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ABSTRACT Disasters disrupt lives and necessitate quick location of affected areas for rescue efforts. The
application of computer vision has enhanced disaster detection, such as landslides and floods; however
traditional computer vision methods often overlook smaller, critical details in favor of prominent objects.
This research introduces the Retarget Network (RetNet), a novel framework aimed at improving image
captioning techniques to identify and prioritize these less evident, yet crucial, objects in disaster scenarios,
enhancing scene recognition and aiding in more effective disaster response. By masking images, we direct
the model’s focus towards additional significant areas within the image. RetNet employs anchor boxes to
refine the targeting of specific areas and, optimize their center positions, heights, and widths. Additionally,
RetNet determines which anchors to mask prior to captioning, facilitating the identification of challenging
objects such as boulders, soil, and water, which are indicative of natural disasters. We validated RetNet
across multiple disaster scenarios—landslides, floods, and wildfires—using images taken from various
perspectives, including side-view, aerial and shipborne views. Our findings reveal an accuracy of 91.60% in
landslide detection from side-view image captions and 87.50% for detections from shipborne views. These
results underscore RetNet’s effectiveness in enhancing the identification of disaster-affefted regions.

INDEX TERMS Retarget network, image captioning, vision transformer, anchor box, disaster detection.

I. INTRODUCTION
Disasters such as landslides [1], flooding [2], [3] and
wildfires [4], can occur anywhere and significantly affect
people’s lives and daily activities. Landslides, particularly
prevalent in mountainous regions, are triggered by various
factors, including intense rainfall, slope instability, or seismic
events. When disasters such as landslides occur, they can
block transportation routes and damage critical infrastructure,
such as roads, buildings, and highways. It is crucial for
decision-makers to accurately identify affected areas to plan
effectively for reconstruction and recovery. Unmanned Aerial

The associate editor coordinating the review of this manuscript and
approving it for publication was Joao Neves.

Vehicles (UAVs) play a vital role in this process, providing
valuable image data to assess damage and guide decision-
making. To overcome these issues, numerous computer
vision approaches, including detection and classification,
have been developed to improve the effectiveness and speed
of disaster detection.

Traditional image classification challenges typically
involve identifying a single class for each image, as noted
in various studies [5], [6]. Many techniques in this domain
leverage neural networks to extract image features, thereby
facilitating the classification process [7], [8], [9], [10], [11],
[12], [13]. Following advancements in image classification,
object detection emerged as a pivotal technique, with the aim
of identifying more specific classes within each boundary

143754

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0007-4324-969X
https://orcid.org/0000-0001-9703-2858
https://orcid.org/0000-0002-4645-6439


N. Thanyawet et al.: Identifying Disaster Regions in Images Through Attention Shifting

FIGURE 1. Concentrated captioning for more focusing and explanation on
the target objective.

in an image. Anchor boxes are used to define bounding
boxes [14], [15], [16] for target object classes in object
detection. Despite these advancements, the identification of
landslides, floods, and wildfires remains challenging. This
difficulty often stems from the frequently blurry appearance
of affected regions, such as landslide areas resembling typical
soil or flooded areas mirroring the appearance of ponds or
lakes [2], [3], leading to potential misclassification.

However, the emergence of image captioning has brought
to light a more nuanced dimension of computer vision.
This goes beyond simple classification to embrace the
description of an image’s surrounding context. Traditionally,
end-to-end methods for image captioning involved feature
extraction from images using Convolutional Neural Networks
(CNNs), followed by the generation of textual captions using
Recurrent Neural Networks (RNNs) [17]. More recently, the
introduction of transformers [18] has revolutionized this field.
This approach encodes an image into a series of image tokens,
and the textual caption is similarly decoded into text tokens.
These tokens are then processed through an encoder-decoder
attention layer, known as Vision Transformers (ViT) [19],
to establish relationships between the image and the caption
content. Even though current image captioning models can
generate detailed captions of images, thereby enhancing
disaster detection, as evidenced in existing research [20],
thesemodels still primarily focus onmajor objects to generate
captions, as depicted in Figure 1. This approach often
overlooks smaller yet significant regions within an image.
In particular, aerial images that capture expansive areas may
contain small regions where disasters exist. Developing a
model that recognizes not only the main objects in a scene but
also generates captions describing other important parts of the
surroundings in the image could enable quicker emergency
response.

In this study, we propose a retargeting network (RetNet)
that directs the model’s focus toward specific target objec-
tives, even though it is a small region of the disaster in the
images. Drawing inspiration from [17], we utilize anchor
boxes and optimize their central positioning, height, and
width to define the initial masked areas. Furthermore, RetNet
includes a secondary objective: selecting themost appropriate
anchor boxes for masking that are aligned with the targeted
objectives. This novel approach enables the model’s focus on
significant objects that offers a more detailed and contextual
understanding.

Our contributions in this field are threefold:
• This study introduces RetNet, a groundbreaking
approach that reorients the attention of image captioning
models. Traditionally, these models prioritize larger and
more prominent objects in an image. However, RetNet
is designed to highlight more minor yet significant
elements, a feature that is particularly beneficial in
complex natural environments. These minor elements
often contain critical information that conventional
methods can overlook in such settings.

• Building upon the foundations of the Fast-RCNN frame-
work, this study demonstrates an advanced technique for
optimizing anchor boxes. This method focuses explicitly
on fine-tuning the anchor boxes’s central positioning,
height, and width. Such optimization is crucial for
improving the detection and subsequent captioning
of smaller objects within natural scenes, a task that
standard image captioningmodelsmay find challenging.

• The study broadens the validation of the RetNet model
across a diverse range of disasters, including floods and
wildfires, and examines these from various perspectives
such as aerial, shipborne, and conventional human-
captured views. RetNet was employed to investigate
areas affected by disasters, and the model’s enhanced
image captioning and text classification capabilities
were leveraged to accurately identify and categorize
various aspects and types of disasters. This application
demonstrates the practical and significant impact of
RetNet in real-world scenarios, particularly in term of
timely and effective disaster response and assessment.

II. RELATED WORKS
This section reviews related work on the evolution of
computer vision techniques applicable to disaster detection,
including traditional image classification [5], [6], [7], [8],
[10], [11], object detection [13], [21], object segmenta-
tion [9], [12] and image captioning generation [17], [22].
Despite these advanced techniques, accurately identifying
hazy or unclear objects in images, such as during disasters,
remains a challenge.

A. ADVANCEMENT IN OBJECT DETECTION
The use of anchor boxes to identify objects in images
is a cutting-edge computer vision technique. This method
eliminates low-probability detection during inference and

VOLUME 12, 2024 143755



N. Thanyawet et al.: Identifying Disaster Regions in Images Through Attention Shifting

FIGURE 2. Disaster image classification network architecture between
prior works and our proposed method. There are convolution layers and
flatten layer for prior work. For proposed method, VED to generate caption
token with masked images from Retarget Network for text classification.

creates anchor boxes across each image patch. In order to
preserve only the highest probability detection, the procedure
uses intersection over union (IoU) computations for every
class, as explained in important studies such as R-CNN, Fast
R-CNN, and Faster R-CNN [14], [15], [16]. In the training
phase, labeling the object classes and boundary boxes is
an essential component of this technique. Similar to image
segmentation, where boundary labels are used for feature
extraction prior to training, this preparation is necessary for
the model to be trained to produce anchor boxes accurately.

Expanding upon the concept of anchor boxes, our method-
ology introduces novelty by re-purposing the anchor box
generation process to generate masked regions within the
image. The ideal locations and dimensions of these anchor
boxes were taught to the model during the training phase,
after which they were employed to mask the original image.
This method aims to refocus the model’s attention on less
accurate and, more frequently missed objects in an image.
We wanted to improve the model’s capacity to identify and
determine uncertain or less notable elements in the visual data
by changing the attentions hierarchy of the model.

B. TRANSFORMER-BASED IMAGE CAPTIONING
In recent years, transformer models have marked a significant
advancement in the field. Initially developed for machine
translation, these models utilize attention layers comprising
of transformer blocks. These blocks significantly enhance the
model’s focus, allowing it to concentrate more effectively on
values that exhibit relevant relationships. This development
represents a substantial shift in the processing and interpre-
tation of visual data is processed and interpreted, offering a
more nuanced and contextually aware approach to computer
vision tasks. Following their success in natural language

processing, transformer models have been adapted for
computer vision, particularly in image classification [19],
[23], [24]. Applying transformer techniques in this context
enhances feature extraction, allowing for more focused atten-
tion on significant features within images. This development
marks a notable evolution in analyzing visual information,
enabling more accurate and contextually rich interpretations.

In the text captioning part, tokenizers are used for
embedding the text into vectors. Several tokenizers are used
in image captioning architectures, such as BERT [25] based
on the WordPiece technique, DistilBERT [26], a smaller
pretrained model derived from BERT, and GPT-2 [27] based
on the Byte Pair Encoding (BPE) technique.

C. CHALLENGE IN CURRENT IMAGE CAPTIONING
A critical area of computer vision research is the production
of text captions from input images. RNNs are typically used
for caption generation, after CNNs for feature extraction [17],
[22]. This method efficiently creates a cohesive narrative for
the visual data by connecting the text captioning with the
extracted image features. Additionally, thorough captioning
has been used in light of the intricacy of the images, which
frequently feature numerous objects. Using anchor boxes, this
technique crops the image into regions of interest and creates
a unique caption for each region, providing a more thorough
explanation [17].
We propose that an image should contain several elements,

each of which deserves a more thorough explanation
than a single sentence. Image captioning provides a more
meaningful way to express these complexities, especially
when generating outputs in human-language terms. This
method works particularly well for elucidating ambiguous
objects, such as those discovered during natural disasters.
Object features only represented as pixel-based images may
need to be precisely identified or categorized. As a result,
image captioning can play an essential part in giving people
with a deeper understanding of these complicated scenes.

D. APPLICATION IN DISASTER MANAGEMENT
According to the 2P2R approach [28], disaster manage-
ment starts with preventative actions such as building or
remodeling infrastructure to reduce the effects of disasters.
Building sea walls to prevent tidal [29] and redesigning
building foundations to absorb seismic vibrations more
effectively [30], [31] are two examples. The next step is
preparation, which includes pre-event plans like securing
food and water supplies and mapping out evacuation routes.
After an incident, the recovery phase evaluates and repairs the
damage, including identifying victims and damaged areas.
The response phase entails warning and evacuation people.
UAV and helicopter aerial reconnaissance is invaluable
during this phase.

In order to define areas that require restoration, our
research attempts to apply our novel approach during the
recovery phase using images to identify damaged regions.
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FIGURE 3. Landslide image captioning between applying cropping and masking techniques to focus on the affected area in different view
aspect.

TABLE 1. Comparison of existing methods for image classification.

Natural features are frequently displaced into unusual loca-
tions during disasters, making it challenging to identify these
uncertain objects with conventional methods. Determining
whether soil sliding from a cliff and obstructing a mountain
transportation route constitutes a damaged region is difficult.
Through the improvement of such unclear object detection,
our method has the potential to significantly increase the
precision and effectiveness of damage assessment in disaster
management.

III. PRELIMINARY INVESTIGATION
In this section, we explore caption-based [20], which
demonstrate that the classification challenge outperforms
pixel-based techniques [10]. The caption-based model can
achieve more meaningful features, making the model better
classified in disaster images.Moreover, the caption-generated
machine-learning models [17], [18] tend to focus on most
objects in the foreground. This experiment demonstrates the
model’s attention to obtain valuable features from masking
and cropping images and the characteristics of optimal
masking to achieve the target objects.

A. CLASSIFICATION (PIXEL-BASED VS CAPTION-BASED)
1) EXPERIMENT SETUP
Our goal in this experiment was to demonstrate that tradi-
tional pixel-based models, which rely on feature extraction

for image classification, face significant challenges when
dealing with disaster scenes. We compare disaster scene
classification between pixel-based models (specifically,
ResNet50 [10]) and text-based image captioning features
that utilize a Vision Encoder-Decoder (VED) framework.
We used 620 images as the testing dataset, trained on 5,280
images, and set aside 605 images for validation. The image
dataset contains both normal and landslide scenes.

2) EXPERIMENTAL RESULTS
The results are presented in Table. 1. Using 620 images
in the testing dataset demonstrated that the VED approach
significantly outperformed traditional models, achieving an
Area Under the Curve (AUC) of 0.94 [20], which is a
notable improvement over the benchmark set by ResNet50
[10]. However, we noticed that the traditional ResNet50
models and the VED method tend to prioritize foreground
objects, often missing small disaster areas in the image.
This observation inspired us to develop a framework to
shift the focus toward surrounding objects, such as small
disaster regions, as represented in Figure 2. The Retarget
Network adjusts the prioritized regions to better detect
target areas in disaster images, particularly large-scale
images.

B. IMAGE CAPTIONING FROM CROPPING VS MASKING
1) EXPERIMENT SETUP
We experimented with cropping and masking as two distinct
image-editing techniques. Cropping entails reducing the
image’s outer regions to concentrate on particular sections,
which may cause the model to pay more attention to
typically overlooked items. Masking is the process of hiding
portions of an image so that the model can focus on
the exposed sections, which may be less noticeable but
are essential. We utilized 16 represented images from the
side view, shipborne, and aerial view images in these
experiments.

VOLUME 12, 2024 143757



N. Thanyawet et al.: Identifying Disaster Regions in Images Through Attention Shifting

FIGURE 4. Comparison of images with only some parts masked ((a) and (c)) and with all major
objects masked ((b) and (d)).

2) EXPERIMENTAL RESULTS
The analysis (as shown in Figure 3) reveals differing
results from the two experimental methods. One significant
drawback of cropping images was the reduction in significant
features from surrounding objects. Due to this scarcity,
captions were often misleading or failed to provide sufficient
information for a comprehensive explanation in common
language.

However, the masking method yielded more encouraging
results. The model produces captions that are included
these secondary objects owing to masking, which selectively
covered the main focus object while leaving other compo-
nents visible. This method allows for a more comprehensive
understanding of the scene because the captions can explain
one specific object, the larger context and the relationships
between the various components. In particular, masking
can direct the model’s focus toward a more impartial and
thorough understanding of the disaster scene.

C. OPTIMAL MASKING
1) EXPERIMENT SETUP
Similar to the cropping vs masking experiment, we also
utilized 16 represented images from the side view, shipborne,
and aerial view images in these experiments. We then exam-
ined how masking particular areas affects a model’s capacity
to produce accurate image captions. Using a brute-force
process to cover every potential region, we determined the
characteristics of the covered areas that produced captions
closest to the actual data. In order to mask each image for

this experiment, we divided it into nine patches, which were
arranged in a 3 × 3 grid. As a result, 512 distinct masking
configurations could be made, or 2(3×3). We examined the
characteristics and trends in the captions created for the
masked images for all possible combinations.

2) EXPERIMENTAL RESULTS
Our results demonstrate that accurate caption generation does
not require masking every noticeable objects in the image.
Figure 4 represents this example, illustrating how the captions
of images with some masking and images with all masking
major objects closely resemble each other. Furthermore,
we observed that dealingwith 16 images using the brute-force
masking method required more than 4 hours of computing
time. These results highlight that masking significantly raises
computational demands, even though it can effectively shift
the model’s attention. This emphasizes the requirement for
enhanced approaches. As a result, we introduce the Retarget
Network, a novel method designed to balance computational
efficiency and high-quality detection.

IV. METHODOLOGY
In this section, we introduce the network architecture and
pipeline of our proposed RetNet, designed to shift attention
frommajor object to others, which may be less noticeable but
are essential parts of the image.

A. NETWORK ARCHITECTURE
The RetNet’s architecture is illustrated in Figure 5. Before
extracting the image features into feature maps using the
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FIGURE 5. Our network architecture.

VGG-16 model, we trained the VED for image caption-
ing [17]. We add two novel layers to the RetNet architecture
in this network: the Localization layer and the Retarget layer.
The retarget layer then refines the possible masked region
candidates produced by the localization layer to optimal
masks. In the localization layer, patches and anchor boxes
were used to create these candidate-masked regions. The
focus of the image captioning model is then shifted using
the retarget layer to recognize the most significant masked
regions among the candidates.

B. VISION ENCODER DECODER
Image captioning using a Transformer model in a VED [19],
[23], [24] framework generates a caption for an image by
combining computer vision and natural language processing
techniques. The twomain components of the framework were
the text decoder and the vision encoder.

• Vision Encoder: An image is divided into patches and,
then fed into encoder transformers block to feature
vectors. In this process, we used a pre-trained from ViT
model [19] to encode the images.

• Caption Decoder: The text caption label is embedded
into feature vectors using the decoder transformer
block [18] from the input text. For the decoder process,
we used the Bidirectional Encoder Representations from
Transformers (BERT) [25] embedding the caption text
including tokenizers. The BERT tokenizer, based on the

WordPiece technique, is suitable for use with natural
objects in environmental scenes in our challenge.

We utilize a dataset of image pairs at fixed-length
captions to train the network to learn the correlations
between the feature vectors and their corresponding textual
descriptions [32]. In order to generate text captions based
on the correlations identified in the image feature vectors,
the model applies learned parameters during the inference
process.

C. LOCALIZATION LAYER
This layer aims to generate candidates for masking regions
from the feature map [33] of an image. We employ the state-
of-the-art VGG-16 architecture [34], [35], which consists of
13 layers of 3 × 3 convolutions alternated with 5 layers of
2×2max pooling, to extract the feature map I . The size of the
input image, widthW , and heightH that we transform for the
pipeline into 512. As a result, an input image with dimensions
3×W ×H is transformed into a feature map with dimension
C ×W ′

× H ′, where C = 512,W ′
=

⌊W
16

⌋
, and H ′

=
⌊ H
16

⌋
.

We modified this technique to generate candidates for
masking regions, illustrating inspiration from the Region
Proposal [17], that uses patches and anchor boxes to generate
dense captions. We first divided the images into square
grid patches containing k anchor boxes to cover almost
all probable objects. We use feature maps into 7 × 7 grid
patches to ensure the coverage of even small objects in
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the image. Four parameters are specified for each patch:
its width wp, height hp, and center position (xp, yp). Using
a regressive offset model represented by the following
equations, we define k anchor boxes within each patch with
four parameters for size (wa, ha) and the center position
(xa, ya) of each anchor box’s region:

xa = xp + tx
wp
2

(1)

ya = yp + ty
hp
2

(2)

wa = wp · exp(tw) (3)

ha = hp · exp(th) (4)

In this instance, the normalized offset from the anchor’s
center is represented by (tx , ty) which uses the hyperbolic
tangent activation function (Tanh) in the range (−1, 1) to
ensure that the center position of the anchor boxes is in the
patch size, and the log-scale transformation of the anchor size
is represented by tw, th) which used the rectified linear unit
(ReLU) in the range [0,∞) to ensure that thewidth and height
of the anchor boxes could cover the objects. We then map
(xa, ya,wa, ha) onto the input feature map’s X × Y grid and
then transform the feature map back to its original dimensions
of W × H .

D. RETARGET LAYER
Along with the input from the feature map for the self-
attention process, we obtain a set of anchors R(xa, ya,wa, ha)
from the localization layer for use as candidates. I ∈

RB×C×W×H is the feature map that we used, where B is batch
size, C for number of channels which is 512, W for width,
and H for height. The attention map A is first calculated as
follows:

A(Q,K ) = Softmax
(
QKT
√
dk

)
(5)

In this section Q,K ∈ RB×
C
8 ×N denotes the query and key

matrices retrieved from the featuremap. The scaling factor for
the dimensionality of the critical vectors, in our case n = 8,
is denoted by the term dk =

C
n [18].

Subsequently, we utilize the attention map A to a single
dimension of N = W × H using the value of the feature
map matrix V T . The output feature map is obtained by
multiplyingattention map A by V . The output of masking
region O is then obtained by scaling this result by a learnable
parameter γ and adding the input feature map I , which
includes a residual connection as follows:

O(A,V , I ) = γ · Reshape(AV T ) + I (6)

After that, the output is reshaped using the Reshape()
function to return it to the original spatial dimensions,W×H .
Then,O is then subjected to the sigmoid function to determine
the optimal masking anchor boxesM as follows:

M = Sigmoid(O) ⊙ R (7)

In this particular instance, the dimensions of the anchor box
candidates R are X × Y × 4k . Masking region from anchor
box candidates M calculated from the result Sigmoid(O)
and anchor box candidates R with the Hadamard product
from these two metrics. As a kind of optimal masking,
we later mapped M with dimensions of X × Y × k back
to the original images X × Y dimension images. Maintain
consideration that, for each anchor parameter, we mask the
original images using a masking value M of 1, denoted by
Sigmoid(O) > 0.6. We identify non-masking areas with a
masking value of 0, denoted by Sigmoid(O) <= 0.6. Then,
to create captions Cgen, we fed the masked images into the
VED framework [19], [23], [24].

E. LOSS FUNCTION
During the training phase, we used each image’s reference
captions Ctrue as the ground truth. We employed a smooth L1
regularization L1reg1 in the transformed coordinate space [36]
to penalize the parameters to compare the generated captions
with the ground truth captions. In order to measure the
similarity between the captions, we additionally employed
the inverse cosine similarity loss Linvc.

An encoding and embedding process is necessary to
calculate loss. Utilizing a model known for its efficacy in
generating contextual embeddings, BERT [25], we gener-
ated captions Cgen based on the reference captions Ctrue.
We addressed both Cgen and Ctrue using the BERT tokenizer
to generate the encoded vectors. After that, we produce the
embeddings Vgen and Vtrue from the mean of the encoded
vectors’ final hidden states as follows:

Vgen = Mean(BERT (Encode(Cgen))) (8)

Vtrue = Mean(BERT (Encode(Ctrue))) (9)

After obtaining the embeddings Vgen and Vtrue, we used
them to calculate the inverse cosine similarity loss, Linvc,
as follows:

Linvc =
Vgen · Vtrue

∥Vgen∥∥Vtrue∥
(10)

L1 regularization penalizes the model parameters to
prevent over-fitting. It applies the absolute values of the
parameters, which do not impose excessive penalties on
the loss function. It generates sparse solutions for feature
selection from the parameters in the RetNet layers, which
contain quite large features. We also calculated the smooth
L1 regularization Lreg1 in the transform coordinate space as
follow:

Lreg1 =

∑
p∈Parameters

∥p∥1 (11)

Lastly, we use a custom loss function in our model training
phase, which combines the cosine similarity loss Linvc and
the smooth L1 regularization Lreg1 , each of which has weights
β and α assigned to it, respectively. The following is the
combined loss equation:

Lcustom = α · Linvc + β · Lreg1 (12)
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TABLE 2. The statistics of our dataset.

The computational complexity of the RetNet archi-
tecture in training process as the training process:
O

( n
b

)
+ O

(
(W · H )2 · C

)
+ O(p), in the inference process:

O
(
(W · H )2 · C

)
V. EXPERIMENTS AND RESULTS
Our method involves the processing of images using the
RetNet to produce region proposals that are fed into RetNet.
The outcomes of our suggested approach are shown in
this section, along with how it performed with various
ablation loss functions, patch grid counts, and anchor box
counts. Moreover, we use our network to analyze other
disasters, floods, and wildfires and generate captions for
the various scenarios. Furthermore, we utilize our system
to analyze landslide scenarios from an alternative viewpoint
(i.e., shipborne imagery) and assess its efficacy compared to
conventional detection approaches.

A. DATASET
In this study, we utilized image datasets from four primary
sources, as detailed in Table 2:

• The British Geological Survey (BGS) [37] provides
landslide images. We further annotated these images
using text captions to enhance our dataset for the
intended analyses.

• Kaggle [38] contributed an extensive collection of 4,319
images, from which we derived a common scene image
dataset.

• The Disaster Image Dataset (DID) [39] provided the
flood andwildfire images.We annotated the images with
captions in our network.

• Shipborne [40] provided landslide and non-landslide
imagescaptured during a survey conducted on a ship.

The models in our framework were trained, validated,
and tested using BGS, Kaggle, and DID data sources. The
Shipborne dataset was only used for testing purposes in
classification application. According to Table 2, there are
2,036 abnormal images from BGS and 4,319 typical images
from Kaggle. Additionally, we extended the disaster datasets
for additional disasters consist of floods and wildfires, as the
DID [39]. We decided to include these two beyond disaster
segments in our studies to explore the various scenarios.

We made an effort to use label terms frequently found
in this dataset, such as trees, rocks, dirt, water, rivers, fires,
and lakes. A text caption was applied to the dataset. We also

described the surrounding objects and their locations using
the terms of the object since this would make it simpler for
the model to understand the conditions of the scenes.

We used the shipborne image-based landslide dataset [40],
which includes 270 images, 231 of which have no relation to
landslides and 39 of which do. As a result, we could use the
classification on an alternative dataset. This dataset serves as
one of the benchmarks we use to evaluate the effectiveness of
our proposed approach.

B. ABLATION STUDY
Our approach relies on image masking to retarget the atten-
tion during image captioning. Girshick [15]’s recommended
an L1 regularization function for parameters, such as the
anchor box form. In order to optimize the retarget layer
and provide captions comparable to the labels, we employed
a cosine similarity loss function. We also constructed an
inverse cosine similarity loss function to find dissimilar
captions. This method encourages the model to mask images
to highlight target objects, which is novel for detecting unique
objects through an inverse function. Images and captions
from our collection, such as ‘‘The man in front of the rocky
mountain, whose soil has collapsed,’’ feature a variety of
subjects outside of disaster-related themes.

The model performance is significantly impacted by the
L1 regularization function, as indicated by the findings
presented in Table 3. BLEU [41], METEOR [42], ROUGE-L
[43], and CIDEr [44] are the standard linguistic metrics
we utilize to assess the relevance of text captions. The
results showed that the cosine similarity loss function is not
as effective as the inverse cosine similarity loss function.
The most effective set of loss functions, inverse cosine
similarity and L1 regularization, yielded scores of 0.416,
0.339, 0.298, 0.258, 0.270, 0.401, and 1.799 for BLEU-1,
BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGE-L, and
CIDEr, respectively. Even though the inverse cosine sim-
ilarity slightly outperforms the cosine similarity loss,
adding an extra loss function does not enhance the results
beyond the combination of inverse cosine similarity and L1
regularization.

Furthermore, as indicated in Table 4, we tested with 3, 4,
5, and 7 patch grids, varying the setup by employing three
anchors in each grid. In addition, we experimented with seven
patch grids utilizing three, five, and seven anchor boxes to
find configurations that maximize the model performance,
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TABLE 3. The ablation of loss functions in our proposed method.

TABLE 4. The ablation of number of patch grid with 3 anchor boxes in our proposed method.

TABLE 5. The ablation of number of anchor boxes with 7 patch grids in our proposed method.

TABLE 6. Performance metrics for landslide, flood, and wildfire disaster
in image captioning.

TABLE 7. Classification performance on different datasets.

as shown in Table 5. Despite adjusting the number of anchor
boxes in each grid and the patch grids, the modifications
did not significantly impact the model’s performance across
all assessed metrics. The scores remained at 0.416, 0.339,
0.298, 0.258, 0.270, 0.401, and 1.799 for BLEU-1, BLEU-2,
BLEU-3, BLEU-4, METEOR, ROUGE-L, and CIDEr,
respectively.

C. FLOOD AND WILDFIRE
Wefine-tuned the model using images of floods and wildfires
from the Diaster Image Dataset (DID). Descriptive captions
were appended to each image for use in the training and
testing stages. The results indicated that the model was more
proficient at recognizing and captioning wildfire disasters
compared to flood disasters, as shown in Figure 6. In par-
ticular, the BLEU-1 score for photographs of floods is 0.223,
whereas that for images of flames was 0.205. Nevertheless,
the ROUGE-L score of 0.230 for floods is marginally higher
than the ROUGE-L score of 0.219 for wildfires, reflecting
the matching of the longest common subsequence in captions
of flood images. Moreover, the METEOR scores, 0.146 for
floods and 0.156 for wildfires, demonstrate a reasonable
level of semantic and syntactic agreement with reference-
generated captions. The slightly higher score for wildfires
suggests a superior model performance in describing wildfire
imagery. Additionally, the METEOR and CIDEr scores—
0.423 for floods and 0.627 for wildfires—reveal that the
captions for wildfire imagery are more accurate and closely
match the reference assessments.

D. CLASSIFICATION
The results of our comparative analysis of the classification
performance of RetNet, VED, and ResNet50 [10] are listed
in Table 7. As can be seen from the values of 0.9160,
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FIGURE 6. Image captioning results vary significantly across different viewpoints, from side views as shown in Figure 6(a) to 6(d), shipborne views
in Figure 6(e) to 6(h), and aerial views in Figure 6(i) to 6(l). Red boundary boxes highlight the disaster areas within the images.

0.9067, 0.9510, and 0.9283 for recall, accuracy, precision,
and F1-score, respectively, our method performs better than
the others. Furthermore, we used data from shipborne surveys
to evaluate the classification performance from a different
angle. Although RetNet’s accuracy of 0.8750 was lower than
that of the Fusion approach [40], RetNet outperformed the
Fusion approach regarding F1-score, recall, and precision.
Notably, our approach outperformed Fusion with a recall of
0.9643 against 0.8290 for Fusion.

VI. DISCUSSION
A. IMAGE CAPTIONING
The results show that neither the patch size nor the number
of anchor boxes significantly affect the generated captions,
as shown in Table 3. The result was that the localization
layer’s area candidates were used to be candidates to be
selected as the optimal ones for masking. The patch size and
number of anchor boxes become insignificant considerations
in image captioning since the masked regions frequently
occupy similar positions.

Regarding the side-view images from Figure 6(a) to
Figure 6(d), in contrast to the original captions, which
might have concentrated on or misinterpreted other elements,
our model prioritizes target objects more successfully.
Furthermore, promising results of landslide detection from
shipborne images, which are unseen datasets, are shown
in Figure 6(e) to 6(h). In a similar vein, aerial images
from Figs. 6(i) to 6(l) demonstrate the model’s ability to

identify landslides from an above-ground perspective. Even
though the model is mainly trained on side-view images, our
approach outperforms other approaches in landslide detection
in aerial view images.

Additionally, we present a heat map illustrating the new
attention derived from RetNet in Figure 7. For landslide
disaster images, as shown in Figure 7(a), the heat map
indicates that our model shifts its focus from people to the
landslide region in the upper part of the image, thereby
generating captions that describe the disaster situation in
the targeted region. Conversely, in Figure 7(c), where the
landslide occupies the center of the image without being
obscured by other objects, the application of masking via
RetNet enables the VED to concentrate exclusively on the
specific landslide region depicted in the image.

In scenarios involving floods, the captions generated by
our model accurately identified the specific areas depicted in
the heat map images (Figure 7(e)). However, it is common
for the original image (as shown in Figure 7(g)) and the
corresponding masked image (as illustrated in Figure 7(h))
to produce identical captions. This occurrence is due to the
extensive water regions in the images, which are sizable
enough to be detected without the need for attention to shift.

For the wildfire disaster, Figure 7(i) and 7(j) show that
our model not only allow VED to focus on wildfire but
also on other surrounding objects and humans. As a result,
the generated captions are correct even it is from different
aspects from the original image. Moreover, in Figure 7(k), the
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FIGURE 7. Image captioning results vary significantly across different disasters, from landslide as shown in Figure 7(a) to 7(d), flooding in
Figure 7(e) to 7(h), and wildrie in Figure 7(i) to 7(l). The heatmap red shown the focus of RetNet.

original image caption misinterpret the phenomena. On the
other hand, our model could generate the correct perspective,
but only partially correct captions as shown in Figure 7(l).
In general, we realized that the VED captioning model would
pay attention to the center of the image to generate the
circumstance captions, while RetNet captions attention to the
specific regions.

Finally, we highlight the cases of misdetection using
our approach as shown in Figure 8. Specifically, RetNet
mistakenly shifts the focus to the top regions of the side view
of a fire disaster image (as shown in Figure 8(a)), rather than
to the middle. This incorrect focus results in inaccurately
generated captions. Similarly, in the side view image of a
landslide (as shown in Figure. 8(b)), RetNet tends to focus
on the upper part of the image rather than the correct target
regions located at the center.

B. CLASSIFICATION
Target regions are the focus of our approach, as Table 7 shows
that RetNet outperforms Ofli et al. [10] when it comes to side
view image analysis, especially when using the BGS dataset.
On the other hand, compared to the results of Li et al. [40],
our model shows lower true positive and true negative rates
when applied to shipborne images. In spite of this, RetNet
achieves better recall, demonstrating its improved capacity to
recognize landslides in uncertain scenarios.

FIGURE 8. Heat map attention of caption from original image and RetNet
image in failure case.

VII. CONCLUSION
Disaster-related areas often present a significant challenge for
detection in aerial or shipborne imagery, primarily because
of the small size of these regions within the images. In this
study, we introduce a novel framework called the Retarget
Network (RetNet), which is designed to enhance the ability of
image-captioning-based machine learning models to pinpoint
critical regions within an image.

Our proposed network uniquely adjusts detection priorities
by integrating a localization layer with a retarget layer, using
patch and anchor box techniques. We patched the image into
square grid patches, and in each patch, anchor boxes were
generated to serve as candidate regions in the localization
layer. These candidates were then masked for shifted
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attention in the image captioning model (VED) in the retarget
layer. The ablation study found that the number of patches or
anchor boxes in each patch did not affect the performance
of the shifted attention in the image captioning model.
Moreover, we found that the Inverse Cosine Similarity loss
and L1 regularization outperformed the other combinations of
loss functions. Inverse Cosine Similarity loss uses generated
and reference captions to achieve the result, whereas L1
regularization penalizes parameter loss in RetNet to prevent
model over-fitting and aids in feature selection from the
image tokens.

The RetNet model was thoroughly tested across a range of
disaster scenarios, including landslides, floods, and wildfires,
from various perspectives. Our findings demonstrate that
preprocessing images with RetNet before analysis with a
Visual Explanation Detector (VED) significantly improves
the accuracy of detecting landslides in side-view image
captions to 91.60% and achieves an 87.50% accuracy rate
for images captured from shipborne perspectives, which is
an unseen dataset to evaluate the performance of RetNet in
landslide disaster.

In this study, we found that complex images containing
multiple main objects affected the RetNet’s ability to shift
attention in the image captioning model. Moreover, the
caption tokens in this study were limited to 30 tokens due to
the constraints of the labeled caption dataset, which impacted
the precision of RetNet and the image captioning model
(VED). These challenges, including handling complex scenes
with multiple major objects and the limitation of text tokens,
should be addressed in future work.

The limitation of RetNet with hazy or unclear images
would make it quite challenging to retarget the major object if
the surrounding objects have similar features. Moreover, the
limitation of detection based on the image captioning model,
VED, could also improve in the future.
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