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ABSTRACT In this paper, the problem of the assist-as-needed (AAN) control of the upper limb exoskeleton
is studied. Due to the complexity of the upper limb exoskeleton structure and driving mode, the control
parameters of the equipment need to be adjusted to obtain satisfactory control performance. This paper
presents an adaptive gain control method based on AAN. Through the dynamic gain adjustment mechanism,
the system can adjust the control force in real-time to avoid excessive or insufficient auxiliary force. It can
overcome the problem that traditional adaptive cannot identify dynamically changing parameters efficiently,
and effectively avoid the overshoot and oscillation problems of high-gain adaptive, and do not need to obtain
unknown disturbance information in complex models. The method adopts the on-demand auxiliary strategy
to realize the self-adaptation of the auxiliary force and mode adjustment, which ensures the comfort, safety
and effectiveness in the rehabilitation process. Through simulation experiment and comparison with the
latest AAN controller, it can be seen that the controller has good anti-jamming effect and adaptive adjustment
ability to auxiliary force under unknown interference.

INDEX TERMS Adaptive control, AAN control, cable-driven upper limb exoskeleton.

I. INTRODUCTION
The recovery of the affected upper limb function has always
been one of the difficulties in stroke rehabilitation [1].
Enhancing motor function in stroke patients has become
an important goal of therapists’ work [2]. In recent years,
robot-assisted rehabilitation of upper limb rehabilitation, as a
new form of rehabilitation, has gradually replaced manual-
assisted training, saved a lot of clinical medical resources, and
made rehabilitation training develop intelligently, which has
achieved the rehabilitation of some stroke patients [3], [4].

Common upper limb rehabilitation robots are mainly
divided into two categories: exoskeleton robots and end trac-
tion robots. The terminal traction robot has a relatively simple
structure through single-point contact and interactionwith the
patient’s hand or forearm. Exoskeleton robots can achieve
individual joint control while avoiding singularities [5]. For
example, MGA [6], ANYexo [7], etc., when the drivers
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are placed at the joint, the volume and mass of the worn
part increase compared with the movement inertia of the
patient, and the comfort is reduced. Rod-driven exoskeleton
has the advantage of being lightweight. In recent years, the
emergence of rod-driven exoskeletons such as ARMin [8],
CADEN [9] and ShoulderRO [10] has made its application
in the field of rehabilitation more extensive.

The controller of the rehabilitation robot is one of the key
factors to ensure its rehabilitation treatment effect and safety.
Most controllers are designed to strictly track the desired
motion pattern. This controller is suitable for individuals
with severe impairment of function; however, this excessive
intervention is not as effective in the rehabilitation of patients
with partial motion [11]. In recent years, a controller that
provides minimal auxiliary force to the patient has been
proposed called the assist-as-needed (AAN) controller. Some
controllers adjust the impedance parameters by the error
of the observed quantity to reflect the AAN [12]. Others
adjust the output of the controller directly by the error of
the observed quantity to achieve the AAN objective [13]. For
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example, this paper designs a new adaptive hybrid mode on
Demand (AHMAAN) control algorithm, in which the hybrid
mode consists of resistance mode and auxiliary mode and
embodies AAN characteristics through the designed adaptive
gain factor [14]. An on-demand assist (ATAAN) impedance
control based on active torque is proposed, and modulated
according to the approximate value of the active torque and
the position error of the patient to achieve the on-demand
assist characteristics [15]. An upper limb exoskeleton Adap-
tive Assistance on Demand (TTP-AAAN) control algorithm
based on training task planning reflects AAN characteristics
by adjusting the training difficulty according to the patient’s
intention and performance [16].

In addition, to the complexity of the exoskeleton nonlinear
dynamics model, it is more difficult to achieve accurate con-
trol of the exoskeleton [17]. Scholars have proposed various
methods to guarantee the robustness and stability of complex
systems [18], [19]. The back-stepping method is often used
in controllers to compensate for uncertain disturbances. The
performance of controllers is affected by the upper limit of
time-varying disturbance, which makes the tracking error
difficult to converge. Before the experiment, the selection of
the parameters of the equipment is accidental, so the selec-
tion and adjustment of the parameters need a long process,
and only the correct parameters can get satisfactory control
performance. The constant value of a stable gain at one
time cannot guarantee the ideal control performance of the
system under the influence of time-varying perturbations.
Therefore,the self-tuning control algorithm is designed to
solve the control parameter tuning problem, but this kind of
control algorithm does not consider the time-varying inter-
ference, and it is difficult to achieve the expected control
performance.

High-gain techniques are often used to achieve accurate
and robust control performance. BLF-based Barrier Lya-
punov function (Barrier Lyapunov function, BLF) controller
has been designed to ensure that the tracking error reaches
the desired control performance. When the tracking error
reaches a certain range boundary, the controller gain is
adjusted to infinity to prevent it from going beyond the
boundary [20]. A controller based on a specified perfor-
mance function (PPF) uses a reversible performance function
for error transformation to obtain a specified transient and
steady-state performance [21]. Although the above controller
can meet the expected control requirements, it needs to
ensure that the error is within a certain range. When the
disturbance is too large or when the tracking error exceeds
the limit, the system may become unstable. Selecting the
gain of the interference observer (DO) by obtaining infor-
mation on the maximum frequency of interference, and
thus accurately estimating performance for use with BLF
or PPF control methods have been developed for industrial
use [22], [23]. However, the uncertainty of the maximum fre-
quency results in observer gains usually obtained by trial and
error.

The common feature of tracking problems of complex
nonlinear systems solved by the above methods is that
the boundedness of tracking errors depends on the upper
bounds of unknown interference and control/observer gain,
so the external tracking error disturbance can be reduced
by high gain. However, unnecessary high gain may cause
amplification of high-frequency measurement noise, so peak
phenomena due to the multiplication of high gain and ini-
tial error should be avoided [24]. It is difficult for the
above method to select the appropriate control gain to obtain
satisfactory control performance without interference infor-
mation. Therefore, it is necessary to study a gain adaptive
control method without interfering with information on the
premise of avoiding high gain.

At present, there are few researchers related to the above
problems. A scale-integral-derivative (PID) gain self-tuning
method based on sliding mode dynamic gradient descent is
developed [25]. In addition, according to the relationship
between PID and reverse step control, a variable PID tun-
ing method is proposed [26]. A back-stepping control gain
tuning method is designed using a combination of nominal
gain and variable gain to adjust the desired transient per-
formance [27]. Although these methods are proposed for
intuitive self-learning gain, the stability analysis of adaptive
tuning gain is not enough.

In this paper, we propose an AAN controller with adaptive
gain for nonlinear systems with unknown external time-
varying perturbations: The controller uses the backstepping
method to track the target trajectory, and directly adjusts the
output of the controller by tracking performance to obtain
AAN characteristics. The adaptive law is used to update
the control gain to suppress the tracking error within the
expected range to obtain satisfactory control performance
without interference information. The upper bound residuals
of unknown perturbations are updated synchronously around
the desired boundary, and the control gain is adjusted to avoid
unnecessary high gains when the residuals set is less than the
desired boundary.

The main contributions of this paper are:
1. Through the dynamic gain adjustment mechanism, the

system can feedback and adjust the control force in real-time,
avoiding excessive or insufficient assistance, and helping to
adapt to the problem of reduced auxiliary accuracy caused by
internal or external interference in the rehabilitation training
process.

2. The dynamic adaptation mechanism is used to further
solve the transient instability effects at the nodes of dynamic
adjustment on demand, overcome the problem that traditional
adaptive cannot efficiently identify dynamic changing param-
eters, and realize the adaptive adjustment of auxiliary strength
and mode according to the specific situation and progress of
the convalescent

3. The adaptive AAN gain control proposed in this paper
avoids the problem that the traditional high-gain adap-
tive control may cause the dynamic adaptive ability of
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on-demand assistance to be too sensitive, reduces overshoot
and steady-state shock, and ensures the safety and comfort of
rehabilitation training.

II. THE EQUATION OF MOTION OF THE ROBOT
The robotic exoskeleton mentioned above is described by a
common second-order Euler-Lagrange dynamic model in the
Cartesian coordinate system, as shown in equation (1) [28]:

Mx(x)ẍ + C(x, ẋ)ẋ + G(x) + F(ẋ) = J−T τ + fext (1)

This model can also be written as formula (2) in the joint
coordinate system.

M (q)q̈+ C(q, q̇)q̇+ G(q) + F(q̇) = τ + JT fext (2)

In formula (1), x ∈ Rn, ẋ ∈ Rn, and ẍ ∈ Rn respectively
represent the robot end position, velocity and acceleration, n
is the number of rigid linkages in the robot model;

In formula (2), q ∈ Rn, q̇ ∈ Rn, and q̈ ∈ Rn respectively
represent the angular position, angular velocity, and angular
acceleration of each joint; M (q) ∈ Rn×n is rigid body inertia
matrix; C(q, q̇) ∈ Rn×n are centrifugal force and Coriolis
force matrix; G(q) ∈ Rn is robot gravity torque, F(q̇) ∈ Rn

is friction and other disturbances, τ ∈ Rn is the control
input and fext ∈ Rn is expressed as the robot-environment
interaction force; ẋ = J (q)q̇, J (q) ∈ Rn×n is a Jacobian
matrix and is non-singular, satisfying:

Mx(x) ≜ J−TM (q)J−1,

Cx(x, ẋ) ≜ J−T [Cq(q, q̇) −M (q)J−1J̇ ]J−1,

Gx(x) ≜ J−TG(q), Fx(ẋ) = J−TF(q̇)

The robot in equation (2) has the following properties:
Property 1: M (q) is a positive definite matrix and satisfies

the following relation:
MI ≤ M (q) ≤ SMI , I is the identity matrix of n × n, M

and SM representing the smallest eigenvalue and the largest
eigenvalue respectively.

In order to make the subsequent simulation experiments
more in line with the physical reality, the model satisfies the
following assumptions:
Assumption 1: Joint misalignment between the wearable

robot and the subject during movement can be compensated
by the robot.
Assumption 2: Considering that the robot joint has a phys-

ical limit, the controller input torque limit is set to ±22 N ·m
in the simulation.

III. CONTROLLER DESIGN
In this section, an AAN control scheme based on adaptive
learning gain is proposed, which adjusts the controller perfor-
mance according to the trajectory tracking error to realize the
on-demand auxiliary function, that is, it only provides strong
help when the patient cannot complete the predetermined
trajectory movement and reduces the help when the patient
has sufficient ability. Similar methods have been used in some

previous literature, and the advantage of the controller pro-
posed in this paper is that it adopts a nonlinear control method
based on adaptive learning gain (ALG) without any informa-
tion about interference and gain tuning, which restrains the
tracking error within the desired range.

e = qd − q (3)

where qd is the reference position of the given joint, q is the
actual motion position of the joint, and e is the error of the
joint position.

FIGURE 1. Control strategy block diagram.

Note 1: For better tracking performance in trajectory track-
ing problems, it is difficult to ensure the convergence of
e, ė, ë. So, we define a new error r , which has the following
formula:

r = k1e+ k2ė (4)

If r and ṙ both converge to zero as t → ∞, then e, ė, ë both
converge to 0 as t → ∞, where both k1 and k2 are constant
gains and both are positive numbers.

Combined with formulas (2), (3),and (4), the following
dynamic model about r can be obtained:

M (q)ṙ = M (q)(k2q̈r + k1ė) − k2C(q, q̇)r

− k2(τ + JT fext ) + k2(G(q) + F(q̇)) (5)

The control law design is:

τ = C(q, q̇)r +M (q)(k1ė+ k2q̈r + k̂r

+ k3Tanh(χ(r, γ )))/k2 + G(q) (6)

where k̂ is the estimate of the adaptive learning gain that has
not been set. k3, γ is constant.

Substituting the control law (6) into equation (5) gives the
closed-loop dynamics of the error:

M (q)ṙ = −k̂r − k3Tanh(χ(r, γ )) + k2F(q̇) − JT fext (7)

In the formula:

χ (r, γ ) =

{
0, |r| < γ

r − γ sign(r), |r| > γ
(8)

and

ε = k2F(q̇) − JT fext (9)
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If ε is regarded as a disturbance in trajectory tracking,
then (7) can be rewritten as:

M (q)ṙ = −k̂r + k3Tanh(χ(r, γ )) + ε (10)

Assumption 3: The unknown time-varying positive ideal
gain K∗(t) exists and satisfies the following relations:

K∗(t) > k̂(t), K∗ ⩽ K∗(t) ⩽ SK∗, sup
∣∣K̇∗(t)

∣∣ = κ

whereSK∗,K∗, κ are positive constants, if k̂ in formula (9) can
be replaced by K∗(t), then K∗(t) can be adjusted according to
the influence of perturbation, to ensure that the error changes
within the expected range θ :

The update rate of the adaptive learning gain is designed as
follows:

˙̂k =

{
λ1r2sign(|r| − θ ), k̂ > kmin

ϕ, k̂ = kmin
(11)

λ1 is the learning rate, and λ1 > 1, ϕ is a small constant, θ
is also a small constant as an error boundary, the initial value
of k̂ is greater than kmin, kmin is also a positive number.

FIGURE 2. Modulation term with AAN performance.

Note 2: In the update rate of adaptive learning gain, when
the error is less than θ , the gain keeps increasing; When the
error is within the allowable range, that is r < θ , the learning
gain is kept at the lowest level;
Assumption 4: F(q̇) is an external disturbance, and there

is an upper bound, which is: δ = sup |F(q̇)|.
Theorem 1: Consider hypotheses 1-4, for the control

input (7) and the adaptive law (10), the tracking error and the
control gain estimation error k̃ = K∗

− k̂ , both bounded as
follows [12]:

lim
t→∞

V1(t) ≤
h1
b1

(12)

where

V1 =
1
2
r2 +

1
2
k̃2

b1 = min
(
2

(
K∗

−
1
µ

)
, 2αθ2

)
h1 = αθ2k̃2max + k̃maxθ

2β +
µ

4
δ2 + k̃maxκ (13)

where α, β, µ are positive constants that will be used in the
following proof.

Proof: The Lyapunov function is defined as:

V1 =
1
2
r2 +

1
2
k̃2 (14)

Derivation of equation (14) gives (15):

V̇1 = r
(
F(q) − k̂r − k3 Tanh(χ(r, γ ))

)
+ k̃K̇∗

− k̃ k̂

= F(q)r − k̂r2 − k3 Tanh(χ(r, γ ))r

+ k̃K̇∗
− k̃λ1r2 sign(|r| − θ ) (15)

According to the symbol of (|r|− θ ), it can be divided into
two cases:

(1) Case 1: When |r| > θ , (15) can be arranged as:

V̇1 = F(q)r − k̂r2 − k̃λ1r2 + k̃K̇∗
− k3 Tanh(χ(r, γ ))r

= −k̂r2 − k̃λ1r2 + K∗r2−K∗r2 + αr2k̃2 − αr2k̃2

+ F(q)r + k̃K̇∗
− k3 Tanh(χ(r, γ ))r

= −K∗r2 − αr2k̃2 − k̃r2(λ1 − 1 − αk̃) + F(q)r
+ k̃K̇∗

− k3 Tanh(χ(r, γ ))r (16)

α is a positive constant, and α satisfies the condition of
α < ((λ1 − 1)/k̃max) < ((λ1 − 1)/k̃), k̃max is constant and
k̃max = K∗

− kmin.
Formula (16) can be further rewritten as:

V̇1 ⩽ −K∗r2 − αr2k̃2 − k̃r2
(
λ1 − 1 − αk̃

)
︸ ︷︷ ︸

>0

+ F(q)r + k̃K̇∗
− k3 Tanh(χ(r, γ ))r

⩽ −K∗r2 − αr2k̃2 +
1
µ
r2 +

µ

4
δ2

+ k̃maxκ − k3 Tanh(χ(r, γ ))r

⩽ −(K∗
−

1
µ
)r2 − αθ2k̃2 +

µ

4
δ2

+ k̃maxκ − k3 Tanh(χ(r, γ ))r

⩽ −min
(
2

(
K∗

−
1
µ

)
, 2αθ2

)
︸ ︷︷ ︸

=b1

1
2
(r2 + k̃2)

+
µ

4
δ2 + k̃maxκ︸ ︷︷ ︸

=s1

−k3 Tanh(χ(r, γ ))r

⩽ −b1V1 + s1 − k3 Tanh(χ(r, γ ))r (17)

where b1, s1, µ are positive constant terms, and µ satisfies
the condition: µ > (1/K∗)

(2) Case 2: When |r| < θ , (15) can be arranged as:

V̇1 = F(q)r − k̂r2 + k̃λ1r2 + k̃K̇∗
− k3 Tanh(χ(r, γ ))r

= −k̂r2 + k̃λ1r2 + K∗r2−K∗r2 + αr2k̃2 − αr2k̃2

+ F(q)r + k̃K̇∗
− k3 Tanh(χ(r, γ ))r

= −K∗r2 − αr2k̃2 + k̃r2(λ1 + 1 + αk̃)

+ F(q)r + k̃K̇∗
− k3 Tanh(χ(r, γ ))r (18)
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Similarly, α is a positive constant, and α satisfies the
condition of α < ((λ1 − 1)/k̃max) < ((λ1 − 1)/k̃), k̃max is
constant and k̃max = K∗

− kmin.
Formula (18) can be rewritten as:

V̇1 ⩽ −K∗r2 − αr2k̃2 + k̃maxr2
(
λ1 + 1 + αk̃max

)
︸ ︷︷ ︸

>0

+ F(q)r + k̃maxκ − k3 Tanh(χ(r, γ ))r

⩽ −K∗r2 − αr2k̃2︸ ︷︷ ︸
>0

+k̃maxθ
2β +

1
µ
r2 +

µ

4
δ2

+ k̃maxκ − k3 Tanh(χ(r, γ ))r

⩽ −(K∗
−

1
µ
)r2 − αθ2k̃2 + αθ2k̃2 + k̃maxθ

2β

+
µ

4
δ2 + k̃maxκ − k3 Tanh(χ(r, γ ))r

⩽ −min
(
2

(
K∗

−
1
µ

)
, 2αθ2

)
︸ ︷︷ ︸

=b1

1
2
(r2 + k̃2)

+ αθ2k̃2 + k̃maxθ
2β + s1︸ ︷︷ ︸

h1

−k3 Tanh(χ(r, γ ))r

⩽ −b1V1 + h1 − k3 Tanh(χ(r, γ ))r (19)

Considering the above two cases, V1 can be rewritten as:

V̇1 ⩽ −b1V1 + max(s1, h1) − k3 Tanh(χ(r, γ ))r

⩽ −b1V1 + h1 − k3 Tanh(χ(r, γ ))r (20)

When ∥r∥ ≥ γ :

V̇2 ⩽ −rk3 tanh(r − γ sign(r))

⩽ −rk3[
tanh(r) − tanh(γ sign(r))
1 + tanh(r) tanh(γ sign(r))

]

⩽ −rk3[kr (tanh(r) − tanh(γ sign(r)))]

⩽ −rk3kr tanh(r) + rk3kr tanh(γ sign(r))

⩽ −k3kr ∥r∥ + 0.2785k3kr
+ rk3kr tanh(γ sign(r)) (21)

We can easily obtain (22)(23) by using the absolute value
inequality:

rk3kr tanh(γ sign(r)) ≤ ∥r∥ k3kr (22)

where: kr =
1

1+tanh(r) tanh(γ sign(r)) , 0 < kr ≤ 2

V̇2 ⩽ −k3kr ∥r∥ + 0.2785k3kr + ∥r∥ k3kr
⩽ 0.557k3 (23)

From formula (20) and formula (23), it can be obtained:

V̇1 ≥ −b1V1 + h1 (24)

When ∥r∥ ≤ γ , Obviously k3 Tanh(χ(r, γ ))r is 0, so for-
mula (24) is also satisfied.

FIGURE 3. Schematic diagram of a simplified exoskeleton model.

FIGURE 4. Time-varying interaction force Settings between system and
environment.

FIGURE 5. Adaptive gain AAN controller terminal trajectory.

IV. SIMULATION
A. SIMULATION DESIGN AND MODEL BUILDING
Because the degrees of freedom of the upper limb exoskeleton
designed at home and abroad are not the same, the shoulder
joint uses 1-3 degrees of freedom, and the elbow joint uses
one degree of freedom. To make the control algorithm widely
used in various exoskeletons, only flexion and extension
degrees of freedom are reserved for elbow joints and shoulder
joints. Then this model can be represented by two links and
used in simulation and experimental model building. The
two-link model is shown in Figure 3. The structural parame-
ters of the model are as follows:

m1 = 20kg, l1 = 0.3 m, Iz1 = 0.45 kg · m2, Ic1 = 0.15m;

m2 = 20kg, l2 = 0.3 m, Iz2 = 0.45 kg · m2, Ic2 = 0.15m;
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FIGURE 6. Adaptive gain AAN controller joint error.

FIGURE 7. Adaptive gain AAN controller joint output torque.

FIGURE 8. Adaptive gain.

where m1 and m2 are the upper arm and forearm model
masses respectively; l1 and l2 are the upper arm and forearm
model lengths respectively; Iz1 and Iz2 are the upper arm and
forearm model inertial moments respectively;
Ic1 and Ic2 are the center of gravity positions of upper arm

and forearm model respectively;
Considering the patient’s insufficient ability tomove limbs,

the trajectory in the simulation was set as a small circular
trajectory common in daily life. The center position of the
circle is (−0.1, −0.4), the radius of the circle is 0.1m, and the
error disturbance value is assumed to be: d = 0.8 sin(π t), and
the simulation is set in the horizontal plane, so the influence
of gravity is ignored.

FIGURE 9. Impedance AAN controller terminal trajectory.

FIGURE 10. Impedance AAN controller joint error.

FIGURE 11. Impedance AAN controller joint output torque.

In the simulation, the simplified exoskeleton model needs
to complete the trajectory tracking task, and the simulation
time is set to 25 seconds. In the first 15 seconds, a small time-
varying external force is set to simulate the real environment,
and after 15 seconds, the external force is mutated to a larger
time-varying value.

According to formula (2), the torque of external forces on
joints in joint space needs to be mapped through the Jaco-
bian matrix, so we can directly set the value after mapping
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FIGURE 12. Recent AAN controller terminal trajectory.

FIGURE 13. Recent AAN controller joint error.

as follows:

JT fext =

[
τq1

τq2

]
where τq1 and τq2 are the mappings of the environmental
interaction forces to the two joints respectively, and their
values are set as shown in Figure 4:

τq1 =

{
−0.8 sin(π t), 0 < t < 15

1.6 sin(π t), 15 < t < 25

τq2 =

{
0.5 sin(π t), 0 < t < 15

sin(π t), 15 < t < 25

B. SIMULATION RESULT
Impedance on Demand controller and adaptive gain on
Demand controller were used for simulation. The two kinds
of simulation used the same model to compare and verify
the adaptive ability of the adaptive gain-on-demand controller
to the interaction time-varying force and the flexibility of
motion.

The controller parameters are as follows:

k1 = 2, k2 = 0.5, k3(q1) = 1.55, k3(q2) = 2.35,

γ = 0.0001, λ1(q1) = 8, λ1(q2) = 4, θ = 0.001,

kmin = 170, ϕ = 0.1;

FIGURE 14. Recent AAN controller joint output torque.

From the point of view of the error, the error quickly
converges, in the case of the external torque increased by
the joint, although the error is slightly increased, it can still
rapidly converge, and the controller has good adaptability.
When the external torque on the joint is increased, the torque
provided by the controller is significantly reduced to avoid
excessive assistance.

The adaptive controller proposed in the paper [28] can also
effectively overcome the problem of over-estimation of gain
caused by conventional static modulation and improve the
model’s adaptive ability to complex environments.

˙̂k =

 λ1

√
γ1

2
sign(|r| − θ ), k̂ > kmin

ϕ, k ≤ kmin

(25)

where λ1, γ1, θ, ϕ and kmin are positive constants.
After replacing the adaptive law in the algorithm with the

adaptive law mentioned in the paper [29], the results are
obtained as shown in the figures below. It can be observed that
the algorithm can still approximate the reference trajectory
and still has a certain adaptive ability to external disturbances.
However, the error is larger than the previous algorithm and
the stability is not as good as the algorithm proposed in this
paper, so it can be proved that the algorithm proposed in this
paper has good robustness and adaptive ability.

The simulation results show that the impedance controller
achieves good trajectory tracking performance, but it is not
sensitive to the change of environmental interaction force,
and the torque provided by the controller does not change
significantly. By contrast, it can be shown that the adaptive
gain on-demand controller can respond to the environmental
interaction time-varying force, and further ensures the flexi-
bility of motion.

V. CONCLUSION
To solve the AAN control problem of the upper limb
exoskeleton, we proposed an AAN controller with adaptive
gain for the existing rod-driven exoskeleton. Through the
dynamic gain adjustment mechanism, the system can adjust
the control force with real-time feedback, avoiding excessive
or insufficient assistance. It also helps to adapt to the problem
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of decreasing auxiliary accuracy caused by internal or exter-
nal interference in the rehabilitation training process and
improves the safety and comfort of rehabilitation training.The
simulation results and comparative experiments show that
this controller has better disturbance rejection characteristics
compared to ordinary adaptive gain controllers. And in the
case of sudden disturbances, it is better to adjust the degree
of assistance and ensure tracking error. Based on the research
results of this paper, the algorithm can be applied to a wider
range of patient rehabilitation in the future.

REFERENCES
[1] A. G. Thrift, D. A. Cadilhac, T. Thayabaranathan, G. Howard,

V. J. Howard, P. M. Rothwell, and G. A. Donnan, ‘‘Global stroke
statistics,’’ Int. J. Stroke, vol. 9, no. 1, pp. 6–18, Dec. 2013, doi:
10.1111/ijs.12245.

[2] M.M.Mirbagheri, C. Tsao, andW. Z. Rymer, ‘‘Recovery of armmovement
after stroke,’’ in Proc. 29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
Aug. 2007, pp. 5370–5372, doi: 10.1109/IEMBS.2007.4353555.

[3] F. C. Huang and J. L. Patton, ‘‘Augmented dynamics and motor explo-
ration as training for stroke,’’ IEEE Trans. Biomed. Eng., vol. 60, no. 3,
pp. 838–844, Mar. 2013, doi: 10.1109/TBME.2012.2192116.

[4] G. Herrnstadt, N. Alavi, J. Neva, L. A. Boyd, and C. Menon, ‘‘Preliminary
results for a force feedback bimanual rehabilitation system,’’ in Proc. 6th
IEEE Int. Conf. Biomed. Robot. Biomechatronics (BioRob), Singapore,
Jun. 2016, pp. 768–773.

[5] J. L. Pons, Wearable Robots: Biomechatronic Exoskeletons. Chichester,
U.K.: Wiley, 2008.

[6] C. Carignan, J. Tang, S. Roderick, and M. Naylor, ‘‘A configuration-
space approach to controlling a rehabilitation arm exoskeleton,’’ in Proc.
IEEE 10th Int. Conf. Rehabil. Robot., Jun. 2007, pp. 179–187, doi:
10.1109/ICORR.2007.4428425.

[7] Y. Zimmermann, A. Forino, R. Riener, and M. Hutter, ‘‘ANYexo:
A versatile and dynamic upper-limb rehabilitation robot,’’ IEEE
Robot. Autom. Lett., vol. 4, no. 4, pp. 3649–3656, Oct. 2019, doi:
10.1109/LRA.2019.2926958.

[8] T. Nef, M. Guidali, and R. Riener, ‘‘ARMin III—Arm therapy exoskeleton
with an ergonomic shoulder actuation,’’ Appl. Bionics Biomech., vol. 6,
no. 2, pp. 127–142, Jul. 2009, doi: 10.1080/11762320902840179.

[9] J. C. Perry, J. Rosen, and S. Burns, ‘‘Upper-limb powered exoskeleton
design,’’ IEEE/ASME Trans. Mechatronics, vol. 12, no. 4, pp. 408–417,
Aug. 2007, doi: 10.1109/TMECH.2007.901934.

[10] B. Dehez and J. Sapin, ‘‘ShouldeRO, an alignment-free two-DOF rehabil-
itation robot for the shoulder complex,’’ in Proc. IEEE Int. Conf. Rehabil.
Robot., Jun. 2011, pp. 1–8, doi: 10.1109/ICORR.2011.5975339.

[11] Z. Warraich and J. A. Kleim, ‘‘Neural plasticity: The biological substrate
for neurorehabilitation,’’ PM R, vol. 2, no. 12, pp. S208–S219, Dec. 2010,
doi: 10.1016/j.pmrj.2010.10.016.

[12] H. J. Asl, M. Yamashita, T. Narikiyo, and M. Kawanishi, ‘‘Field-based
assist-as-needed control schemes for rehabilitation robots,’’ IEEE/ASME
Trans. Mechatronics, vol. 25, no. 4, pp. 2100–2111, Aug. 2020, doi:
10.1109/TMECH.2020.2992090.

[13] H. J. Asl, T. Narikiyo, and M. Kawanishi, ‘‘An assist-as-needed con-
trol scheme for robot-assisted rehabilitation,’’ in Proc. Amer. Con-
trol Conf. (ACC), May 2017, pp. 198–203, doi: 10.23919/ACC.2017.
7962953.

[14] Y. Guo, Y. Tian, H. Wang, and S. Han, ‘‘Adaptive hybrid-mode
assist-as-needed control of upper limb exoskeleton for rehabilitation
training,’’ Mechatronics, vol. 100, Jun. 2024, Art. no. 103188, doi:
10.1016/j.mechatronics.2024.103188.

[15] Y. Wang, Y. Guo, Y. Tao, Y. Tian, and H. Wang, ‘‘Human-centered active
torque-based AAN impedance control for lower limb patient-exoskeleton
coupling system in the rehabilitation,’’ Int. J. Robust Nonlinear Con-
trol, pp. 1–36, Sep. 2023, doi: 10.1002/rnc.6996. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.6996#

[16] Y. Tian, Y. Guo, H. Wang, and D. G. Caldwell, ‘‘Training task
planning-based adaptive assist-as-needed control for upper limb
exoskeleton using neural network state observer,’’ Neural Comput.
Appl., May 2024, doi: 10.1007/s00521-024-09922-5. [Online]. Available:
https://link.springer.com/article/10.1007/s00521-024-09922-5#citeas

[17] W. Shaw Cortez, D. Oetomo, C. Manzie, and P. Choong, ‘‘Control bar-
rier functions for mechanical systems: Theory and application to robotic
grasping,’’ IEEE Trans. Control Syst. Technol., vol. 29, no. 2, pp. 530–545,
Mar. 2021, doi: 10.1109/TCST.2019.2952317.

[18] L. Liu, T. Gao, Y.-J. Liu, S. Tong, C. L. P. Chen, and L. Ma, ‘‘Time-
varying IBLFs-based adaptive control of uncertain nonlinear systems with
full state constraints,’’ Automatica, vol. 129, Jul. 2021, Art. no. 109595,
doi: 10.1016/j.automatica.2021.109595.

[19] W. Kim, X. Chen, Y. Lee, C. C. Chung, and M. Tomizuka, ‘‘Discrete-time
nonlinear damping backstepping control with observers for rejection of low
and high frequency disturbances,’’ Mech. Syst. Signal Process., vol. 104,
pp. 436–448, May 2018, doi: 10.1016/j.ymssp.2017.11.006.

[20] R. Q. Fuentes-Aguilar and I. Chairez, ‘‘Adaptive tracking control
of state constraint systems based on differential neural networks:
A barrier Lyapunov function approach,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 31, no. 12, pp. 5390–5401, Dec. 2020, doi:
10.1109/TNNLS.2020.2966914.

[21] I. S. Dimanidis, C. P. Bechlioulis, and G. A. Rovithakis, ‘‘Output
feedback approximation-free prescribed performance tracking control
for uncertain MIMO nonlinear systems,’’ IEEE Trans. Autom. Control,
vol. 65, no. 12, pp. 5058–5069, Dec. 2020, doi: 10.1109/TAC.2020.
2970003.

[22] Y. Hwang, C. M. Kang, and W. Kim, ‘‘Robust nonlinear control using
barrier Lyapunov function under lateral offset error constraint for lat-
eral control of autonomous vehicles,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 2, pp. 1565–1571, Feb. 2022, doi: 10.1109/TITS.2020.
3023617.

[23] H. Huang, W. He, J. Li, B. Xu, C. Yang, and W. Zhang, ‘‘Disturbance
observer-based fault-tolerant control for robotic systems with guaran-
teed prescribed performance,’’ IEEE Trans. Cybern., vol. 52, no. 2,
pp. 772–783, Feb. 2022, doi: 10.1109/TCYB.2019.2921254.

[24] H. K. Khalil, ‘‘High-gain observers in feedback control: Application to
permanentmagnet synchronousmotors,’’ IEEEControl Syst. Mag., vol. 37,
no. 3, pp. 25–41, Jun. 2017, doi: 10.1109/MCS.2017.2674438.

[25] J.-W. Jung, V. Q. Leu, T. D. Do, E.-K. Kim, and H. H. Choi, ‘‘Adaptive PID
speed control design for permanent magnet synchronous motor drives,’’
IEEE Trans. Power Electron., vol. 30, no. 2, pp. 900–908, Feb. 2015, doi:
10.1109/TPEL.2014.2311462.

[26] J. Y. Lee, M. Jin, and P. H. Chang, ‘‘Variable PID gain tuning method using
backstepping control with time-delay estimation and nonlinear damping,’’
IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6975–6985, Dec. 2014, doi:
10.1109/TIE.2014.2321353.

[27] D. X. Ba, H. Yeom, J. Kim, and J. Bae, ‘‘Gain-adaptive robust back-
stepping position control of a BLDC motor system,’’ IEEE/ASME
Trans. Mechatronics, vol. 23, no. 5, pp. 2470–2481, Oct. 2018, doi:
10.1109/TMECH.2018.2864187.

[28] S. You and W. Kim, ‘‘Adaptive learning gain-based control for nonlinear
systems with external disturbances: Application to PMSM,’’ IEEE Trans.
Control Syst. Technol., vol. 31, no. 3, pp. 1427–1434, May 2023, doi:
10.1109/TCST.2022.3208446.

[29] M. K. Khan, ‘‘Design and application of second order sliding mode
control algorithms,’’ Univ. Leicester, 2003. [Online]. Available:
https://lra.le.ac.uk/bitstream/2381/30209/1/U180131.pdf

JIXIN DONG was born in Harbin, Heilongjiang,
in 1999. He received the bachelor’s degree in engi-
neering from Northeast Agricultural University,
in 2021. He is currently pursuing the degree with
Yanshan University, with a primary research focus
on structural design and control of upper limb
exoskeletons. Additionally, he has been granted
two patents for his work.

112774 VOLUME 12, 2024

http://dx.doi.org/10.1111/ijs.12245
http://dx.doi.org/10.1109/IEMBS.2007.4353555
http://dx.doi.org/10.1109/TBME.2012.2192116
http://dx.doi.org/10.1109/ICORR.2007.4428425
http://dx.doi.org/10.1109/LRA.2019.2926958
http://dx.doi.org/10.1080/11762320902840179
http://dx.doi.org/10.1109/TMECH.2007.901934
http://dx.doi.org/10.1109/ICORR.2011.5975339
http://dx.doi.org/10.1016/j.pmrj.2010.10.016
http://dx.doi.org/10.1109/TMECH.2020.2992090
http://dx.doi.org/10.23919/ACC.2017.7962953
http://dx.doi.org/10.23919/ACC.2017.7962953
http://dx.doi.org/10.1016/j.mechatronics.2024.103188
http://dx.doi.org/10.1002/rnc.6996
http://dx.doi.org/10.1007/s00521-024-09922-5
http://dx.doi.org/10.1109/TCST.2019.2952317
http://dx.doi.org/10.1016/j.automatica.2021.109595
http://dx.doi.org/10.1016/j.ymssp.2017.11.006
http://dx.doi.org/10.1109/TNNLS.2020.2966914
http://dx.doi.org/10.1109/TAC.2020.2970003
http://dx.doi.org/10.1109/TAC.2020.2970003
http://dx.doi.org/10.1109/TITS.2020.3023617
http://dx.doi.org/10.1109/TITS.2020.3023617
http://dx.doi.org/10.1109/TCYB.2019.2921254
http://dx.doi.org/10.1109/MCS.2017.2674438
http://dx.doi.org/10.1109/TPEL.2014.2311462
http://dx.doi.org/10.1109/TIE.2014.2321353
http://dx.doi.org/10.1109/TMECH.2018.2864187
http://dx.doi.org/10.1109/TCST.2022.3208446


J. Dong et al.: AAN Controller With Adaptive Gain for Upper Limb Exoskeleton

ZHIWEI JIA was born in Hengshui, Hebei,
in 1999. He received the bachelor’s degree from
the Liren College, Yanshan University, in 2021,
and the master’s and Ph.D. degrees from Yanshan
University, in 2021 and 2023, respectively.

ERWEI LI was born in October 1987. He received
the Ph.D. degree in engineering with a major in
mechanical and electronic engineering from Yan-
shan University, in June 2018. He is currently
a member of the Communist Party of China.
His main research interest includes the theoretical
research and application of marine parallel heavy
stabilization equipment. Following this, he was
the Team Secretary of ‘‘Basic Theory of Paral-
lel Equipment and Integration of Mechanical and

Electrical Systems’’ with the School of Mechanical Engineering, Yanshan
University, from July 2018 to March 2019, where he has been an Associate
Professor with the Department of Mechanical and Electronic Engineering,
School of Mechanical Engineering, since April 2019. To date, he has pub-
lished 21 articles and been granted 18 patents.

QIPENG LV received the master’s degree in pre-
cision instruments and machinery from Shenyang
University of Technology. Currently, he engaged
in the research of the new generation information
technology with the Second Research Institute of
China Electronics Technology Group Corporation.

VOLUME 12, 2024 112775


