
Received 23 July 2024, accepted 6 August 2024, date of publication 13 August 2024, date of current version 22 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3442883

Improved Local Partitioning Minimal-Siphon
Enumeration Method
JUAN PAN AND DAN YOU , (Member, IEEE)
School of Information and Electronic Engineering (Sussex Artificial Intelligence Institute), Zhejiang Gongshang University, Hangzhou 310018, China

Corresponding author: Dan You (youdan000@hotmail.com)

This work was supported in part by the Research Start-Up Funding of Zhejiang Gongshang University under Grant 1120XJ2322020 and in
part by the Zhejiang Provincial Key Laboratory of New Network Standards and Technologies under Grant 2013E10012.

ABSTRACT Siphon computation is a basic step for developing siphon-based deadlock control approaches
in a Petri net (PN) system. This work studies the enumeration of minimal siphons in a PN. Due to the
fact that the number of siphons in a PN theoretically grows exponentially with the net size, the siphon
enumeration is basically time-consuming especially in a large-size net. To our best knowledge, the method of
local partitioning minimal-siphon enumeration (LPMSE) has the best performance among all the methods
applicable to any arbitrary PN. In this paper, we show that the improvement of LPMSE is possible and thereby
develop an improved LPMSE. It is validated by experimental results that the improved LPMSE consumes
less time than LPMSE.

INDEX TERMS Petri nets, minimal siphons, siphon computation, problem partitioning.

I. INTRODUCTION
Petri nets (PN) are a popular mathematical modeling tool
for tackling privacy issues [1], [2], [3], diagnosability prob-
lems [4], [5], [6], prognosability problems [7], [8], and
deadlock problems [9], [10], [11], [12], [13] in discrete
event systems. In the formalism of PN, deadlock control
approaches are basically classified into two categories, i.e.,
those based on reachability analysis [14], [15], [16], [17],
[18], [19], [20] and those based on structural analysis [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30]. Siphon-
based methods fall into the latter category. A siphon [31]
is a structure of a PN that is essentially a set of places
satisfying a certain property. A deadlock may appear when
a siphon is not sufficiently marked at a reachable marking.
To prevent the occurrence of deadlocks in a PN system,
siphon-based deadlock control approaches add monitors to
control siphons such that they are all sufficiently marked at
every reachable marking. As a result, the computation of
minimal siphons is required and the efficiency of siphon com-
putation is an important factor in deciding the performance of
such an approach. Consequently, much work focuses on the
computation of minimal siphons, see, e.g., [32], [33].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwu Li .

We know that the number of siphons in a PN theoreti-
cally grows exponentially with the net size. Thus, finding an
efficient minimal-siphon computation method becomes more
challenging and is also of great importance. Many methods
have been provided for minimal-siphon enumeration in an
arbitrary PN, such as integrated net analyzer (INA) [34],
linear integer programmingmethods [22], [35], [36], methods
based on semi-tensor product of matrices [37], and methods
based on problem partitioning [38], [39]. To our best knowl-
edge, themethods of global partitioningminimal-siphon enu-
meration (GPMSE) and local partitioning minimal-siphon
enumeration (LPMSE) proposed by Cordone et al. [38] have
higher computational efficiency than the other approaches.
Since the proposal of these two methods, it is hard to find a
method better than them. On the other hand, some researchers
propose siphon enumeration methods that are applicable to
specific classes of PNs only, such as methods based on
loop resource subsets [40], methods based on resource cir-
cuits [41], [42], methods based on pruning graphs [43], [44],
parallel algorithms [45], and genetic-algorithm-based meth-
ods [46]. By utilizing specific properties of considered nets,
the computational efficiency can be improved.

In this paper, we consider the minimal-siphon enumeration
methods applicable to arbitrary PNs. In particular, we focus
on the methods of LPMSE and GPMSE since they provide
good performance and are widely used to enumerate minimal

111962

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-9088-9672
https://orcid.org/0000-0003-1547-5503


J. Pan, D. You: Improved Local Partitioning Minimal-Siphon Enumeration Method

siphons. In more detail, these two methods are based on
the idea that iteratively partitioning a problem into several
simper sub-problems by introducing place constraints. The
main difference between the two methods is that LPMSE
uses a computed siphon to partition the current problem only,
while GPMSE uses a computed siphon to partition all the
existing problems. In our previous work [47], we show that
the improvement of GPMSE is possible and proposed the
so-called improvedGPMSE. Although the improvedGPMSE
behaves much better than GPMSE, it can hardly beat LPMSE
especially in large-size PNs. Thus, in this work, we consider
the improvement of LPMSE. The improvements mainly lie in

1) the size of a PN considered in a problem is further
reduced;

2) the set Pin of places required to be contained in a
searched minimal siphon is further expanded; and

3) a condition that Pin strictly contains a siphon is added to
terminate the partitioning of a problem.

To validate the superiority of the improved LPMSE over
LPMSE, we implement both LPMSE and the improved
LPMSE by developing a tool written in C++. Using this tool,
we carry out an experiment. The experimental results show
that the improved LPMSE consumes less time than LPMSE
in computing minimal siphons, which becomes more evident
with the increase of the net size.

The remainder of the paper is organized as follows.
Section II recalls the basic knowledge of PNs. Section III
introduces the improved LPMSE together with an example
illustrating the improved method. In Section III-C, we com-
pare the performance of the improved LPMSE with its
original version. Section IV concludes this paper.

II. BASIC KNOWLEDGE OF PETRI NETS
A Petri net (PN) is a three-tuple Q = (P, T , F) where
P is the set of places, T is the set of transitions, and
F⊆ (P × T ) ∪ (T × P) is the flow relation. It is assumed
that P and T are nonempty, finite and disjoint sets.
A node (i.e., place or transition) with no input is called a

source node, and one with no output is called a sink node.
Given a node x ∈ P ∪ T , we denote •x = {y ∈ P ∪T |(y,

x) ∈ F} the preset of x and x• = {y ∈ P ∪T |(x, y) ∈ F}
the post-set of x. Given a set of nodes X ⊆ P ∪ T , we denote
•X =

⋃
x∈X
•x and X• =

⋃
x∈X x

•. Moreover, ••x =• (•x),
and x•• = (x•)•, ∀x ∈ P ∪ T .
Given a set of places P′ ⊆ P and a set of transitions T ′ ⊆

T , Q′ = (P′, T′, F′) is a subnet of Q generated by P′ and T ′ if
F ′ = F ∩[(T ′ ×P′) ∪(P′ ×T ′)].

A nonempty set S⊆ P is a siphon if •S⊆ S•. A siphon is
said to be minimal if it does not contain any other siphon.

Given a set Pin ⊆ P, a siphon is said to be Pin-minimal if
it includes all places in Pin and does not contain any other
siphon including all places in Pin. Consider the PN in Fig. 1.
We can see that S = {p4, p6, p8, p13, p14} is a Pin-minimal
siphon with Pin = {p8, p13}. Note that a Pin-minimal siphon
is a minimal siphon if Pin = ∅ and otherwise it is not
necessarily a minimal siphon. Here, S = {p4, p6, p8, p13, p14}

is not a minimal siphon in the PN in Fig. 1 since we can find
a siphon, e.g., S ′ = {p6, p8, p14}, contained in S.

III. IMPROVED LPMSE
The method of Local Partitioning Minimal-Siphon Enumer-
ation (LPMSE) is proposed by Cordone et al. [38]. Their
basic idea is iteratively partitioning a problem to be solved
into several simpler sub-problems so that the solution to
the original problem can be more easily obtained. LPMSE
generally leads to a large quantity of sub-problems, especially
when applied to a PN with large size. In this section, we pro-
pose an improved version of LPMSE, aiming to get higher
computational efficiency by generating a reduced number of
sub-problems.

First, we define the concept of a problem that is investi-
gated in the paper.
Definition 1: Given a PNQ = (P, T , F) and a set of places

Pin, π = (Q, Pin) is a problem of finding all minimal siphons
inQ that includes all places of Pin. We denote6π the solution
to the problem π = (Q, Pin), i.e., the set of all minimal
siphons in Q that includes all places of Pin.

Trivially, π = (Q, ∅) is a problem of finding all minimal
siphons in the PNQ. We next introduce the improved LPMSE
that solves the problem. In more detail, in the following sub-
sections, we first introduce some preliminary functions, then
provide an algorithm of the improved LPMSE, and finally
present an example to illustrate how the improved LPMSE
works.

A. PRELIMINARY FUNCTIONS
In this subsection, we introduce some functions that will
be used in the algorithm of the improved LPMSE. These
functions are designed based on some well-known properties
of (minimal) siphons.

Function Q′←NetReduce(Q)
Input: Q = (P, T , F) with no source place.
Output: Q′ = (P′, T ′, F ′).
1. Q′ ← Q; /∗Equivalently, it is (P′, T ′, F ′)← (P, T , F).
∗/
2. while ∃t ∈ T ′ s.t. •t = ∅ in Q′ do
3. T ′← T ′\{t};
4. P′← P′\t•;
5. F′← F ′∩ ((T ′ × P′) ∪ (P′ × T ′));
6. end while
7. while ∃x ∈ P′ ∪ T ′ s.t. x• = ∅ in Q′do
8. if x ∈ P′ then
9. P′← P′\{x};
10. else
11. T ′← T ′\{x};
12. end if
13. F ′← F ′∩ ((T ′ × P′) ∪ (P′ × T ′));
14. end while
15. output:Q′.

VOLUME 12, 2024 111963



J. Pan, D. You: Improved Local Partitioning Minimal-Siphon Enumeration Method

Function NetReduce is used to reduce the size of a PN
while not changing the result ofminimal-siphon enumeration.
In particular, it consists of two stages in reducing the net size.
In the first stage, a source transition and its output places
are repeatedly removed; in the second stage, a sink node
(transition/place) is repeatedly removed. Typically, by reduc-
ing the net size, we may speed up the enumeration of minimal
siphons.

Function P′in←PinExpand(Pin, Q)
Input:Q = (P, T , F) with no source place and a set of places
Pin ⊆ P;
Output: A set of places P′in ⊆ P.
1. P′in← Pin;
2. while(∃t ∈• P′in \P

′
in
• s.t. •t = {p′} ∨

∃p ∈ P′in, ∃p
′
∈ P\P′in s.t. p

••
= {p′}) do

3. P′in← P′in ∪{p
′};

4. end while
5. output: P′in.

Function PinExpand is used to expand the set Pin that is
required to be contained in a searched minimal siphon while
not changing the result of minimal-siphon enumeration. This
is guaranteed by the fact that when some places are included
in a minimal siphon, some other places are included as well.
In particular, function PinExpand repeatedly expands Pin by
including a place p′∈ P\Pin by considering the following
two cases. Case 1: there is an input but not output transition
of Pin who has a unique input place that is p′; Case 2:
there is a place p in Pin who has a unique output place that
is p′. Basically, by expanding the set Pin, we may enumerate
minimal siphons more quickly.

Function ans = PinContainSiphon(Pin)
Input: A set of places Pin.
Output: ans ∈{True, False}. /∗ ans = True implies Pin
contains a siphon and ans = False implies not. ∗/
1. ans← False;
2. obtain the subnet QPin generated by Pin and •Pin ∪ P•in;
3. if NetReduce(QPin) ̸= ∅ then
4. ans← True;
5. end if
6. output:ans.

Function PinContainSiphon determines whether or not a
set of places Pin contains a siphon by calling function NetRe-
duce on the subnet QPin generated by Pin and •Pin ∪ P•in.

Finally, we notice that functions DeletePlace, Siphon-
IsMini and GetaPinMiniSiphon will also be called in the
algorithm of the improved LPMSE. We introduce them in
brief as follows. The readers are referred to [47] for their
detailed pseudocode.

- Q′← DeletePlace(Q, p): DeletePlace returns a PN Q′

by removing the place p and its related arcs from the
PN Q.

- ans ← SiphonIsMini(S): SiphonIsMini determines
whether the input siphon S is minimal. It returns ans=
True if S is minimal and ans = False otherwise.

- S ← GetaPinMiniSiphon(Q, Pin): GetaPinMiniSiphon
returns a Pin-minimal siphon S in the PN Q. Note that
S is not necessarily a minimal siphon.

B. ALGORITHM OF THE IMPROVED LPMSE
In this subsection, we provide an algorithm of the improved
LPMSE.

Algorithm 1: Improved LPMSE
Input: Q = (P, T , F).
Output: The set 8 of all minimal siphons in Q.
1. 8← ∅;
2. for each source place p in Q do
3. 8← 8∪{{p}};
4. end for
5. update the netQ = (P, T ,F) by deleting all source places
and their related arcs from Q;
6. Q← NetReduce(Q);
7. if Q ̸= ∅ then
8. create a tree with the root node (Q, ∅);
9. S ← GetaPinMiniSiphon (Q, ∅);
10. 8← 8∪{S};
11. 8← LocalPartition(Q, ∅, S, 8);
12. end if
13. output:8.

We explain Algorithm 1 as follows. First, every source
place is searched since every source place itself constitutes
a minimal siphon. Then, we search the remaining minimal
siphons in the net, which is equivalent to solving the problem
(Q, ∅), where Q is the resulting net by removing all source
places from the original net and reducing the net size. The
problem (Q, ∅) is solved based on repeatedly partitioning
problems, which is realized by recursively calling function
LocalPartition, and the procedure is described by a tree.

Without loss of generality, suppose that (Q, Pin) is a
problem to be partitioned. The procedure of partitioning the
problem (Q, Pin) is detailed as follows.

We compute aPin-minimal siphon S, by which the problem
(Q, Pin) is partitioned by calling LocalPartition(Q, Pin, S,8).
Note that we should determine if S is a minimal siphon. If so,
we add S to the solution set 8. Suppose that S\Pin = {p1,
p2, . . . , pk}. Then, there are k sub-problems, namely,

π1 = (DeletePlace(Q, p1), Pin),
π2 = (DeletePlace(Q, p2), Pin∪{p1}),
π3 = (DeletePlace(Q, p3), Pin∪{p1, p2}),
. . . ,
πk = (DeletePlace(Q, pk ), Pin∪{p1, p2, . . . , pk−1}).

Trivially, the solution to the problem (Q, Pin) consists of
solutions to all the above k sub-problems together with S if S
is a minimal siphon. We observe that not every sub-problem
needs to be further partitioned. Consider a sub-problem πi =

(Q′, P′in) as an example. We reduce the size of Q′ and expand

111964 VOLUME 12, 2024



J. Pan, D. You: Improved Local Partitioning Minimal-Siphon Enumeration Method

Function 8← LocalPartition(Q, Pin, S, 8)
Input: Q = (P, T , F), a set Pin of places, a siphon S, and a
set 8 of minimal siphons.
Output: An updated set 8 of minimal siphons.
1. P′in← Pin;
2. for p ∈ S\Pin do
3. Q′← DeletePlace(Q, p);
4. Q′′← NetReduce(Q′);
5. if Q′′ ̸= ∅ then
6. P′′in← PinExpand (P′in, Q);
7. introduce a new node (Q′′, P′′in) and add an arc with
the label ‘‘p’’ from node (Q, Pin) to node (Q′′, P′′in);
8. if P′′in ⊆ P

′′ then
9. if PinContainSiphon(P′′in) then
10. if P′′in is a siphon ∧ SiphonIsMini(P

′′
in) then

11. 8← 8∪{P′′in};
12. end if
13. else
14. S ′← GetaPinMiniSiphon(Q′′, P′′in);
15. ifSiphonIsMini(S ′) then
16. 8← 8∪{S ′};
17. end if
18. 8← LocalPartition(Q′′, P′′in, S

′, 8);
19. end if
20. end if
21. end if
22. P′in← P′in∪{p};
23. end for
24. output:8.

the set P′in, which leads to a problem denoted as (Q′′, P′′in).
In the case that P′′in ̸⊂ P

′′ or P′′in contains a siphon, we certainly
know that the solution to (Q′′, P′′in) is empty or consists of a
set P′′in and thus the problem (Q′′, P′′in) does not need to be
further partitioned. In the other cases, we again compute a
Pin-minimal siphon S ′ to partition the problem (Q′′, P′′in) by
repeating the above procedure. Also, if S ′ is aminimal siphon,
it is added to the set 8.

We notice that the depth-first search is adopted in
Algorithm 1 to repeatedly generate sub-problems. In the case
that no more sub-problem needs to be generated, the final set
8 is clearly the set of all minimal siphons of the input PN.
Hence, we have the following conclusion.
Theorem 1: Given a PN as the input, Algorithm 1 (i.e., the

improved LPMSE) enumerates all minimal siphons.
Proof: Straightforward from the above explanation.
Compared with LPMSE in [38], the proposed method

mainly includes the following three improvements:
1) The size of a PN is further reduced;
LPMSE only considers repeatedly removing a source tran-

sition and its output places to reduce the net size, while
the proposed method considers repeatedly removing a sink
node as well. Such an improvement is realized by function
NetReduce.

2) The set Pin is further expanded;

LPMSE repeatedly expands Pin by including a place
p′∈ P\Pin only in the case that there is an input but not output
transition of Pin who has a unique input place that is p′, while
the proposed method repeatedly expands Pin by including a
place p′∈ P\Pin also in the case that there is a place p in Pin
who has a unique output place that is p′. Such an improvement
is realized by function PinExpand.

3) A condition that Pin strictly contains a siphon is added
to terminate the partitioning of a problem.

Consider a problem π = (Q, Pin), where Q = (P, T , F)
is a PN output by function NetReduce. LPMSE terminates its
further partitioning in the case that Pin ̸⊂ P or Pin itself is
a siphon, while the proposed method terminates its further
partitioning in the case that Pin ̸⊂ P or Pin contains a siphon.
Clearly, Pin strictly contains a siphon is an additional termi-
nation condition in our proposed method.

C. EXAMPLE
In this subsection, we present an example to illustrate the
improved LPMSE.

FIGURE 1. PN Q = (P , T , F ).

TABLE 1. Numerical results regarding trees generated by LPMSE and the
improved LPMSE when they are applied to the net in Fig. 1.

Consider a PN Q = (P, T , F) in Fig. 1. The improved
LPMSE works as follows.

VOLUME 12, 2024 111965



J. Pan, D. You: Improved Local Partitioning Minimal-Siphon Enumeration Method

TABLE 2. Experimental results (di = do = 0.05).

TABLE 3. Experimental results (di = do = 0.08).

TABLE 4. Experimental results (di = do = 0.2).

First, 8 is initialized at ∅, representing the set of all
minimal siphons in the PN Q. Since no source and sink
node can be found in Q, after handling source places and
calling NetReduce(Q), 8 is still empty and the resulting net
is still Q. Then, we solve the problem π1 = (Q1, ∅), where
Q1 = Q, by problem partitioning. The procedure of problem
partitioning is detailed as follows and described by a tree as
shown in Fig. 2(a).

- We create the root node π1 = (Q1, ∅). Note that,
in Fig. 2 (a), we simply denote a PN by its set of places.
By callingGetaPinMiniSiphon (Q1, ∅), we then get aminimal
siphon S1 = {p7, p11} since Pin = ∅. Thus, 8 is updated as
{S1}. Using the siphon S1, we partition problem π1 by calling
LocalPartition(Q1, ∅, S1, 8).

- Consider deleting place p7 fromQ1. After applying func-
tion NetReduce, the resulting net is Q2 with P2 = {p2-p6,
p8-p10, p12-p15}. After calling function PinExpand, we create
node π2 = (Q2, ∅). Since Pin = ∅, we get a minimal siphon
S2 = {p6, p9,p12-p14}. Then, 8 is updated as {S1, S2} and S2
is used to partition problem π2 by calling LocalPartition(Q2,
∅, S2, 8).
- Similarly, nodes π3-π6 are created one after another and

8 is updated as {S1-S6}. Since π6 leads to empty nets by
problem partitioning, we continue to consider the partitioning
of problem π5 by siphon S5 = {p3, p9, p12}. Now, we delete
p9 from Q5 and require Pin to be {p3}. By applying functions
NetReduce and PinExpand, we create node π7 = {Q7, {p3}}
with P7 = {p2, p15}. Since {p3}̸⊂ P7, we do not need

111966 VOLUME 12, 2024



J. Pan, D. You: Improved Local Partitioning Minimal-Siphon Enumeration Method

FIGURE 2. Trees generated for the PN in Fig. 1.

to further partition π7. Then, we consider delete p12 from
Q5 and require Pin to be {p3, p9}. Similarly, node π8 is
created and it does not need to be partitioned. By repeating the
above operations, nodes π9-π29 are created one after another,
leading to the complete tree in Fig. 2(a), and we obtain the
final set 8 = {S1-S10}.
Recall that we terminate the further partitioning of a prob-

lem π = {Q, Pin} in the case that Pin ̸⊂ P or Pin contains a
siphon. Here, to be intuitive, colored nodes denote problems
that do not need to be partitioned. In more detail, node •
indicates that Pin ̸⊂ P, node • indicates that Pin strictly
contains a siphon, and node • indicates that Pin itself is a
siphon. Besides, note that not all the computed siphons are

minimal siphons. Specifically, siphons found with respect
to problems π20-π22 are only Pin-minimal-siphons but not
minimal siphons. Hence, they are only used for decomposing
problems but are not added to 8.

IV. COMPARISON
In this section, we show the performance of the improved
LPMSE by comparing it with the original LPMSE [38].

A. COMPARISON VIA THE PN IN FIG. 1
In the last section, the improved LPMSE has been applied
to the PN in Fig. 1 to enumeration minimal siphons, which
leads to the tree in Fig. 2(a). Now, we apply the LPMSE to

VOLUME 12, 2024 111967



J. Pan, D. You: Improved Local Partitioning Minimal-Siphon Enumeration Method

the PN in Fig. 1 as well, which results in the tree in Fig. 2(b).
Clearly, the tree generated by the LPMSE is more complex
than the one generated by the improved LPMSE. The detailed
numerical results regarding these two trees are provided in
Table 1. Note that the number of nodes in the tree and the
number of nodes to be partitioned reflect the computational
time of the method, while the maximum number of nodes to
be saved in memory reflects the memory requirement of the
method. We thus may conclude that the improved LPMSE
consumes less time than LPMSE in this example but requires
the same memory as LPMSE.

B. EXPERIMENT
To compare the improved LPMSE with LPMSE more evi-
dently, we implement them by developing a tool in C++
and perform an experiment using the tool. The experiment
is carried out on a 2.50GHz Intel(R) Core(TM) i5 computer
with 4 GB of RAM and Windows 10 operating system.

In the experiment, we enumerate minimal siphons in a
large quantity of PNs. Specifically, we consider PNs with
different net size and randomly generate 50 nets for each
size by setting di and do, which are the probabilities of
having an arc from a place to a transition and having an arc
from a transition to a place, respectively. The experimental
results are presented in Tables 2-4, where PNs are randomly
generated by setting di = do = 0.05, di = do = 0.08, and
di = do = 0.2, respectively.
We can see that the improved LPMSE consumes less

time than LPMSE. The percentage of CPU time reduced is
around 20%-30% in many cases. Indeed, the time reduction
percentage is not stable. This is because the computational
time of the two methods is related to the structure of a PN
to be computed. There exists randomness on the result even
although we have 50 nets generated for each net size. On the
other hand, due to the fact that the number of minimal siphons
grows exponentially with respect to the net size for arbitrary
PNs, both of LPMSE and the improved one are of exponential
complexity with respect to the net size. Thus, they can hardly
get a result within a reasonable time when the size of a PN is
big. In Tables 2- 4, we do not present results for those cases for
which the method consumes more than one hour but without
a result gotten.

V. CONCLUSION
The computation of all minimal siphons in a PN is a difficult
task since the number of siphons grows exponentially with
the net size. To our best knowledge, the method of local par-
titioning minimal-siphon enumeration (LPMSE) proposed by
Cordone et al. has so far been the one with the highest
computational efficiency among all the existing methods that
enumerate minimal siphons in an arbitrary PN. In this paper,
we propose the improved LPMSE. As validated by the exper-
imental results, the improved LPMSE performs better than
LPMSE in terms of computational time.

REFERENCES

[1] T. Qin, L. Yin, N. Wu, and Z. Li, ‘‘Verification of current-state opacity in
time labeled Petri nets with its application to smart houses,’’ IEEE Trans.
Autom. Sci. Eng., pp. 1–13, Dec. 2023, doi: 10.1109/TASE.2023.3346523.

[2] N. Ran, J. Nie, A. Meng, and C. Seatzu, ‘‘Non-interference analysis of
bounded Petri nets using basis reachability graph,’’ IEEE Trans. Autom.
Control, pp. 1–7, May 2024, doi: 10.1109/TAC.2024.3397695.

[3] Y. Tong, Z. Li, C. Seatzu, and A. Giua, ‘‘Verification of state-based
opacity using Petri nets,’’ IEEE Trans. Autom. Control, vol. 62, no. 6,
pp. 2823–2837, Jun. 2017, doi: 10.1109/TAC.2016.2620429.

[4] S. Hu and Z. Li, ‘‘A digital twin approach for enforcing diagnosability
in Petri nets,’’ IEEE Trans. Autom. Sci. Eng., pp. 1–13, Oct. 2023, doi:
10.1109/TASE.2023.3321781.

[5] N. Ran, T. Li, Z. He, and C. Seatzu, ‘‘Codiagnosability enforcement
in labeled Petri nets,’’ IEEE Trans. Autom. Control, vol. 68, no. 4,
pp. 2436–2443, Apr. 2023.

[6] F. Basile, M. P. Cabasino, and C. Seatzu, ‘‘Diagnosability analysis of
labeled time Petri net systems,’’ IEEE Trans. Autom. Control, vol. 62, no. 3,
pp. 1384–1396, Mar. 2017.

[7] D. You, S. Wang, and C. Seatzu, ‘‘Verification of fault-predictability
in labeled Petri nets using predictor graphs,’’ IEEE Trans.
Autom. Control, vol. 64, no. 10, pp. 4353–4360, Oct. 2019, doi:
10.1109/TAC.2019.2897272.

[8] N. Ran, J. Hao, and C. Seatzu, ‘‘Prognosability analysis and enforcement of
bounded labeled Petri nets,’’ IEEE Trans. Autom. Control, vol. 67, no. 10,
pp. 5541–5547, Oct. 2022.

[9] M. Bashir, J. Zhou, and B. B. Muhammad, ‘‘Optimal supervisory control
for flexible manufacturing systems model with Petri nets: A place-
transition control,’’ IEEE Access, vol. 9, pp. 58566–58578, 2021.

[10] Z. Li, N.Wu, andM. Zhou, ‘‘Deadlock control of automatedmanufacturing
systems based on Petri nets—A literature review,’’ IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 42, no. 4, pp. 437–462, Jul. 2012.

[11] C. Chen, A. Raman, H. Hu, and R. S. Sreenivas, ‘‘On liveness enforcing
supervisory policies for arbitrary Petri nets,’’ IEEE Trans. Autom. Control,
vol. 65, no. 12, pp. 5236–5247, Dec. 2020.

[12] K. Xing, F.Wang, M. C. Zhou, H. Lei, and J. Luo, ‘‘Deadlock characteriza-
tion and control of flexible assembly systems with Petri nets,’’ Automatica,
vol. 87, pp. 358–364, Jan. 2018.

[13] N. Ran, T. Li, S. Wang, and Z. He, ‘‘Supervisor synthesis for Petri nets
with uncontrollable and unobservable transitions,’’ IEEE Trans. Autom.
Sci. Eng., vol. 21, no. 2, pp. 1517–1525, Feb. 2024.

[14] B. Yang and H. Hu, ‘‘Maximally permissive deadlock and livelock avoid-
ance for automated manufacturing systems via critical distance,’’ IEEE
Trans. Autom. Sci. Eng., vol. 19, no. 4, pp. 3838–3852, Oct. 2022.

[15] H. Dou,M. Zhou, S.Wang, andA. Albeshri, ‘‘An efficient liveness analysis
method for Petri nets via maximally good-step graphs,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 54, no. 7, pp. 3908–3919, Jul. 2024.

[16] Y. Liu, X. Li, and Z. Li, ‘‘Control strategy of discrete event systems
modeled by labeled Petri nets based on transition priority,’’ IEEE Access,
vol. 11, pp. 45442–45455, 2023.

[17] C. Gu, Z. Ma, Z. Li, and A. Giua, ‘‘Verification of nonblockingness in
bounded Petri nets with min-max basis reachability graphs,’’ IEEE Trans.
Syst., Man, Cybern., Syst., vol. 52, no. 10, pp. 6162–6173, Oct. 2022.

[18] Y. Chen, Z. Li, and K. Barkaoui, ‘‘Maximally permissive liveness-
enforcing supervisor with lowest implementation cost for flexible manu-
facturing systems,’’ Inf. Sci., vol. 256, pp. 74–90, Jan. 2014.

[19] L. Qi, Y. Su, M. Zhou, and A. Abusorrah, ‘‘A state-equation-based back-
ward approach to a legal firing sequence existence problem in Petri nets,’’
IEEE Trans. Syst., Man, Cybern., Syst., vol. 53, no. 8, pp. 4968–4979,
Aug. 2023, doi: 10.1109/TSMC.2023.3241101.

[20] Y. Su, L. Qi, and M. Zhou, ‘‘A backward algorithm to determine the
existence of legal firing sequences in ordinary Petri nets,’’ IEEE Robot.
Autom. Lett., vol. 8, no. 6, pp. 3190–3197, Jun. 2023.

[21] Y. Hou and K. Barkaoui, ‘‘Deadlock analysis and control based on Petri
nets: A siphon approach review,’’ Adv. Mech. Eng., vol. 9, no. 5, May 2017,
Art. no. 168781401769354.

[22] S. Wang, X. Guo, O. Karoui, M. Zhou, D. You, and A. Abusorrah,
‘‘A refined siphon-based deadlock prevention policy for a class of Petri
nets,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 53, no. 1, pp. 191–203,
Jan. 2023.

[23] A. Al-Ahmari, H. Kaid, Z. Li, and R. Davidrajuh, ‘‘Strict minimal
siphon-based colored Petri net supervisor synthesis for automated man-
ufacturing systems with unreliable resources,’’ IEEE Access, vol. 8,
pp. 22411–22424, 2020.

111968 VOLUME 12, 2024

http://dx.doi.org/10.1109/TASE.2023.3346523
http://dx.doi.org/10.1109/TAC.2024.3397695
http://dx.doi.org/10.1109/TAC.2016.2620429
http://dx.doi.org/10.1109/TASE.2023.3321781
http://dx.doi.org/10.1109/TAC.2019.2897272
http://dx.doi.org/10.1109/TSMC.2023.3241101


J. Pan, D. You: Improved Local Partitioning Minimal-Siphon Enumeration Method

[24] X. Fan, B. Yang, and H. Hu, ‘‘Event circular waits and their analysis via
Petri nets,’’ IEEE Access, vol. 9, pp. 92586–92599, 2021.

[25] C. Chen and H. Hu, ‘‘Extended place-invariant control in automated manu-
facturing systems using Petri nets,’’ IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 52, no. 3, pp. 1807–1822, Mar. 2022.

[26] N. Du and H. Hu, ‘‘Robust deadlock detection and control of auto-
mated manufacturing systems with multiple unreliable resources using
Petri nets,’’ IEEE Trans. Autom. Sci. Eng., vol. 18, no. 4, pp. 1790–1802,
Oct. 2021.

[27] G. Liu, L. Zhang, L. Chang, A. Al-Ahmari, and N. Wu, ‘‘Robust deadlock
control for automated manufacturing systems based on elementary siphon
theory,’’ Inf. Sci., vol. 510, pp. 165–182, Feb. 2020.

[28] Y. Feng, K. Xing, M. Zhou, and H. Liu, ‘‘Liveness analysis and dead-
lock control for automated manufacturing systems with multiple resource
requirements,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 2,
pp. 525–538, Feb. 2020.

[29] Y. Feng, M. Zhou, F. Tian, C.-B. Yan, and K. Xing, ‘‘Deadlock preven-
tion controller for automated manufacturing systems modeled by S4PR,’’
IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 12, pp. 7403–7412,
Dec. 2021.

[30] H. Liu, Y. Feng, J. Li, and J. Luo, ‘‘Robust Petri net controllers for flexible
manufacturing systemswithmultitype andmultiunit unreliable resources,’’
IEEE Trans. Syst., Man, Cybern., Syst., vol. 53, no. 3, pp. 1431–1444,
Mar. 2023.

[31] G. Liu and K. Barkaoui, ‘‘A survey of siphons in Petri nets,’’ Inf. Sci.,
vol. 363, pp. 198–220, Oct. 2016.

[32] S. Wang, W. Duo, X. Guo, X. Jiang, D. You, K. Barkaoui, and M. Zhou,
‘‘Computation of an emptiable minimal siphon in a subclass of Petri nets
using mixed-integer programming,’’ IEEE/CAA J. Autom. Sinica, vol. 8,
no. 1, pp. 219–226, Jan. 2021.

[33] Y. Chen and G. Liu, ‘‘Computation of minimal siphons in Petri nets by
using binary decision diagrams,’’ ACM Trans. Embedded Comput. Syst.,
vol. 12, no. 1, pp. 1–15, Jan. 2013.

[34] P. H. Starke. (2003). INA: Integrated Net Analyzer. [Online]. Available:
http://www2.informatik.hu-berlin.de/ starke/ina.html

[35] L. Piroddi, R. Cordone, and I. Fumagalli, ‘‘Combined siphon and marking
generation for deadlock prevention in Petri nets,’’ IEEE Trans. Syst., Man,
Cybern. A, Syst. Humans, vol. 39, no. 3, pp. 650–661, May 2009.

[36] A. Giua and C. Seatzu, ‘‘Modeling and supervisory control of railway
networks using Petri nets,’’ IEEE Trans. Autom. Sci. Eng., vol. 5, no. 3,
pp. 431–445, Jul. 2008.

[37] X. Han, Z. Chen, Z. Liu, and Q. Zhang, ‘‘Calculation of siphons and mini-
mal siphons in Petri nets based on semi-tensor product of matrices,’’ IEEE
Trans. Syst., Man, Cybern., Syst., vol. 47, no. 3, pp. 531–536, Mar. 2017.

[38] R. Cordone, L. Ferrarini, and L. Piroddi, ‘‘Enumeration algorithms formin-
imal siphons in Petri nets based on place constraints,’’ IEEE Trans. Syst.,
Man, Cybern. A, Syst. Humans, vol. 35, no. 6, pp. 844–854, Nov. 2005.

[39] S. G. Wang, Y. Li, C. Y. Wang, and M. C. Zhou, ‘‘Computation of all
minimal siphons in Petri nets,’’ in Proc. 9th IEEE Int. Conf. Netw., Sens.
Control, Apr. 2012, pp. 46–51.

[40] S. Wang, C. Wang, M. Zhou, and Z. Li, ‘‘A method to compute strict mini-
mal siphons in a class of Petri nets based on loop resource subsets,’’ IEEE
Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 42, no. 1, pp. 226–237,
Jan. 2012.

[41] Z. Li andM. Zhou, ‘‘On siphon computation for deadlock control in a class
of Petri nets,’’ IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 38,
no. 3, pp. 667–679, May 2008.

[42] A. Wang, Z. Li, J. Jia, and M. Zhou, ‘‘An effective algorithm to find
elementary siphons in a class of Petri nets,’’ IEEE Trans. Syst., Man,
Cybern. A, Syst. Humans, vol. 39, no. 4, pp. 912–923, Jul. 2009.

[43] E. E. Cano, C. A. Rovetto, and J.-M. Colom, ‘‘An algorithm to compute
the minimal siphons in s 4 PR nets,’’ Discrete Event Dyn. Syst., vol. 22,
no. 4, pp. 403–428, Dec. 2012.

[44] S. Wang, D. You, andM. Zhou, ‘‘A necessary and sufficient condition for a
resource subset to generate a strict minimal siphon in s 4PR,’’ IEEE Trans.
Autom. Control, vol. 62, no. 8, pp. 4173–4179, Aug. 2017.

[45] F. Tricas and J. Ezpeleta, ‘‘Computing minimal siphons in Petri net
models of resource allocation systems: A parallel solution,’’ IEEE Trans.
Syst., Man, Cybern. A, Syst. Humans, vol. 36, no. 3, pp. 532–539,
May 2006.

[46] F. Tricas, J. M. Colom, and J. J. Merelo, ‘‘Using the incidence matrix
in an evolutionary algorithm for computing minimal siphons in Petri net
models,’’ in Proc. 18th Int. Conf. Syst. Theory, Control Comput. (ICSTCC),
Oct. 2014, pp. 645–651.

[47] D. You, O. Karoui, and S.Wang, ‘‘Computation of minimal siphons in Petri
nets using problem partitioning approaches,’’ IEEE/CAA J. Autom. Sinica,
vol. 9, no. 2, pp. 329–338, Feb. 2022.

JUAN PAN received the bachelor’s degree in elec-
tronic information science and technology from
the School of Information Science and Engi-
neering, Ningbo University, in 2013, and the
master’s degree in information and communica-
tion engineering from the School of Information
Engineering, Zhejiang University of Technology,
in 2018.

She is currently a member of the Discrete-Event
System Group, School of Information and Elec-

tronic Engineering, Zhejiang Gongshang University. Her research interests
include deadlock control and siphon computation in Petri nets.

DAN YOU (Member, IEEE) received the B.S.
degree in electronic and information engineering
and the M.S. degree in information and communi-
cation engineering from the School of Information
and Electronic Engineering, Zhejiang Gongshang
University, Hangzhou, China, in 2014 and 2017,
respectively, and the Ph.D. degree in electronic
and computer engineering from the Department of
Electrical and Electronic Engineering, University
of Cagliari, Italy, in 2021.

She is currently an Associate Research Professor with the School of
Information and Electronic Engineering, Zhejiang Gongshang University.
Her research interests include supervisory control of discrete event systems,
fault prediction, and deadlock control and siphon computation in Petri nets.

VOLUME 12, 2024 111969


