant features and learn complex nonlinear interactions
between drug targets [9]. They can be divided into two
categories according to input representation in DTI predic-
tion. One class of models uses input representations based
on drug and target protein sequences. The advantage of
these models is that they can handle variable-length inputs
and consider contextual information [10]. However, their
limitation lies in their inability to effectively capture the
structural information of molecules, resulting in reduced
prediction performance [11]. The shortcomings of this type
of model prompted researchers to consider using molecular
representations that are more consistent with experimental
settings and then developed the second type of deep learning
models, which are input representations based on molecular
graphs [12]. Where atoms and chemical bonds correspond to
nodes and edges, respectively. All these graph-based models
represent proteins using amino acid sequences, which are
unable to capture the three-dimensional structural features,
which are key factors in predicting DTIs. Obtaining high-
resolution 3D structures of proteins is a challenging task,
in addition to the fact that proteins contain a large number of
atoms, which requires large-scale sparse matrices to capture
the entire structure. To alleviate this problem, an alternative
strategy is used in which proteins are represented by a
2D contact (or distance) map that shows protein residue
pair interactions in matrix form. However, the contact
(or distance) map, which is usually the output of protein
structure prediction, is heuristic-based and provides only
an approximate abstraction of the true structure of the
protein. Considering that the binding of proteins to many
molecules occurs in different binding pockets rather than the
whole protein, network-based approaches cannot consider
both the semantic and structural properties of drug targets;
previous models only learn a global representation of the
drug target without explicitly considering local interactions
between drug target substructures. We believe that combining
sequence and structural properties is a more accurate and
effective approach. Therefore, in this work, we propose a
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multi-attribute dual interaction DTI prediction model called
MDIiDTI. The model incorporates multi-level attributes of
semantics and structure. One branch learns the properties
at the structural level. Another branch aims at explicitly
learning local interaction properties at the semantic level. The
contribution of semantic attributes and structural attributes
to the model is comprehensively considered to perform DTI
prediction more effectively. The proposed framework views
predicting drug-target interactions as a binary classification
task. The input is the drug-target pair (d, p), and the output
y € (0, 1), where y = 1 means that the drug interacts with the
target and y = 0 means that it does not.
This paper has the following key contributes:

e The fine structural information of protein binding sites
and drug molecule substructures are deeply mined and
effectively utilized, and effective integration sequence
and strustructural are achieved.

e GraphSage networks and scalable convolutional net-
works are used to jointly extract valuable feature rep-
resentations of proteins and drugs, effectively capturing
the topological and chemical information of molecules.

e For multi-feature information inputs, a fusion of a
multi-head attention network and dual weight mapping
network is proposed for dual attribute interactions at
the structure and sequence levels of proteins and drugs.
It achieves a multi-level fusion of protein-drug and
significantly improves the effectiveness of drug-target
interaction prediction.

Il. RELATED WORK

Deep learning based methods for solving DTI prediction
problems have achieved remarkable success. The main differ-
ence between deep learning methods is their architecture and
the representation of the input data. For example, Huang et al.
[13] created a large corpus to segment the original sequences
and then used Transformer to encode the segmented
sequences directly. While these sequence representations
contain atoms and continuously learn semantic relationships
between atoms, none of the sequence representations cover
the spatial structure of the molecule. The loss of spatial
structure information may weaken the predictive power
of the model as well as the functional relevance of the
learned latent space. Zheng et al. [14] proposed an end-
to-end deep learning framework to represent proteins with
2D distance maps and follow a visual question-answering
paradigm to predict interactions between drug targets. The
model combines a dynamic attentional CNN capable of
learning fixed-size representations, and a self-attentional
sequence model capable of automatically extracting semantic
features from linear symbols. Through the learned attention
weights, the model can provide interpretability of the
interaction contribution. However, the method is based on
the conversion of protein sequences into a heuristic protein
distance map, which lacks dynamic information and loses
structural information. Bai et al. [15] proposed a DrugBAN
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prediction model based on a three-layer GCN encoding drug
sequences and a CNN network encoding protein sequences.
To better learn the local interaction features between proteins
and drugs, the model incorporated an attention mechanism
to generate a new joint feature, and a bilinear attention
network was able to better learn the link between the two
subfeatures. Finally, the integration of the CDAN module
into the modeling process enhances the generalization ability
of the model. However, the characterization of targets and
molecules only contains sequence information. The binding
process of target and drug is a dynamic fitting process, and
relying on a fixed 2D molecular map to make predictions is
not sufficient.

As mentioned earlier, small molecules of drugs can be
easily and efficiently represented in one dimension, but
proteins are much larger molecules with complex interac-
tions for which a one-dimensional representation may be
insufficient. While datasets containing the 3D structures of
proteins are limited, some deep learning-based work has
used them. AtomNet [16] is the first network that applies
local convolutional filters to structural target information
and uses a binary classifier to predict DTI. Ragoza et al.
[17] describe a CNN scoring function that automatically
learns important protein-ligand interaction features relevant
to binding. In addition, DataDTA [18] proposes a method
to predict pockets from the three-dimensional structure. This
model considers vertical and horizontal features to achieve
the fusion and capture of multi-scale interactive information.

lIl. MATERIALS AND METHOD

A. THE OVERALL ARCHITECTURE OF MDIDTI

This paper proposes a multi-attribute dual interaction learning
aggregation model MDiDTI to predict DTIs, as shown
in Fig 1. The model includes four modules: sequence
embedding and graph construction module, multi-feature
encoding module, dual-attribute interaction module, and
decoding prediction module. In the sequence embedding
and graph construction module, the SMILES sequence
and protein sequence are deeply embedded, and the pro-
tein pocket binding site graph and ligand subgraph are
constructed, as shown in Fig 1.A. In the multi-feature
encoding module, the sequence embeddings are input to
the scalable convolutional network layer to obtain the
sequence encoding. At the same time, the GraphSage
network encodes the drug molecule subgraph and target
site graph to obtain the Structural encoding, as shown in
Fig 1.B. Next, structure coding and sequence coding interact
in the dual-attribute interaction module respectively. The
multi-head self-attention interaction network combines the
structural coding to calculate the attention weight matrix
to reflect the contribution of the binding site in drug-target
interaction, and outputs structural attributes; the sequence
coding is input into the dual-weight mapping network, and
the influence of the interaction of protein residues pair is
reflected
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through the mapping of the drug target sequence coding to the
shared matrix, and semantic attributes are output. Finally, the
decoding prediction module obtains the structural attribute
representation and the semantic attribute representation and
combines these two attributes with a learnable hyperparame-
ter « to perform DTI prediction.

B. SEQUENCE EMBEDDING AND GRAPH CONSTRUCTION
MODULE

In DTI prediction, the model is tasked with binary classifi-
cation of whether an interaction occurs between a compound
and a target. The input representation of the protein consists
of sequences and pockets. Algorithm [19] calculates the
boundary coordinates of each binding pocket and obtains
the binding site in the coordinates, they are represented as
separate graphs [20], Helps reduce model complexity. A one-
shot encoding of the atom type, atomicity, and atom implicit
price is used to calculate the eigenvector for each atom,
resulting in a vector of size 31 for each node. The process
of binding sites graph construction is as in Algorithm 1.

Algorithm 1 binding Sites Graph Construction Procedure
Input: PDB file
Output: site graphs
1: P: Pdb file
2: m: Molecules read from PDB files
3: am: Neighbourhood matrix of molecules
4: ami: Submatrix of am
5. pockets: Find pocket from pdb
6: d2: Position of the conformational atom
7
8
9

: for pocket in pockets do
x,y, z = Getpocketboundarycoordinates(pocket);
: bindingPartsAtoms = []
10: for atom in d2 do

11: bindingPartsAtoms < atom

12: end for

13: H = get Atom Feature(bindingPartsAtoms)

14: g = Creating a graph from an adjacency matrix(ami)

15: graph = Create DGL graph (g, H)
16: graphs < graph
17: _end for

The protein sequence embeddings and site maps are
then input into a multi-feature encoding layer, which
maps protein representations into latent feature space. Drug
compounds are represented using the SMILES, which is a
one-dimensional sequence that describes chemical atoms and
chemical bonds in drug molecules. Although many classic
deep learning frameworks use the SMILES format to encode
drug information, sequences are not natural representations of
molecules and some structural information may be lost [21],
thus affecting DTI prediction performance. Therefore, the
model first converts the input SMILES into the corresponding
two-dimensional molecular graph. The drug molecule graph
is defined as G=(V,E). Then, in molecules, the number and
types of chemical bonds in atomic nuclei are relatively small,
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FIGURE 1. The MDiDTI model includes four modules, (A) Sequence Embedding and Graph Construction module, which learns the embedding
representation of sequences through the deep representation learning module, and constructs graph representations of drug molecule subgraphs and
protein binding sites; (B) Multi-feature Encoder module, constructs scalable convolutional networks for drugs and proteins, and obtains structural
feature encoding and semantic feature encoding of drugs and proteins respectively; (C) Dual-attribute dual interaction module based on the attention
mechanism, obtains the interaction results respectively structural attribute representation and semantic attribute representation. (D) Decoder

Prediction module for DTI prediction.

resulting in correspondingly fewer parameters that can be
learned in the model, which in turn leads to insufficient
representation learning. To overcome this problem, we adopt
the R-radius subgraph algorithm to represent subgraphs of
molecular graphs induced by the r-radii of vertices adjacent
to vertices and edges, where the r-value is set to start from
a vertex hop count. Flowing the previous work setting [22],
for a graph G=(V, E), the set of adjacent vertices within the
radius r of the i-th vertex is denoted as N; j. Here, N;og = i.
The r-radius subgraph of vertex v; is then defined as:

W= (v ED) (1)

l 1
where:
vi? = {vj 1j € Nin}
Ei(r) = {emn € E | (m,n) € Ni.ry X Niir—1)}

thereby overcoming the limitation of insufficient learning
parameters.

C. MULTI-FEATURE ENCODER

This module uses graph neural networks to learn sequence
feature encoding and structural feature encoding of drug
targets respectively.

1) GRAPHSAGE FOR STRUCTURAL FEATURES ENCODE OF
DRUG AND TARGET

Drug molecules are represented as SMILES strings. MDiDTI
extracts atomic and bond information from each SMILES
string, which contains connectivity and structural details.
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The latent information within the sequence exists in non-
euclidean space, making it possible to utilize GNN for
extracting high-level node representation through informa-
tion propagation. In graph G, v; € V represents the i-th
atom, and e; € E is the chemical bond between the i-th
atom and the j-th atom. Fewer learnable parameters in drug
molecular graphs, we employ the r-radius subgraph approach
to represent the composite graph.

GraphSage [23], as a spatial-based convolutional GNN,
adeptly processing large-scale graph data and facilitates
efficient computation. Employing sampling and aggrega-
tion techniques, it learns node representations effectively,
capturing both local neighborhood features and global
graph structural characteristics to generate graph encodings.
According to the definition of a subgraph, Vl.(r) is represented
as 'V, and the features of the subgraph are denoted as Xy . The
hidden state of vertex V at a time step of t is represented as /',
and the corresponding hidden state of its adjacent subgraphs
is denoted as hfv(v). The initial hidden state of 4 is initialized
as X,, and the calculation process is as follows:

Ry = mean ({a (wph’m._l) ,Vu; € N(V)}) (2)

b, =0 (wf, CONCAT (htv_l’ hﬁV(V))) )

Among them, each layer utilizes mean aggregation, o
represents the ReLU nonlinear activation function, w, and
w!, are the weight matrices, 1 € {I...k}. Ny denotes its
neighbor node-set. Neighbor subgraph information is aggre-
gated using mean aggregation in conjunction with hidden
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state information from the previous time step. Following the
acquisition of neighbor information, GraphSage updates the
hidden state by linking the hidden states of the previous time
step i1 and h;vw) in preparation for the subsequent time
step update. The final hidden state HX is fed into a fully
connected layer to derive the ultimate drug structure encoding
xgs € R™, serving as input for the subsequent synergy layer,
where n represents the number of subgraphs and d = 75.

The number of binding sites of a protein molecule is
huge and contains a large number of graph nodes. Utilizing
GraphSage to encode protein binding site graph is fitting.
Define the binding site graph G’ = (V’, E’). For a specific
node v/, its neighbor node set is N (v'), the node v' is denoted
by v/, and the neighbor nodes of node V' are expressed as
{hui | ui’ € N(/)}. The hidden state of this node is updated
as follows:

Ry oyry = mean ({a (wph’uyl) Vui' € N(V/)}> “)
W, =GlobalAttPool (o (v, - CONCAT (it Hy )
&)

After mean aggregation and global attention pooling
operations, GraphSage effectively captures the contextual
relationships of the protein node graph. To handle varying
sizes of the final pooling layer, zero padding or truncation
operations are applied. The final protein structure code X5 €
R4 is then generated, where m represents the protein length
and d=128. Subsequently, the structural code is fed into the
multi-head self-attention interaction network.

2) SCALABLE GCN FOR SMILES FEATURES ENCODE OF
DRUG

In the drug sequence feature encoding module, we transform
each SMILES into a 2D molecular graph G. Firstly, initialize
each atomic node based on its chemical properties and
use the DGL-life [24] tool to represent each atom as a
128 dimensional integer vector. This vector contains eight
types of information about the atom. The drug sequence is
standardized to a fixed length. For molecules with fewer
nodes, zero-filled virtual nodes are introduced, while longer
sequences undergo truncation. The node feature of molecular
graph is defined as Xy, € R4*128 where d is the number
of nodes in the graph, and then through linear layer transfor-
mation, the dense matrix representation of drug sequence is
obtained and input into GCN layer. Scalable convolutional
networks gradually expand the perceptual domain of the
network to be able to extract multi-scale information [25],
[26]. The scalable GCN extends the convolution operator
to the irregular domain and updates the atomic eigenvector
by aggregating the neighbor nodes connected by chemical
bonds. This broadcast pathway can automatically capture the
structural information of molecules. Finally, the drug node is
represented as:

W = o (GCN (wg’”), b, h_ﬁm))) ©)
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where w!™ and b are the weight matrices and bias vectors
that can be learned in each layer of GCN, and hE,'") is the
hidden representation of the m-th layer node. When m=0,
hg = Xygg.

3) SCALABLE CCN FOR SEQUENCE FEATURES ENCODE OF
PROTEIN

First, the protein sequence was transformed into an integer
sequence, and each residue was encoded as 1-25, representing
25 residue types. According to the length distribution of
protein sequence, the maximum length of protein sequence is
set to 1200, the longer sequence is truncated, and the shorter
sequence is zero filled. Next, the input integer sequence
is transformed into a matrix representation in the potential
space, and each row in the matrix represents the feature
representation of the subsequence. In this way, the protein
sequence is initialized into a learnable embedding matrix
Xy € R™128 where n is the sequence length and 128 is
the embedding dimension. The feature representation of the
protein is obtained by three consecutive one-dimensional
convolution layers. The convolution kernel size of the first
layer is 3 x 3, and then each layer continues to expand the
receptive field to learn the local abstract features of protein
sequences. The coding process is as follows:

+1 _ (m) p(m) p(m)

Wt = o (CNN (™, 5, W) %
where w("” and b} are the learnable weight matrix and bias
vector of CNN layer, h,(,m) is the hidden protein expression
of layer m, and when m=0, h},o) = Xpg. 0 (-) is the ReLU
activation function.

D. DUAL-ATTRIBUTE INTERACTION MODULE

After acquiring the drug and protein feature codes, the multi-
head self-attention interactive network and the dual-weight
mapping network are utilized to fuse sequence features
and structural features interactively. This captures attribute
information of the drug and protein from both structural and
semantic perspectives. Drawing inspiration from the success-
ful Transformer [27] and the multi-head attention model Bert
[28] in natural language processing, the structural attributes
of drugs and proteins are obtained through the multi-head
self-attention interaction network. The semantic attributes
are acquired through the dual-weight mapping network. This
simultaneous learning at structural and semantic levels allows
for a more comprehensive understanding of the relationship
between drugs and proteins.

1) MULTI-HEAD SELF-ATTENTION INTERACTION NETWORK

In this module, this article constructs a multi-head self-
attention interaction network, using the attention mechanism
to integrate the structural feature encoding of proteins and
drugs, as shown in Fig 1.C Multi-head attention. In previous
studies, the input of multi-head attention was a separate drug
code or protein code [29], which separated the correlation
between drugs and proteins and failed to consider the
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interaction. This module first fuses drug and protein structure
codes to create a fusion structure matrix. The drug structure
feature encoding, protein structure feature encoding, and
fusion structure matrix are respectively projected into the
query (Q), key (K), and value (V) matrices through the
linear layer, where the matrix Q and the matrix K represent
the query and key of the drug and protein, while matrix V
represents the value of whether the drug interacts with the
protein and the values are calculated taking into account the
relationship between the O and K. Subsequently, the attention
score of the drug target is obtained by multiplying the query
vector matrix by the transpose of the key vector matrix,
by factor normalizing each element by the square root of the
key dimension. Finally, the interaction matrix V is assigned
through the attention score matrix, and the implementation
process can be expressed as:

0, K, V=linear 9(X,), linear(Xy), linear,(Xp+a)
(®)
Attention(Q, K, V) = softmax (QKT) % ©)]
NZ]

where X, = h,, Xg = hy, Vd is the square root factor of the
key dimension, and the attention matrix is transformed into a
standard normal distribution.

MHA (Q, K, V) = CONCAT (head, head, . .

., headp) W
(10)

where:

head; = Attention (QWiQ KW, VWZ-V) (11)
WiQ,WiK ,WiV €  R™<dnig the corresponding i-th head
projection matrix, W € Rén*m and d,, is the dimension of
each head output. The output structure attribute of the multi-
head self-attention interaction module represents y :

y1=FC(MHA(Q,K,V)) (12)
2) DUAL-WEIGHT MAPPING NETWORK

To capture the pairwise local interactions between drugs and
protein sequences, this paper designs a dual-weight mapping
network. The dual-weight mapping network is a variant of
the bilinear attention network, which is improved based on
the algorithm in literature [15]. Due to excessive attention
capture in the bilinear attention network, the contribution
weight of the drug target to the substructure is not clear
enough. Therefore, we remove the respective weight matrices
of the drug and the target and upgrade the all-one vector to a
learnable attention weight matrix that is used uniformly by
the drug and the target. The dual weight mapping network is
shown in Fig 1.C, including (1) the dual network interaction
layer; (2) the pooling layer. Among them, the network action
layer involves two network interactions, which are used to
initialize the attention weight map and capture the paired
attention weights of drug proteins; the pooling layer extracts
the semantic attribute representation of drug proteins y;.
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Define the cgding representation of drugs and targets hy; =
f{h:}, h:iz, ...,hé, }, hy = ‘lh;?l’ hg, e, h;k, }, respectively
or the output of scalableGCN encoder and scalableCNN
encoder. j and k represent the count of coding atoms in the
drug molecule and the count of residue substructures in the
protein, respectively. First, initialize the all-one matrix. The
drug and protein coding are mapped from high-dimensional
to low-dimensional space to the all-one matrix. The initial
weight matrix A is obtained and belongs to R/*K:

A= (1-9") 00 (ha: hy)

where one is a fixed all-one matrix, g € R™ is a learnable
weight matrix, o represents the Hadamard product of element
units, and the value in A represents the element-level
interaction strength in the drug-protein pair. For a certain
substructure pair of the drug target, it can be expressed as:

Amn :qToa( Z’,h;)

where hg’ represents the m-th column of hy, and h;
represents the n-th column of A, which correspond to the
representations of the m-th and n-th substructure of the
drug-protein, respectively. Subsequently, the representations
of drugs and proteins are concurrently projected into a
feature space A with weighted representation. The drug target
enhances interpretability by showcasing the contribution of
the substructure to the prediction outcomes via its interaction
with the feature space A. This layer can be formulated as:

Yo=0 (haAhp) =X Sk Awahlinl (15)

Finally, after pooling and dimensionality reduction, a com-
pact feature representation of the semantic attributes of the
drug target in this module is obtained, where s is the step size.

(16)

(13)

(14)

y2 = Avgpool (Y5, s)

E. DECODER PREDICTION MODULE

The decoding module obtains the interactive structural
attribute representation and semantic attribute representation,
and sets an adaptive learnable hyperparameter « to allocate
appropriate weights, thereby obtaining a multi-attribute joint
feature representation for DTI prediction. In this study,
the extracted attribute features are mapped through three
fully connected layers, and the last layer uses the Sigmoid
activation function to output the predicted value in the form
of probability.

p = Sigmoid (FC (CONCAT (a x y1, (1 —a) x y2)))
(17)
Finally, the model is trained via backpropagation to

optimize all learnable parameters. The training goal is to
minimize the cross-entropy loss:

n )\' 2
Ly == (ilogpi+ (1 —y)log (1 —p)) + 511 0 113
i=1
(18)
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where 6 is the set of all weight matrices and bias vectors
above, n is the total number of drug-protein pairs in the
training data set, y; is the true label of the i-th drug target
pair, p; is the predicted value, and A is a hyperparameter for
L2 regularization.

IV. EXPERIMENTS

A. DATASETS

The model presented in this paper is compared with several
state-of-the-art methods on three benchmark datasets. These
datasets provide the essential 3D structural information of
targets. Sample information of the dataset is provided in
Table 1.

The BioSNAP dataset was created by Huang et al. [13].
from the DrugBank database [30] and consists of 4510 drugs
and 2181 proteins. Following the prior works by Bai etal [15].
we used part of the data set and obtained a balanced data set
with the same positive and negative samples.

BindingDB focuses on interactions between small drug
molecules and proteins. It is used as real-world data to
evaluate models. Reference dataset [15], target data that could
provide pdb information were retained, resulting in a data set
with a total of 7689 interaction information.

The Human data set was created by Liu et al. [31].
Following previous research [32], we used a balanced version
of the dataset containing nearly the same number of negative
and positive samples. The handling approach of this dataset
is identical to that of the previous two datasets.

B. EXPERIMENTAL STRATEGIES AND EVALUATION
INDICATORS

The model was implemented in PyTorch 2.1.1, with the
batch size set to 120, the learning rate is set to Se-5.
Models were run for up to 50 epochs. Select the parameter
model with the highest AUROC score on the validation set
for testing on the test set. Our model is experimented on
NVIDIA A100 80G.

We selected a total of four indicators to evaluate the
model’s performance, namely AUROC, AUPRC, Accuracy,
and Fl-score. The larger the values of AUROC and AUPRC,
the better the model performance. They are the main
indicators to evaluate the classification performance of the
model. In addition, we also added the F1 score and accuracy
index. F1 comprehensively considers the precision and recall
of the model. The calculation formula is as follows:

TP

Precision = ——— (19)

(TP 4+ FP)
TP

Recall = ——— (20)

(TP 4+ FN)
2 x (Precision x Recall)
F1 — score = — 21)
(Precision + Recall)

Accuracy calculation formula is:

Accuracy = P+ 1IN (22)
YT TPYIN fFP1 EN
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TABLE 1. The three benchmark datasets are randomly divided into
training, validation and testing sets in the ratio of 7:2:1.

Datasets Drugs 3D-Proteins DT pairs  Active  Inactive
BioSNAP 1506 999 2028 1059 969
BindingDB 3474 1722 7689 3891 3798

Human 2508 1553 5844 3023 2821

C. COMPARISON WITH EXISTING MODELS

To verify the effectiveness and generalization ability of
proposed model, we compare its performance with existing
methods on three datasets. Each baseline model is run three
times using three sets of random seeds to reduce errors
caused by randomness. Based on the best performance on
the validation set, it is evaluated on the test set, and the
average of the three test results is used as the final result.
We compared the proposed model with a machine learning
method (SVM) and three state-of-the-art deep DTI prediction
tools (DrugBAN, Drugvqa(seq), MolTrans). For the above
model, we follow the settings of the hyperparameters
described by the author.

(1) The prediction of DTI is carried out on a shallow
machine learning method such as SVM. The sequence
features are spliced and then fed into the SVM. The kernel
function is selected to be linear. The output result is the
probability value of the drug target interaction prediction, and
the gamma parameter is set to 0.02.

(2) Drugvga(seq) uses dynamic convolution with sequen-
tial attention to extract protein feature representation. The
size of the convolution kernel remains consistent with
the original text. The difference is that the input of the
protein is a sequence. The bidirectional LSTM with multi-
head self-attention obtains feature representations from the
molecular sequence, sums all attention vectors performs
weight normalization, and finally inputs the feature splicing
into the classifier for prediction.

(3) MolTrans uses a substructure mining algorithm to
obtain the substructure sequence of the drug target, uses an
enhanced transformer architecture to encode the semantic
relationship between the substructures of the drug and
the protein, and models the high-order interactions of the
substructures based on the CNN layer.

(4) DrugBAN uses graph convolutional networks and
one-dimensional CNN to encode sequences respectively and
then inputs the encoding features into a bilinear attention
network to learn the interactions of drug target pairs. The
experimental results are achieved within a single domain.

1) PERFORMANCE ON THE BIOSNAP DATASET

On the BioSNAP data set, the comparison results of model
MDiDTI on the main indicators AUROC and AUPRC are
shown in Fig 2. Compared with existing models, model
MDIiDTI performs excellently on all evaluation indicators.
Especially in terms of AUROC and AUPRC indicators,
compared with the current highest-scoring models DrugBAN
and MolTrans, our model improved by 7.06% and 3.42%
respectively. Comparing these two types of models, the
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FIGURE 2. Results on the BioSNAP dataset.

TABLE 2. Results on the BindingDB dataset (best, second best).

AUROC AUPRC ACCURACY F1
SVM [33] 0.7475 0.7823 0.6743 0.6680
Drugvaq(seq) [14] 0.7547 0.7876 0.6986 0.6967
MolTrans [13] 0.82 0.8303 0.7553 0.7633
DrugBAN [15] 0.8312 0.846 0.7482 0.7661
MDiDIT 0.8363 0.8515 0.756 0.7701

bilinear attention network of the DrugBAN model effec-
tively learns the interaction between drug targets, but does
not consider the three-dimensional structure of the target,
resulting in a decrease in performance; the MolTrans model
uses subsequences mining algorithm obtains subsequences of
drug targets, enriches semantic and structural information,
and provides rich learnable parameters. However, there is
still potential to enhance the effective combination of feature
information, and it is certain to be competitive in terms of
accuracy. Taken together, our model performs reliably and
has outstanding performance on the BioSNAP data set.

2) PERFORMANCE ON THE BINDINGDB DATASET

In this section, the MDiDTI model is compared with existing
prediction methods on the BindingDB dataset. We compare it
with SVM, Drugvqa(seq), Moltrans, and in-domain versions
of DrugBAN, and retrain all models. Parameter settings
remain consistent with the original paper. On this data
set, MDiDTI conducted three sets of random experiments
with other models and calculated and recorded the average
AUROC, AUPRC, accuracy, and F1 score.

The test process is shown in Fig 3, Fig 4, and the results
are shown in Table 2. The results show that our model
performs well on all indicators and is always ahead of other
models. In particular, it is better than the MolTrans model
in terms of accuracy, and the accuracy of the MolTrans
model is higher than the DrugBAN model. By comparing
the differences between these three models, we found that
the model that considers the subsequence structure and
the model that only considers the complete sequence has
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FIGURE 3. AUROC of different methods on the BindingDB dataset.
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FIGURE 4. AUPRC of different methods on the BindingDB dataset.

TABLE 3. Results on Human dataset (best, second best).

AUROC  AUPRC ACCURACY Fl1
SVM [33] 0.9368 0.9415 0.8631 0.8642
Drugvaq(seq) [14] 0.8289 0.8482 0.7644 0.7370
MolTrans [13] 0.9787 0.9784 0.9409 0.9410
DrugBAN [15] 0.977 0.9750 0.9427 0.9427
MDiDIT 0.9794 0.9765 0.9452 0.9446

excellent performance in evaluation indicators, highlighting
the importance of substructure features as supplementary
information for drug targets. This is further confirmed by our
model.

3) PERFORMANCE ON THE HUMAN DATASET

On this data set, we still use AUROC and AUPRC as
indicators to evaluate our model. the results are shown in
Table 3. The MDiDTI model is better than the MolTrans
model on the main indicator AUROC and is slightly lower
than this model on the AUPRC indicator. Our analysis
believes that due to the partially hidden target bias in the

VOLUME 12, 2024



Y. Liu et al.: Multi-Feature and Dual-Attribute Interaction Aggregation Model

IEEE Access

TABLE 4. Ablation results on the BindingDB dataset.

Model AUROC AUPRC ACCURACY Fl
Without pockets 0.8258 0.8367 0.7469 0.7677
Without R-radius | 0.8257 0.8329 0.7486 0.7615
Subgraph

Without multi- | 0.8299 0.8359 0.7553 0.7698
head attention

Without  Dual- | 0.8177 0.8258 0.7431 0.7692
weigh mapping

MDiDIT 0.8363 0.8515 0.756 0.7701

Human data set [34], this will, to a certain extent, lead
to the model making correct predictions based only on
shallow features rather than on the true interaction, while the
MolTrans model due to its The interaction module is simpler
and therefore achieves slightly higher performance. On the
SVM model, this is even more obvious due to its learning
of shallow features. Despite this, the MDiDTI model still
achieved the best results on the other three indicators and
showed high accuracy and stability. Considering the overall
effect, our model still shows excellent performance.

D. ABLATION STUDY

To assess the effectiveness of each module of the proposed
model at various stages and its impact on the final per-
formance, we conducted an ablation study and performed
experiments on the BindingDB dataset, and designed four
model configurations for comparison: (1) remove protein
pockets; (2) remove R-radius subgraph; (3) remove the multi-
head self-attention interaction module; (4) remove the dual
weight mapping network module. The research results for
different configurations are shown in Table 4.

1) THE EFFECTS OF POCKETS

To evaluate the impact of protein pockets on experimental
results, we conducted experiments that omitted pocket
information. As can be seen from Table 4, the model
variant without considering pocket information performed
lower than MDiDTI. Specifically, the model without pocket
information achieves 0.8258 and 0.8367 in AUROC and
AUPRC respectively. Pocket information is beneficial to DTI
prediction and provides valuable protein-related information
for DTI prediction.

2) THE EFFECTS OF R-RADIUS SUBGRAPH

Molecular subgraph features not only enrich the structural
information of drug molecules but also provide more
learnable parameters, which are helpful for model learning.
Studies have shown that few studies focus on molecular
structure graphs, and research on molecular subgraphs is even
rarer [35]. Therefore, we explored the impact of molecular
structure information in DTI prediction. The AUROC and
AUPRC effects of the model that does not consider subgraphs
on the test set are 0.8257 and 0.8329, which are both
lower than the AUROC and AUPRC values of MDiDTI
(0.8363 and 0.8515 respectively). At the same time, Accuracy
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is 0.7486 and F1 is 0.7615, both lower than the Accuracy and
F1 values of MDiDTI. In summary, substructure information
is effective as a structural input for drugs and can be used as
supplementary drug information in DTT prediction.

3) THE EFFECTS OF MULTI-HEAD SELF-ATTENTION
INTERACTION NETWORK

To evaluate the impact of our proposed multi-head self-
attention interaction module for drug-target interaction on the
overall model performance, in the interaction part, we only
retained the dual-weight mapping network and the interaction
of the structure was simply performed on the structural
feature attributes splicing. The evaluation results in Table 4.
The AUROC value and AUPRC value of the model that does
not include the multi-head self-attention interaction module
are 0.8299 and 0.8359 respectively, which are both lower
than MDiDTI’s 0.8363 and 0.8515. In addition, judging from
the Accuracy value and F1 value, the MDiDTI also boasts
excellent performance. Therefore, this interaction network
we proposed plays an obvious role in DTIs. This also verifies
the importance of structural information in drug-protein
interaction prediction experiments and cannot be ignored.

4) THE EFFECTS OF DUAL-WEIGHT MAPPING NETWORK

By adjusting the dual-weight mapping network, the inter-
action between drug and protein sequences overlooked the
processing of the dual-weight mapping network, opting
solely for vector summation of the feature representations.
Experimental results demonstrate that in models lacking the
dual-weight mapping network, the AUROC value is 0.8177,
and the AUPRC value is 0.8258, with MDiDTI exhibiting
improvements of 2.27% and 3.11%, respectively. From other
metrics, the Accuracy value of 0.7431 and the F1 score
of 0.7692 are both inferior to those of MDiDTI. These
results highlight the effectiveness of the dual-weight mapping
network in capturing information regarding drug-target
sequence interactions, significantly enhancing the overall
performance of the MDiDTI.

V. DISCUSSION

We propose an approach grounded in graph neural net-
works and attention mechanisms for discerning drug-protein
interactions. Addressing the limitations of extant methods,
which often overlook the three-dimensional protein struc-
ture and lack interpretability in drug-target interactions,
we present a solution termed drug-target multi-feature
encoding dual-attribute interactive learning. This framework
comprehensively integrates structural and semantic attributes
and incorporates an Attention mechanism module to enhance
interpretability. We analyzed that there are several factors
for the model to achieve excellent performance performance.
First, the input representation module, where the input repre-
sentation significantly affects the predictive performance of
the model. The use of more advanced and comprehensive
input feature representations, such as structure maps and
sequences, can effectively capture the chemical information
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and topological relationships of drug molecules and targets,
further improving the performance. Second, the prediction
module. Traditional ML-based techniques rely heavily on
the quality of hand-crafted features that are unable to
learn complex nonlinear relationships, while self-attentive
mechanisms provide powerful automatic feature extraction
to learn higher-order nonlinear relationships. Despite the
considerable advancements in protein three-dimensional
structure prediction, the following limitations still exist:

e Limitations of datasets. Not every drug-target inter-
action pair in the various current datasets has its
corresponding protein PDB file confirmed by wet
experiments. Thus limiting the use of datasets in the
study.

e Limitations of structure prediction. We used a struc-
ture prediction method based on 3D bounding box
coordinates to predict protein binding sites [19], which
achieved more than 70% accuracy in both the dataset
with 86 elements and the dataset with 130 elements,
leaving some room for optimization.

Nevertheless, our proposed method exhibits notable efficacy.
Future endeavors will prioritize refining pocket prediction
techniques for enhanced accuracy and leveraging more
extensive datasets to optimize and bolster the stability of the
model.

VI. CONCLUSION

In this study, we propose an aggregation model named
MDiDTI, which effectively integrates multi-attribute features
of drug targets through multi-feature encoding dual-attribute
interactive learning. In this work, four different inputs of the
drug target are deeply represented, including the sequence
information, the target pocket, and the drug molecular graph.
Subsequently, multi-feature encoders for drugs and targets
are designed to encode the embedding matrix. Finally,
a strategy is designed to combine the multi-head self-attention
interaction network and the dual-weight mapping network
to achieve the fusion and capture of structural attributes
and semantic attributes at the structural level and semantic
level. It outperforms existing methods in prediction DTI
experiments and exhibits a high degree of generalization
ability on different datasets. Looking forward, we believe
that with the continuous development of protein structure
prediction and binding site identification technologies, the
integration of protein three-dimensional structure into DTI
prediction and other related prediction tasks holds promising
prospects. We aspire for the MDiDTI model proposed in this
paper to serve as an effective virtual screening tool in the field
of drug research and development.
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