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ABSTRACT The article investigates a conformal millimeter-wave (mmWave) meander dipole array antenna
that provides end-fire radiation with improved performance. The antenna offers various benefits including
high gain, wider bandwidth, low side lobe level (SLL), and a simple feeding structure. The design comprises
of microstrip fed eight meander dipoles, printed on both sides of the substrate. Initially, a conventional
uniform array of 8-elements is designed as a reference, which is then converted into a non-uniform array by
reducing the length and spacing of the dipoles in an arithmetic sequence for performance improvement. The
operational bandwidth (|S11| <−10 dB) and 3-dB gain bandwidth of the presented mmWave non-unfirm
dipole array is improved 97.79 %, and 48.14 %, respectively, compared to the traditional eight-element
dipole array. The gain is also increased by 2.1 dBi, and the average SLL is reduced by 17.2 dB. The
prototype of the antenna is fabricated, and various results of the proposed work are verified by means
of measurements. A strong comparison is observed having a wide impedance bandwidth ranging from
22.9–65.1 GHz (146.75 %) covering Ka- and U-band applications. This arrangement of folded dipoles also
enabled smooth gain characteristic (peak value of 10.4 dBi), having 97.10 % bandwidth where the gain
variation is± 3dBi. End-fire radiationwith stable performance is observed alongwith a low SLL of−18.6 dB
in E-plane and −23.5 dB in the H-plane, at the central frequency of 28 GHz. Moreover, conformal analysis
also offers a stable result as compared with flat scenarios which demonstrates its suitability in both rigid and
flexible electronic communication systems.

INDEX TERMS Dipole array, mm-wave antenna, 5G, compact electronics, wide bandwidth.

I. INTRODUCTION
The fifth-generation (5G) new radio is the latest wireless
communication technology and standard that provides faster
data speeds, higher capacity, lower latency, and improved
reliability compared to its predecessor, 4G LTE (Long Term
Evolution) [1]. It operates on a wider range of frequencies,
including high-frequency millimeter wave (mmWave) bands,

The associate editor coordinating the review of this manuscript and
approving it for publication was Tao Zhou.

to support the rapidly increasing demand for data-intensive
applications and devices such as self-driving cars, virtual
reality (VR), and the Internet-of-Things (IoT) [2]. However,
mmWave bands present a challenge due to the increased prop-
agation losses in millimeter wave frequencies [3]. To address
this issue, high-gain antennas are required [4], [5], [6].

Recently, several approaches have been adopted to improve
the performance of antenna system with more concen-
tration toward improving gain as well as achieving sta-
ble end-fire pattern. Yagi-uda antennas, Super directive
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arrays, Hansen-woodyard condition-based antennas, and log-
periodic dipole arrays are themost common types of antennae
used for aforementioned task. In, Yagi-Uda has many direc-
tors that ensures a substantial gain increment [7], [8], [9],
[10]. When a lot of directors are used, it is quite challenging
to optimize the antenna design. Also, these antennas have a
narrow bandwidth, which means that they can only operate
effectively within a limited frequency range. This makes it
unsuitable for use in applications that require a wide fre-
quency range [11], [12].

High gain can be achieved in super-directional array anten-
nas where a closely spaced arrangement between elements is
utilized to deliver electromagnetic power to the correspond-
ing radiation elements [13], [14]. However, it becomes more
challenging to build the feeding network of various phases
and amplitudes for wideband antennas when the number of
elements increases. Thus, low radiation efficiency along with
limited bandwidth are the intrinsic issues in this type of
antenna.

In the Hansen-Woodyard condition-based antennas, the
radiating elements must be isotropic, uncoupled, and given
the same amount of electromagnetic power on an individual
basis [15]. However, Hansen-Woodyard condition can’t be
applied to series-fed array because of high coupling between
array components. To overcome these problems, double-
sided printed dipole antennas can be utilized owing to the
benefits of low complexity structure, stable gain, and end-fire
radiation properties.

Log-periodic dipole array (LPDA) antennas, consisting
of numerous dipole components, are widely employed in a
variety of applications. Their effectiveness depends on the
selection of the appropriate lengths and the spacing between
the radiating dipoles. Double-sided angled printed dipole
antennas offer smaller sizes while offering wide impedance
bandwidth with relatively stable gain [16], [17]. Another
method to achieve a wider bandwidth has been the use of
printed meander-line dipole antenna arrays. However, trade-
off between radiating element and gain is not fully acceptable
for compact size devices [18], [19], [20], [21]. Furthermore,
the substrate-integrated log-periodic antenna reported in [22]
has the advantages of high gain in the expense of large
antenna size and narrow bandwidth. While the monopole
array consisting of eleven radiating elements proposed in [19]
has wide operating bandwidth at the cost of low increase in
gain. Also, the beam is slanted, and the side-lobe-levels (SLL)
are not favorable. On the other hand, high gain has been
achieved by integrating the log-periodic dipole array with
parasitic cell [23] and dielectric lens [24], have constrains
of complex design and limited bandwidth. The angled dipole
array with metamaterial lens has the merits of stable and high
gain characteristics [25]. However, this design has a setback
of large antenna profile as well as the mechanical issue due
to the air gap between the antenna and the lens.

Additionally, various meandered dipole antennas have
been proposed for high-gain applications while having a
bulky size [26], [27], [28], [29]. In this study, an innovative

non-uniform array comprises of 8-elements operating over
mmWave spectrum is presented with improved performance.
At the first stage, a conventional uniform series-fed dipole
array antenna is designed, which is then converted into a
non-uniform array by varying spacing and the length of the
array elements in an arithmetic sequence for performance
improvement. The antenna has the advantages of smaller size,
high gain, wider bandwidth, low SLL, and a simple feeding
structure.

II. ANTENNA DESIGN
A. SINGLE ELEMENT
Fig. 1 contain the geometric illustration of a single-element
dipole antenna, where the radiating structure is embedded on
the top and rare sides of the Rogers 4003C substrate with a
thickness of H = 0.2023 mm, having a dielectric constant of
0.0027 and loss tangent of 0.0009. Moreover, the antenna is
fed with a quarter-wave microstrip with dimensions F1 × F2
that is set to 50-ohms for impedance matching among dipoles
and microstrip lines.

The length of the initial dipole can be calculated using the
following relationship:

Total length of the dipole = (wavelength)/2

LT = λ/2

For proposed antenna the frequency is 28 GHz, so
λ ≈ 11 mm and LT should be close to 5.5 mm. The LT is
the combination of three parameters Y1, X1 and C1, so LT =

Y1 +X1 +C1 = 3.5+ 1.4+ 0.8= 5.7 mm. The value is very
close to the theoretical value, a small difference is the result of
the optimization performed to achieve a broader bandwidth.

The antenna is designed and optimized using CST
Microwave Studio and its optimized parameters are as fol-
lows: SL = 22.5, SW = 10, GL = 15.9, FL = 13.6, WL =

1.4, FW = 0.5, Y1 = 3.5, G = 0.3, X1 = 1.4, C1 = 0.8,
WD = 0.3 (units are mm). Fig. 2 depicts the characteristic of a
single-element dipole antenna that is designed to resonate at
the frequency of 28 GHz. The antenna has |S11| < −10dB
bandwidth ranging from 24.85 – 30 GHz and a peak gain
of 4.09 dBi. Fig. 2(b) shows the end-fire radiation patterns,
where the SLL are −22.2 dB and −12.3 dB, in E– plane and
H–plane, respectively.

B. TWO-ELEMENT DIPOLE ARRAY ANTENNA
1) DESIGN METHODOLOGY
A series-fed two-element dipole array based on the single-
element is designed for further study. Initially, as per
conventional theory of arrays, the length and the gap between
two dipoles are kept same as shown in the inset of Fig. 3.
To understand the workingmechanism of the dipole array, the
length and the spacing between dipoles are investigated. The
spacing (1Y) between the dipole and the dipole length (1X)
are varied (keeping all other parameters constant) and its
impact on impedance matching is observed. When the spac-
ing between two dipoles is varied, its impedance bandwidth
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FIGURE 1. Geometrical configuration of proposed antenna (a) top-view
(b) back-view (c) side view.

FIGURE 2. Single antennas’s (a) S11 (b) radiation pattern.

becomes wider as compared to a uniform case [Fig. 3(a)].
Similarly, the bandwidth of the array varied significantly
when the 1X is changed from 0.1 mm to 0.3 mm. Based
upon these analyses, it is evident that non-uniform lengths

and spacing may result in wider bandwidth compared to the
uniform array.

2) NON-UNIFORM ARRAY ANTENNA
Based on the previous finding, both length and spacing of
the dipoles are varied together to form a non-uniform dipole
array antenna. The antenna geometry is shown in the inset of
Fig. 4. To show the effectiveness of the proposed innovative
design procedure of designing dipole arrays, the perfor-
mance of both cases is compared. The non-uniform design
with optimized parameters offers a wide |S11| bandwidth of
25.49 – 33.5 GHz as compared to the uniform design, where
the bandwidth ranges from 24.9 to 30.6 GHz [Fig. 4(a)].
Due to changes in dipole length, multiple resonances are
generated at various frequencies which overlap to form a
wideband operation. Furthermore, the non-uniform antenna
offers a stable and higher peak gain of 6.07 dBi compared to
its counterpart [Fig. 4(b)]. Moreover, the radiation patterns in
E- andH -plane at the central frequency of 28 GHz shows the
non-uniform geometry offers low SLL values. The parame-
ters of the 2-element non-uniform array are as follows: SL =

25.7, SW = 10, GL = 15.9, FL = 13.6, FW = 0.5, Y1 = 3.7,
Y2 = 3.5, G = 0.3, X1 = 1.5, X2 = 1.2, C1 = 0.9, C2 = 0.7,
WD = 0.3, G = 0.3 (units in mm).

C. FOUR-ELEMENT DIPOLE ARRAY ANTENNA
To demonstrate the design applicability of the proposed non-
uniform array, a four-element array is studied in this section.

1) UNIFORM ARRAY ANTENNA
The unfirm four-element array is shown in the inset of
Fig. 5(a). It is noted that the spacing and lengths of the dipole
is kept same as previously optimized in 2-element array.
As we increase the number of elements in the series with
conventional uniform array, the gain is improved. As usual
phenomenon in the conventional uniform dipole arrays, the
SLL has also increased along with the limited bandwidth.

2) NON-UNIFORM ARRAY ANTENNA
To mitigate the disadvantages of narrow bandwidth and high
SLL of the four-element uniform array antenna, a non-
uniform array is designed by following the same methodol-
ogy adopted for a two-element non-uniform array [shown in
inset of Fig.5(b)]. The spacing between the dipole and the
length of the dipole is uniformly reduced to achieve a wider
impedance bandwidth [Fig. 5(a)] along with improved gain
over the entire frequency range of interest [Fig. 5(b)], and
a SLL compared to unfirm array configuration [Fig. 5(c)].
The |S11| bandwidth ranges from 25.5 to 31.4 GHz for the
unfirm array, while it starts from 25.7 to 40.28 GHz in the
non-uniform case. The radiation patterns plot at 28 GHz show
that, the SLL in E-plane is−11.3 dB andH -plane is−2.1 dB
in unfirm array configuration, which reduced to −19.8 dB
in E-plane and −0.18 dB in H -plane for uniform array. The
non uniform design also ensured size reduction, the four-
element uniform array configuration offers a physical size
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FIGURE 3. Simulated |S11| of uniform two elements dipole antenna with (a) non-uniform lengths (b) non-uniform spacing.

FIGURE 4. Simulated result of two elements dipole array antenna (a) |S11| (b) gain and (c) radiation
pattern.

of 30 × 10 mm2, while the non-uniform array antenna has a
reduced size of 27.3 × 10 mm2. The rest of the parameters
are as follows: SL = 27.3, SW = 10, GL = 15.9, FL = 13.6,

FW = 0.5, Y1 = 3.5, Y2 = 1.8, Y3 = 1.6, Y4 = 1.4, G = 0.3,
X1 = 1.5, X2 = 1.3, X3 = 1.1, X4 = 0.9, C1 = 0.8, C2 = 0.7,
C3 = 0.6, C4 = 0.5, WD = 0.3, G = 0.3 (units in mm).
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FIGURE 5. Simulated result of two elements dipole array antenna (a) |S11| (b) gain and (c) radiation pattern.

FIGURE 6. Simulated result of non-uniform four-elements dipole array (a) |S11|

(b) gain, and (c) radiation pattern.

D. PROPOSED EIGHT ELEMENT ARRAY
The schematic of eight element uniform and non-uniform
array antenna is depicted in Fig. 6. The uniform array antenna
comprises eight dipoles of uniform length and spacing.While
for the proposed non-uniform case, the length of each dipole
is varied while the spacing is also reduced among consecutive
dipoles for performance improvement. The uniform array
antenna has a lateral physical size of 52 × 10 mm2 while the

rest of the optimized parameter follows are as follow: SL =

52, SW = 10, GL = 15.9, FL = 13.6, FW = 0.5, F1 = 1.4,
F2 = 0.4, Y1 = 4.2, Y2 = 4.1, G = 0.3, X1 = 1.6, C1 = 1,
Wd = 0.3, G = 0.3 (units in mm).
Contrary to that, the non-uniform configuration offers a

compact size of 36.5 10 mm2 offering better performance
in terms of impedance bandwidth, stable gain, and reduced
SLL. The optimized parameters of the proposed array antenna
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FIGURE 7. Simulated results of eight-element uniform and non-uniform dipole array (a) |S11| (b) gain.

FIGURE 8. Simulated radiation patterns of eight-element uniform and non-uniform dipole array antenna.

are as follows: SL = 36.5, SW = 10, GL = 15.9, FL = 13.6,
FW = 0.5, F1 = 1.4, F2 = 0.4, Y1 = 3.5, Y2 = 2.6, Y3 = 2.4,
Y4 = 2.2, Y5 = 2.0, Y6 = 1.8, Y7 = 1.6, Y8 = 1.4, G = 0.3,
X1 = 1.85, X2 = 1.62, X3 = 1.53, X4 = 1.4, X5 = 1.26, X6 =

1.14, X7 = 0.91, X8 = 0.8, C1 = 0.8, C2 = 0.7, C3 = 0.6,
C4 = 0.5, C5 = 0.4, C6 = 0.3, C7 = 0.2, C8 = 0.1, WD =

0.3, G = 0.3 (units in mm).

To illustrate the design significance, the performance
of the proposed non-uniform eight-element array is com-
pared with its uniform array counterpart. Fig. 7(a) shows
the |S11| of the uniform and non-uniform array antenna.
The uniform array antenna offers dual-band response ranges
from 26.29 – 40 GHz and 50 – 60 GHz along with a narrow
band lying inside the spectrum of 40 – 52 GHz due to the
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TABLE 1. Performance comparison of various design steps.

FIGURE 9. Measurement setup of S11 and the far-field characteristics.

non-overlapping multiple resonances. On the other hand, the
proposed non-uniform array antenna offers a wide operating
bandwidth, from 21.5 – 63 GHz. It covers the whole Ka-band
with stable gain, which is used for satellite communication
and radar systems. The comparison between the peak gain of
both uniform and non-uniform cases is illustrated in Fig. 7(b).
It is evident from the results that the proposed non uniform
array antenna offers a high gain as compared to the uniform
case which is more prominent at higher frequencies.

Fig. 8 displays the radiation patterns of an array antenna
in the E-plane and H -plane at various frequencies. The non-
uniform array antenna has a stable and symmetrical radiation
pattern with lower side lobe levels. While the uniform array
antenna exhibits a higher SSL value of −4.9, −9.3, and
−6.1 dB in E-plane at 28 GHz, 32 GHz, and 38 GHz, respec-
tively. While these values are −2.7, −2.6, and −1.1 dB in
the H -plane at the respected frequencies of 28 GHz, 32 GHz,
and 38 GHz. The SLL for the uniform array antenna in
the H -plane decreased up to −18.6, −18.3, and −12 dB,
while in the E-plane, these are −23.5, −27.7, and −16.0 dB
at 28 GHz, 32 GHz, and 38 GHz, respectively. Table 1
presents a summary of various antenna designs at differ-
ent frequencies. Using the innovative non-uniform design

methodology, the performance of the meander line dipole
array has been improved compared to the usual uniform array
in terms of wider operating bandwidth.

III. RESULTS AND DISCUSSION
The validation of the design concept is performed by test-
ing the scattering as well as far-field parameters, as shown
in Fig. 9. Vector network analyzer (VNA) is employed for
the measurement of S-parameters, as shown in Fig. 9 (a)
along with screenshot of VNA results. While an ane-
choic chamber built by the Electromagnetic Wave Tech-
nology Institute in Seoul, Korea, was used to measure
the far field. The suggested antenna’s radiation character-
istics are measured in RF isolated chamber, as shown in
Fig. 9 (b).

A. REFLETION COEFFICIENT
The simulated and measured S11 of the 8-element array is
illustrated in Fig. 10(a). It is clear from the results that
|S11| > −10 dB predicted and measured bandwidth are
21.80 –62.9 GHz and 22.9 – 65.1 GHz, respectively, showing
strong agreement between both results. Moreover, the 3-dB
gain bandwidth for measured and simulated results is also
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FIGURE 10. Measured results of eight-element uniform and non-uniform dipole array antenna (a) reflection
coefficient (b) gain and efficiency.

FIGURE 11. Comparison among predicted and measured radiation pattern at various frequencies.

identical from 21.8 – 49 GHz with a peak gain value of
10.2 dBi. Thanks to the non-uniform dipole array antenna
for successful implementation of the wideband feature. The
small discrepancy between measured and simulated results
is due to tolerance in the measurement setup varies as well
as the fabrication in the antenna. While the gain reduction
in the measurement is due to the connector and cable losses
as well as the significant atmospheric losses at the higher
frequencies.

B. RADIATION PATTERN
Figure. 11 shows radiation patterns of the proposed antenna
at various frequencies of 28, 32 and 38 GHz for both E- and
H-plane. The antenna exhibits a very stable radiation pattern
with end-fire behavior at all selected frequencies with a low
SLL, showing the suitability of the antenna formmWave band
applications. Moreover, the cross-polarization graphs are also
included in both planes for all the selected frequencies.
It can be observed that the antenna offers a cross polarization
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FIGURE 12. 3D radiation pattern of proposed antenna at various frequencies.

FIGURE 13. The surface current distribution of non-uniform eight
elements dipole array antenna at (a) 28 GHz (b) 32 GHz (c) 38 GHz.

of < −8 dB in E-plane, at all selected frequencies. On the
hand, in H-plane the cross polarization is observed to rel-
evantly smaller with value of < −15 dB, as depicted in
Figure. 11. Fig. 12 depicts the 3D radiation pattern of the
proposed antenna at the selected frequencies of 28, 32,
and 38 GHz.

The current distribution study is conducted to better under-
stand the radiation mechanism. Fig. 13 offers the results for
various frequencies of 28, 32, and 38GHz. The current is con-
centrated in the first four dipoles that causes the generation of
lower frequency resonance of 28 GHz.

While at 32 GHz, the current is mostly concentrated at the
middle dipoles (from the fourth element to the sixth), respon-
sible for the midband resonance due to the decreased size of

the dipoles in the non-uniform array. Similarly at 38 GHz,
the last dipoles are resonating to realize the high frequency
band to unsure the ultrawide band operation of the proposed
array.

C. CONFORMAL ANALYSIS OF THE PROPOSED ANTENNA
Since the antenna is designed in a flexible thin substrate.
The conformal analysis is done to show the antenna’s suit-
ability in modern flexible electronics. The proposed array
antenna is bent across the cylinder having various radii
of 30 mm, 45 mm, and 60 mm, as depicted in Fig. 14.
For measurement in the conformal scenario, a Styrofoam
cylinder is utilized having similar electric properties as
air.

The comparison of predicted and measured S11 results for
conformal scenarios at varying radii are shown in Fig. 14. The
|S11| graphs reveal that the antenna offers identical results for
all bending and without bending cases. The radiation pattern
of the conformal antenna is also measured for the aforemen-
tioned radii. It is evident from Fig. 15 that the antenna’s
radiation pattern in the xy-plane becomes tilted as the antenna
tends to bend. For the xz-plane, the gain starts reducing as
the bending radius decreases or vice versa. In general, the
strong performance in terms of |S11| results and the stable
gain with a slight titled orientation show the performance
stability of the antenna for both conformal and non-conformal
scenarios.

IV. PERFORMANCE COMPARISON
The purposed meandered dipole antenna array is compared
with various types of antennas in terms of their electrical
size, impedance and 3-dB gain bandwidth, peak gain, and
conformability analysis. It is observed from the comparison
table that all other techniques offer bigger electrical sizes
and narrow bandwidths while none of the works offers struc-
tural conformability. Moreover, the antenna presented [8] in
offers has twice big size as compared to the proposed work
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FIGURE 14. (a) Simulated and (b) measured setup for conformal analysis.

FIGURE 15. |S11| of the conformal array antenna (a) without bending (b) R = 30 mm (c) R = 45 mm (d) R = 60 mm.

with a gain of 13 dBi. On the other hand, the quasi-yagi
antenna includes the setback of low gain and narrow band-
width along with a rigid structure while having the biggest
size among all other works [10]. Dipole array antennas pre-
sented in [21] and [23] offer higher gain as compared to
the proposed work at the cost of narrow bandwidth and
bigger dimensions. Contrary to them, the dipole array antenna
offers a nearly similar size having a high peak gain of
13 dBi yet the impedance bandwidth is 67% lesser than the

proposed work. Lastly, the dipole antenna integrated with
the metasurface has a high profile due to the air gap along
with a bandwidth of 21.5% while the peak gain of 11 dBi is
observed [25].

Likewise, except [30] rest of the work presented in [29],
[31], and [32] offers big physical size and high gain at the
cost of narrow bandwidth. Contrary to them, [30] offers
compact size but has the setback of low gain and limited
bandwidth. Thus, it can be concluded that the presented
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FIGURE 16. Predicted radiation pattern of the conformal array antenna.

TABLE 2. Comparison of 8-element dipole antenna with state of the art.

work over performs the other types of antennas by offering
compact size, wider bandwidth, high peak gain, and structural
conformability.

V. CONCLUSION
A conformal millimeter-wave (mmWave) meander dipole
array antenna is presented in this study. The design consists
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of eight meander dipoles, printed on both sides and fed
via a microstrip line. Initially, a conventional uniform array
antenna was developed as a reference model. Subsequently,
this uniform array is transformed into a non-uniform array by
systematically reducing the length and spacing of the dipoles
in an arithmetic sequence, aiming to enhance its performance.
Specifically, the operational bandwidth (|S11| <−10 dB)
and the 3-dB gain bandwidth experience enhancements of
97.79% and 48.14%, respectively. Moreover, the gain is
increased by 2.1 dBi, and the average SLL is reduced by
17.2 dB. The validation of the design concept is performed
by experimental results offering wide impedance bandwidth,
spanning from 22.9 GHz to 65.1 GHz (146.75%). Moreover,
the 3-dB gain bandwidth is observed to be 97.10%, with a
gain variation of ±3 dBi. Additionally, the antenna exhibits
a stable end-fire radiation pattern, characterized by a low
SLL of −18.6 dB and −23.5 dB in the E- and H-plane,
respectively, at 28 GHz. Furthermore, a conformal analysis is
conducted to evaluate the antenna’s performance under both
flat and bending conditions. The results demonstrate that the
antenna maintains its performance and suitability for use in
both rigid and flexible electronic communication systems.
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