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ABSTRACT In scenarios involving photovoltaic power generation and electrical dynamic loads, complex
electricity metering signals often exhibit strong randomness and rapid fluctuations. These characteristics
frequently lead to substantial errors in electricity metering, thereby affecting fair and equitable energy
transactions. This paper presents a novel modal decomposition theory in the run-length domain. Such a
theory is developed to map signals from the amplitude domain to run sequences in the run-length domain.
Subsequently, it decomposes signals into a quasi-steady, slowly varying mode, and another dynamic, rapidly
fluctuating mode, facilitating the extraction of sensitive characteristics over prolonged durations. Further-
more, the paper proposes characteristics representation method for complex electricity metering signals
by constructing parameters and characteristic functions in the run-length domain. Additionally, the paper
specifically extracts sensitive characteristics for photovoltaic complex electricity metering signals using
the modal decomposition theory in the run-length domain. Finally, experimental validation is conducted to
elucidate the impact of these sensitive characteristics on electricity meter errors with the maximum dynamic
error observed at −15.53%.

INDEX TERMS Characteristic extraction, dynamic error in electricity meter, electrical energy metering,
modal decomposition, photovoltaic new energy.

I. INTRODUCTION
With the advent of new power systems, the utilization of
renewable energy sources like wind and photovoltaic power
is steadily rising across numerous countries. However, high-
power electric loads, such as electric high-speed railways and
electric arc furnaces, present unique challenges due to their
complex and dynamic nature, characterized by significant
randomness, large fluctuations, and rapid variations.

At present, power systems in many countries worldwide
are undergoing a transition towards clean, low-carbon, and
intelligent solutions. The share of new power sources, such
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as wind power and photovoltaic power, along with electri-
cal dynamic loads, is steadily increasing within the power
grid [1], [2].

In recent years, it has been observed that fast variations
in load current and power, occurring in both photovoltaic
power systems and electrical dynamic loads, can induce
significant errors (up to 40%) in electricity metering [3],
[4]. Consequently, these fast current variations can have a
considerable impact on financial settlements between energy
suppliers and consumers. Load current and power, when
combined with voltage, are referred to as ‘complex dynamic
electricity signals’ (hereafter referred to as CD electricity
signals) when they exhibit significant randomness and rapid
variations across a wide range.
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In the past decades, significant interest has been shown by
many researchers in analyzing the error-inducing character-
istics of CD electricity signals. Numerous analysis methods
and findings have been published, primarily focusing on two
aspects: (1) short-duration harmonic characteristic extraction,
and (2) short-duration waveform characteristic extraction.

In the domain of short-duration harmonic characteristic
extraction, numerous frequency-domain methods have been
proposed, including the interpolation FFT method [5], [6],
[7], the windowed interpolation FFT method [8], [9], self-
convolution window FFT method [10], [11], and others [12],
[13], [14]. These methods involve extracting local character-
istics of fundamental and harmonic amplitudes, frequencies,
and phases within a 10-second time duration. One of objec-
tives is to evaluate the influence of harmonic characteristics
on electricity meter accuracy.

In the domain of short-duration waveform characteristics
extraction, several time-domain methods have been reported
in the literature. For instance, in the case of low-power pumps,
two fast-varying characteristics—local waveform peak and
fluctuation range—are built from one-cycle current to ana-
lyze the impact of fast-varying local waveform on electricity
meters [15]. Similarly, for LED lamps, low-power dim-
mers, and fluorescent lamps, three fast-varying waveform
characteristics—local waveform rise time, rise rate, and peak
slope—are extracted from two-cycle local current to investi-
gate their impact on electricity meter errors [16], [17].
However, in both photovoltaic power and dynamic loads

scenarios, what fast fluctuation characteristics of current
amplitude can induce electricity metering errors has not been
completely understand until now, especially characteristics
lasting more than 30 minutes. And investigating new charac-
teristics analyzing method and furthermore finding important
characteristics have become a challengingwork for determine
test signal condition during evaluating the errors of the elec-
tricity meters.

Summarizing the above discussion, the aforementioned
short-duration characteristics extraction methods can suc-
cessfully extract several local characteristics of CD electricity
signals within a few power frequency cycles. However, they
have overlooked the evolution of local characteristics during
prolonged periods exceeding 30minutes. Therefore, they face
challenges in extracting the ‘‘sensitive characteristics’’ which
induce significant errors in electricity metering.

The main contributions of the paper are as follows: 1) A
theory of mapping CD electricity signals from the ampli-
tude domain to the run-length domain was proposed, 2) A
run-length domain modal decomposition (RMD)method was
proposed for extracting truncated curve in signal amplitude,
3) Novel characteristic functions were constructed in the
run-length domain to solve extraction of sensitive character-
istics which induce significant errors in electricity metering.
The results obtained in this study can be used as the key
characteristic information of dynamic test signals for type
testing and for updating the IEC standards for electricity
meter.

TABLE 1. Technical jargons and explanations.

The remainder of this paper is organized as follows.
In Section V, Applying the RMD decomposition and charac-
teristic extraction theory, we validate a case of photovoltaic
(PV) new energy CD electricity signals, to analyze and
extract their sensitive characteristics. In Section VI, based
on extracted characteristics, OOK dynamic test signal model
parameters are determined to evaluate the Impact of the Sen-
sitive characteristics on the Dynamic Errors of Electricity
Meters. These test findings provide valuable insights for
supplementing international electricity meter standard test
method.

To make the paper more accessible to readers from diverse
backgrounds, the following Table 1 explains key technical
jargons proposed in the paper.

II. RUN-LENGTH DOMAIN MAPPING THEORY OF CD
ELECTRICITY SIGNALS
A. AMD CHARACTERISTICS ANALYSIS OF DYNAMIC
CURRENT
Under actual operating conditions, the amplitude of electrical
energy metering currents and power signals exhibits char-
acteristics of strong randomness, rapid fluctuations. In this
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section, a signal model is established using stochastic pro-
cesses.

According to stochastic processes theory, let e denote the
amplitude of CD electricity signals, E denote the sample
space of signal amplitudes, and T = {n′, n′

= 1, 2, . . .N }

denote the discrete time set. Then, CD electricity signals
can be represented as a stochastic process {X̃ (n′, e), n′

∈

T , e ∈ E}. Let each signal x̃(n′) collected be a sample of
this stochastic process. The general model for a stochastic CD
electricity signal be expressed as follows:

x̃(n′) =

Q∑
q=1

Ãq(n′)s(n′) + N (n′)

=

Q∑
q=1

Ãq(n′) sin(ωqn′
+ ϕq(n′)) + N (n′) (1)

where, ‘‘∼’’ represents a random function, n′=0,1,2 · · ·

denotes discrete time, q represents the harmonic order, ωq
signifies the angular frequency, ϕq(n′) denotes the initial
phase of each harmonic, reflecting the fundamental and har-
monic characteristics of the current. Ãq(n′) represents the
amplitude-modulated signal, indicating the strong stochastic
and non-stationary amplitude variations of the signal, fol-
lowing a certain probability distribution. s(n′) denotes the
modulated signal, reflecting the various harmonic compo-
nents formed by multiple signals. N (n′) represents additive
noise, reflecting the noise components in the CD electricity
signals.

B. CONSTRUCTING TIME SERIES MODELS FOR CD
ELECTRICITY SIGNALS
In consideration of (1) depicting the stochastic signal model,
this paper employs the Short-Time Fourier Transform time-
frequency analysis method to extract the time series of
amplitudes for the fundamental frequency and harmonics of
the electrical energy signal as follows:

X̃ (n, q) =

Ms−1∑
n′=1

x̃(n′)g(n′
− nMs)e−j2πn

′q/Ms

= {X̃ (0, q), X̃ (1, q), . . . X̃ (n, q), . . .} (2)

where, Ms = ⌊fs/f1⌋ represents the length of the window
function, f1 denotes the fundamental frequency, and n =⌊
n′/Ms

⌋
represents the ordinal number of the power fre-

quency cycle. When representing voltage and current signals,
X̃ (n, q) takes the values of Ũd

k (n, q) and Ĩ
d
k (n, q) respectively.

According to the algorithm in (2), voltage amplitudes
Ũd
k (n, q) and current amplitudes Ĩdk (n, q) of each harmonic

are extracted, and a dynamic electrical energy metering volt-
age and current signal time series model is established as
follows:

ũdk (n
′) =

Q∑
q=1

Ũd
k (n, q) sin(ωqn

′
+ ϕukq(n

′)) + N u(n′) (3)

ĩdk (n
′) =

Q∑
q=1

Ĩdk (n, q) sin(ωqn
′
+ ϕikq(n

′)) + N i(n′) (4)

where, superscript d indicates that the signal is dynamic,
subscript k represents the A,B,C three phases, n denotes the
power frequency cycle number, u and i respectively represent
voltage and current, and Ũd

k (n, q), Ĩ
d
k (n, q) denote the ampli-

tudes of the fundamental and harmonic components. When
the distortion of grid voltage and current is small, q = 1 can
be set to simplify the voltage fundamental amplitude Ũd

k (n, 1)
and the current fundamental amplitude Ĩdk (n, 1) as U

d
k (n) and

Idk (n).
In power grids, the variation of the amplitude of complex

dynamic current fundamental exhibits strong randomness and
rapid fluctuations, which are the primary factors affecting
energy metering accuracies. Conversely, the dynamic vari-
ation of voltage fundamental amplitude demonstrates weak
randomness and slow minor fluctuations characteristics, ren-
dering its impact on electricity metering accuracies negligi-
ble. Therefore, the following sections focus on the run-length
domain mapping, modal decomposition, and characteristic
extraction for the complex dynamic current fundamental
amplitude.

C. RUN MAPPING THEORY FOR TIME SERIES OF
COMPLEX DYNAMIC CURRENTS
In order to address the challenge of simultaneously extract-
ing the rapid changing characteristics of complex dynamic
current signals within local intervals and the evolving charac-
teristics of these characteristics over prolonged durations, this
section investigates a run mapping theory, to maps the signals
from the amplitude domain to run sequence in run-length
domain, making it easier to extract local characteristics.

1) MAPPING CURRENT AMPLITUDE INTO RUN SEQUENCE
IN RUN-LENGTH DOMAIN
For the complex dynamic current fundamental amplitude
Idk (n), the slowly varying trend component I ck (n) is selected as
the truncation curve. When I ck (n) exhibits a certain changing
trend over time and satisfies the continuous interval with the
same attribute given by the following equation:{

Idk (n
+

l ) = I ck (n
+

l ); I
d
k (n

+

l + τ+

l ) ≤ I c
k
(n+

l + τ+

l )
Idk (n

+

l + i) > I ck (n
+

l + i); i = 1, 2, . . . , (τ+

l − 1)
(5)

Then, the current amplitude Idk (n) within the continuous
interval given by (5) is mapped into an ascending run.

R̃(n+

l , τ+

l ) =

{
Idk (n

+

l ), I
d
k (n

+

l + 1), . . . , Idk (n
+

l + τ+

l )
}
(6)

where, l = 1, 2, . . . represents the run number, the parameter
n+

l represents the power frequency cycle number correspond-
ing to the starting point of the ascending run, the parameter
τ+

l is defined as the length of the ascending run, and
R̃(n+

l , τ+

l ) denotes the l-th ascending run in the run-length
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domain. Similarly, when Idk (n) satisfies the continuous inter-
val with the same attributes given by the following equation
on the time scale:{

Idk (n
−

l ) = I ck (n
−

l ); I
d
k (n

−

l + τ−

l ) ≥ I c
k
(n−

l + τ−

l )
Idk (n

−

l + i) < I ck (n
−

l + i); i = 1, 2, . . . , (τ−

l − 1)
(7)

Then, the current amplitude Idk (n) within the continuous
interval given by (7) is mapped to the l-th descending run
immediately following the ascending run R̃(n+

l , τ+

l ).

R̃(n−

l , τ−

l ) =

{
Idk (n

−

l ), I
d
k (n

−

l + 1), . . . , Idk (n
−

l + τ−

l )
}
(8)

where, the parameter n−

l = n+

l + τ+

l represents the starting
number of power frequency cycle included in R̃(n−

l , τ−

l ), and
the parameter τ−

l is defined as the length of the descending
run. In the text, both ascending and descending runs are
collectively referred to as run R̃(n±

l , τ±

l ). When n±

l , τ±

l is
taken, it represents an ascending run from n+

l , τ+

l , and when
n−

l , τ−

l is taken, it represents a descending run.

2) BASIC PARAMETERS OF THE RUN-LENGTH DOMAIN
In order to decompose the runs of current amplitude and
extract run characteristics, this section first provides the def-
inition of basic parameters in the run-length domain.
Definition 1: Run Pair R̃(nl, τl)
An ascending run followed by an adjacent descending run

forms a ‘‘run pair’’:

R̃(nl, τl) =

{
R̃(n+

l , τ+

l ), R̃(n−

l , τ−

l )
}

(9)

where, nl = n+

l represents the starting power frequency cycle
number of the run pair, and τl = τ+

l + τ−

l denotes the length
of the run pair.
Definition 2: Run Ascent Height Ir [R̃(n

±

l , τ±

l )]
Let R̃max(n

+

l , τ+

l ) denote the maximum value in a run and
Idk (n

+

l ) denote the amplitude at the starting point of a run, for
ascending runs, the ascent height is given by:

Ir [R̃(n
±

l , τ±

l )] = Ir [R̃(n
+

l , τ+

l )] = R̃max(n
+

l , τ+

l ) − Idk (n
+

l )

(10)

Let R̃min(n
−

l , τ−

l ) represent the minimum value and
Idk (n

−

l + τ−

l ) represent the termination point in a run, respec-
tively, for a descending run the ascent height is:

Ir [R̃(n
±

l , τ±

l )]

= Ir [R̃(n
−

l , τ−

l )] = Idk (n
−

l + τ−

l ) − R̃min(n
−

l , τ−

l ) (11)

Definition 3: Run Descent Height If [R̃(n
±

l , τ±

l )]
Let R̃max(n

+

l , τ+

l ) and Idk (n
+

l + τ+

l ) denote the maximum
value and the amplitude at a run termination point for an
ascending run, respectively; R̃min(n

−

l , τ−

l ) and Idk (n
−

l ) denote
the minimum value and the amplitude at the run starting
point for a descending run, respectively. For an ascending
run, If [R̃(n

+

l , τ+

l )] = R̃max(n
+

l , τ+

l ) − Idk (n
+

l + τ+

l ); for a
descending run, If [R̃(n

−

l , τ−

l )] = Idk (n
−

l ) − R̃min(n
−

l , τ−

l ).

FIGURE 1. Run mapping.

FIGURE 2. RMD method flowchart.

Using the run mapping method described in Section II-C,
Idk (n) is mapped to the run-length domain as run sequence.
The run mapping, which includes concepts such as ascending
runs and descending runs, is illustrated in Fig.1.

III. MODAL DECOMPOSITION METHOD IN THE
RUN-LENGTH DOMAIN FOR CD ELECTRICITY SIGNALS
The run mapping requires the extraction of truncated curve
I ck (n), necessitating decomposition of complex dynamic
current signals under prolonged durations. According to
Cramer’s theorem, a randomly fast-varying Idk (n) can be
decomposed into a slowly varying mode, referred to in this
context as the quasi-steady term Imk (n), and another rapidly
fluctuating mode, termed as the dynamic term I vk (n). The
bimodal representation is expressed as:

Idk (n) = Imk (n) + I vk (n) (12)

where, the quasi-steady term Imk (n) serves as the amplitude
parameter, utilized for the truncated curve I ck (n) in the run
mapping, simultaneously characterizing the slow fluctuation
properties of signals lasting longer than 5 minutes. The
dynamic term I vk (n) represents another amplitude parameter,
describing the rapid variations of the current signal in terms
of local time scales, including transient (20ms-1s), short-time
(1s-4s), and long-time (4s-60s) rapid changes.

This paper investigates a novel method for decompos-
ing amplitude parameters I vk (n) and I

m
k (n) in the run-length

domain, named RMD (Run-length domain Mode Decompo-
sition). RMD method is given in Fig.2.

Meanwhile, the detailed decomposition steps of the RMD
method are as follows.
Step 1: Extraction of Amplitude Peak-Valley Sequences
The current amplitude Idk (n) is taken as an initial signal. All

peak and valley sequences {Idk (np), I
d
k (nv)}, p, v = 1, 2, . . .

are extracted from Idk (n) in chronological order. p, v represent
the ordinal number of peaks and valleys, respectively. np, nv
denote the numerical value of peak and valley cycles in the
power frequency cycle sequence.
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TABLE 2. Function values and derivatives on subintervals.

Step 2: Cleaning Algorithm for Run Peak and Valley
Sequences

Firstly, for the peak sequence Idk (np) and valley sequence
Idk (nv), the convexity H (np) and concavity H (nv) of the cur-
rent amplitude run peaks and valleys are defined as follows:

H (np) =

∣∣∣Idk (np) − max(Idk (nv), I
d
k (n(v+1)))

∣∣∣ :

nv < np < n(v+1)

H (nv) =

∣∣∣min(Idk (np), I
d
k (n(p+1))) − Idk (nv)

∣∣∣ :

np < nv < n(p+1)

(13)

Then, set the constants Hpmin for convexity and Hvmin for
concavity. Clean the {Idk (np), I

d
k (nv)} sequence from Step 1 as

follows:
if

{
H (np) ≥ Hpmin and (np+1 − np > 4)

}
;

Idk (np) ⇒ IdkP(nl); l + 1 ⇒ l ; p+ 1 ⇒ p ;

else p+ 1 ⇒ p ;

(14)


if {H (nv) ≥ Hvmin and (nv+1 − nv > 4)} ;

Idk (nv) ⇒ IdkV(nl); l + 1 ⇒ l ; v+ 1 ⇒ v;
else v+ 1 ⇒ v; l ⇒ l;

(15)

where, l = 1, 2 . . . represents the run sequence number.
Through Idk (np) and Idk (nv) cleaning, the peak with fluc-
tuations greater than

{
Hpmin|np+1 − np > 4

}
are retained,

denoted as IdkP(nl). Similarly, the valley with fluctuations
greater than

{
Hvmin|np+1 − np > 4

}
are retained and denoted

as IdkV(nl). Data cleaning can remove local minor peak fluc-
tuations in the current run caused by noise interference.

Finally, let IdkP(nl) represent the new peak sequence of
runs, and let IdkV(nl) represent the new valley sequence of
runs, where l denotes the sequence number of ascending or
descending runs.
Step 3: Interpolation and Fitting of Peak and Valley

Envelopes
According to the time subintervals [nl, nl+1] covered by

adjacent points IdkP(nl) and I
d
kP(nl+1) in the cleaned new peak

sequence, compute the function values and derivative values
of the two interpolation nodes IdkP(nl) and I

d
kP(nl+1) for each

sub-interval, as shown in the Table 2.
Let lp(n) denote the interpolation function. Construct the

interpolation conditions as follows:{
lp(n0) = y0, lp(n1) = y1
l ′p(n0) = m0, l ′p(n1) = m1

(16)

Based on the interpolation conditions of nodes, function
values, derivative values, and Equation (13), the Hermite
interpolation algorithm is constructed as follows:

lp(n) = α0(n)y0 + α1(n)y1 + β0(n)m0 + β1(n)m1 (17)

TABLE 3. Interpolation polynomial parameters.

where, the parameters of the interpolation function are as
shown in Table 3.
The Hermite interpolation algorithm is employed to fit

IdkP(nl), resulting in the amplitude peak envelope lp(n); simi-
larly, using the same interpolation method, IdkV(nl) is fitted to
obtain the amplitude trough envelope lv(n).
Step 4: Calculation of Non-Solid State Mode Functions
The non-solid state mode function is calculated by averag-

ing lp(n) and lv(n) using the following equation:

l(n) = [lp(n) + lv(n)]/2 (18)

If, within a 5-minute period, the amplitude of l(n) satisfies
the condition that the fluctuation range between adjacent
maximum and minimum values exceeds 10% of the signal’s
rated value, then l(n) is considered as the new initial signal,
and steps 1 to 4 are repeated. Otherwise, the calculation of
the solid-state mode function is terminated.
Step 5: Extraction of Quasi-Steady-State Component Sig-

nals
The non-solid state mode function extraction sequence,

denoted as L(n), is obtained by performing M-point signal
extraction on L(n) as follows:

L(n) =

{
l(n) : n = 0,M , 2M , 3M , · · ·

0 others
(19)

If the fluctuation period of the initial quasi-steady-state
sequence L(n) is less than 5 minutes, L(n) is used instead
of IdkP(nl). Subsequently, Equations (13-15)’s interpolation
algorithm is employed again to extract components from L(n)
exhibiting slowfluctuations exceeding 5minutes as the quasi-
steady-state component signal Imk (n).
Step 6: Calculation of Dynamic Component Signals
The dynamic component signals I vk (n) are obtained by

subtracting the quasi-steady-state component Imk (n) from the
current amplitude signal Idk (n), as follows:

I vk (n) = Idk (n) − Imk (n) (20)

Fig. 3 shows the process of RMD method that extracts
quasi-steady-state and dynamic components based on the
above steps. The RMD method described above effectively
decomposes CD electricity signals into two distinct compo-
nents: quasi-steady-state components, characterized by slow
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FIGURE 3. The process of RMD method.

and persistent variations over extended periods, and dynamic
components, exhibiting rapid local changes over time. This
approach facilitates the simultaneous extraction of both
global and local characteristics of signal amplitudes. Signif-
icantly, this method represents an adaptive decomposition
algorithm that does not require predefined base functions,
thereby resolving the decomposition challenges associated
with slow fluctuation mode Imk (n) and rapidly changing mode
I vk (n) in complex power signals.

IV. CONSTRUCTING CHARACTERISTIC PARAMETERS AND
FUNCTIONS IN RUN-LENGTH DOMAIN
In field conditions, the rapid fluctuations characteristics of
CD electricity signals result in significant errors in electricity
metering and therefore are termed as sensitive characteris-
tics. It’s worth noting that sensitive characteristics encompass
not only the rapid changes in dynamic current amplitudes
within local intervals (transient, short-time, and long-time)
but also the evolution of these characteristics over prolonged
periods (e.g., 60minutes). To address the challenge of extract-
ing sensitive characteristics, a novel method was proposed,
in which two characteristic functions are constructed in the
run-length domain, to analyze the characteristics of CD elec-
tricity signals within local intervals, as well as characteristics
evolutionary trends. The specific method are as follows.
Definition Parameter 1: Run Pair Length τl
In the run-length domain, the local time length of l-th run

pair, denoted as τl , is defined as the sum of the lengths of the
ascending run τ+

l , and the descending run τ−

l .
Constructing the Characteristic Function 1: Run- Pair

Fluctuation time length V (l)
Before constructing the characteristic function V (l) for run

pair fluctuation time, we first define an algorithm for run pair
length τl as follows:

τl = len[R̃(n+

l , τ+

l ), R̃(n−

l , τ−

l )] (21)

where, len(•) denotes the function for calculating the
sequence length, and parameter τl has the physical meaning

of the sum of the lengths of the l-th ascending and descending
runs.

The fluctuation time length V (l) of the run pair is used to
characterize the change time of the amplitude of CD elec-
tricity signals. It is constructed by using the characteristic
parameter τl as follows:

V (l) = τl × T (22)

where, T represents power frequency cycle, and τl ×T signi-
fies the time length of the run pair.
Constructing the Characteristic Function 2: Run impulse

Intensity Q(l)
Characterizing the intensity of impulse in a current run

sequence.

Q(l) =
Imax[R̃(n

+

l , n+

l )]
10∑
i=1

Ii[R̃(n
+

l , n+

l )]/10

(23)

where, Imax[R̃(n
+

l , τ+

l )] represents the max amplitude in
an ascending run, and Ii[R̃(n

+

l , τ+

l )] represents the current
amplitude at the i-th power frequency cycle within l-th run
pair.

V. APPLYING RMD DECOMPOSITION AND
CHARACTERISTIC EXTRACTION: CASE STUDIES
A. APPLICATION SCENARIOS
To validate the efficacy of the ‘‘run-length domain character-
istic analysis theory,’’ this study focuses on the application
of photovoltaic (PV) new energy metering, aiming to analyze
and extract their sensitive characteristics. The PV CD elec-
tricity signals were collected from a 110V output line of a PV
substation in Zhangjiakou China. The collecting location is
Metering Point II of Line Three. The power source originates
from the PV power generation station. The signal sampling
frequency is set at 20 kHz, with a data collection duration of
56.21 minutes.
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FIGURE 4. Instantaneous signal of photovoltaic A-phase voltage and
current.

FIGURE 5. Amplitude signal of photovoltaic A-phase voltage and current.

FIGURE 6. Amplitude and Metastability term signal of photovoltaic
A-phase current: RMD Decomposition results (a), EMD Decomposition
results (b), and their dynamic terms (c).

B. MODAL DECOMPOSITION OF CD ELECTRICITY
SIGNALS IN THE RUN-LENGTH DOMAIN
In accordance with Section II-B, the instantaneous A-phase
voltage and current signals are denoted as ũdA(n

′) and ĩdA(n
′),

as depicted in Fig.4. Employing the amplitude extraction
method outlined in Section II-B, the fundamental voltage
amplitude Ud

A(n) and current amplitude IdA(n) are extracted
from ũdA(n

′) and ĩdA(n
′),as illustrated in Fig.5.

For the signal IdA(n), modal decomposition was conducted
using the aforementioned RMD method, resulting in the
quasi-steady-state component signal ImA (n) and the dynamic

TABLE 4. Comparison of EMD and RMD methods.

component signal I vA(n), as depicted in Fig.6(a). To com-
pare the differences between our proposed RMDmethod and
the EMD (empirical mode decomposition) method, modal
decomposition was also performed using the EMD method
described in [18]: the residual components of the second
decomposition were selected as the quasi-steady-state com-
ponent, while the sum of IMF1 and IMF2 was considered as
the dynamic component. The results are presented in Fig.6(b).

Analysis of the decomposition results depicted in Fig. 6(a),
Fig.6(b), and Fig.6(c) reveals significant differences between
the EMD and RMD methods: the quasi-steady-state compo-
nent obtained by the EMD method approximates a filtering
process applied to the current amplitude, resulting in a
dynamic component variance of 9 × 10−4. This indicates a
loss of the wide-ranging stochastic fluctuation characteris-
tics inherent in complex current amplitudes. In contrast, the
dynamic component variance extracted by RMD is notably
higher at 5.7 × 10−2, showcasing its ability to preserve
the extensive stochastic fluctuation characteristics.Moreover,
the dynamic component derived from the EMD retains only
transient (20 ms - 1 s) and short-time (1 s - 4 s) rapid
fluctuations in the current amplitude IdA(n), while neglecting
the long-time (4 s - 60 s) fluctuations and ultra-long-time (60
s - 300 s) fluctuations. In contrast, RMD captures transient,
short-time, long-time, and ultra-long-time rapid fluctuations
simultaneously. This comparison underscores the superior
decomposition performance of RMD over the EMD method.
In addition, Table 4 shows a comparison between these two
methods.

Utilizing RMD modal decomposition and further analyz-
ing Fig.6(a), two important characteristics of dynamic load
currents under photovoltaic electricity metering can be iden-
tified as follows:
Global Characteristic 1: The quasi-steady-state compo-

nent signal exhibits cyclic fluctuation characteristics during
long time duration.
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TABLE 5. Classification and distribution proportion of current run
fluctuation modes.

The quasi-steady-state component ImA (n) reflects the slow
cyclic fluctuations of the current amplitude signal, with a
cycle period ranging from 80 to 650 seconds.
Global Characteristic 2: The dynamic component signal

demonstrates strong, stochastic and wide-ranging rapid fluc-
tuation characteristics during long time duration.

The fluctuation time length varies between 0.5 and 300 sec-
onds, with a amplitude mean of 7.4 × 10−2 and a amplitude
variance of 5.7 × 10−2.

C. EXTRACTION OF SENSITIVE FEATURES IN THE
RUN-LENGTH DOMAIN
Utilizing the run-length domain mapping method described
in Section II-C, the quasi-steady-state component ImA (n) is
selected as the truncation curve I cA(n). Subsequently, the
current signal IdA(n) is mapped to the run-length domain,
resulting in 72 run sequences (comprising 36 ascending runs
and 36 descending runs).

Based on the run-length domain characteristic functions
constructed in Section IV, a run-length domain characteristic
analysis of IdA(n) is conducted. This analysis extracts three
sensitive characteristics of the photovoltaic new energy cur-
rent signal as follows.
Run Characteristic 1: The current run sequences exhibit

multiple modes of fluctuation.
Following the classification of current run fluctuation

modes as outlined in Table 4, the time lengths of all runs
are computed. The results indicate that the runs of current
amplitude in photovoltaic CD electricity signals display three
modes of fluctuation characteristics, including Short-Time,
Long-Time, and Ultra-Long-Time fluctuation. And the dis-
tribution proportions of each type of run are statistically
analyzed, which are presented in the rightmost column of
Table 5. The mean run lengths for Short-Time Fluctua-
tion were 98 power frequency cycles, for Long-Time were
1023 cycles, and for Ultra-Long-Time were 5025 cycles.
Run Characteristic 2: The current amplitude runs exhibit

rapid fluctuation speeds.
When calculating Characteristic Function 1 for all ascend-

ing and descending runs in photovoltaic CD electricity
signals, the results show that the runs exhibit rapid fluctu-
ation speeds. Specifically, the fastest fluctuation speed for

TABLE 6. Dynamic electrical energy testing signal model parameters.

ascending runs is 0.38 s/run, while for descending runs, it is
1.22 s/run.
Run Characteristic 3: The current amplitude runs exhibit

strong impulsive characteristic.
Analyzing Characteristic Function 2 for all ascending runs

in photovoltaic CD electricity signals, we found that the max-
imum impact intensity of the runs was 4.18. This indicates
that the current runs in photovoltaic renewable energy exhibit
strong impulsive characteristics.

VI. EVALUATING THE IMPACT OF SENSITIVE
CHARACTERISTICS ON THE DYNAMIC ERRORS IN
ELECTRICITY METERS
Based on the three sensitive characteristics of the run-length
domain extracted in Section V-C, we derive dynamic OOK
test signal parameters, as presented in Table 6.

Simultaneously, we establish a dynamic testing system to
assess the impact of these sensitive characteristics on electric-
ity meter errors. The testing equipment is outlined in Table 7,
with experimental results provided in Table 8.

During dynamic error testing experiments, we set the test
voltage to 220V, current to 5A, and power factor to 1.0.
The OOK test signal parameters are configured based on
Table 6, representing three modes of fluctuation character-
istics: short-time, long-time, and ultra-long-time run length.
These parameters reflect the fluctuation speed of actual cur-
rents. Furthermore, we set the impulse intensity of the test
current signal as Qookmax(l) = 4, reflecting a maximum impulse
intensity of Qmax(l) = 4.18.
To depict the evolving trend of dynamic errors, the data

from Table 8 is plotted as curve in Fig.7. The results in Fig.7
reveal that, when utilizing steady-state current signals as the
testing signals, the errors ofMeter 1 andMeter 2 under test are
observed to be 0.04% and 0.02%, respectively. These values
indicate no significant deviations from the expected accuracy
under steady-state conditions. However, when employing
OOK dynamic current testing signals with the two run-length
domain sensitive characteristics to test the meters, significant
dynamic errors are detected. When run-pair fluctuation time

112092 VOLUME 12, 2024



R. Yuan et al.: Theory of RMD for Assessing Dynamic Errors in Electricity Meter

TABLE 7. Dynamic error testing equipment and model of electric energy
meters.

TABLE 8. Dynamic error test results of electric energy meters.

FIGURE 7. Dynamic error test results based on OOK testing signal.

length of the OOK test signal with run fluctuation mode
increases from 50:50 to 50:150, the dynamic error of Meter
1 decreases from 12.10% to −15.53%, and the dynamic error
of Meter 2 decreases from 11.57% to −12.14%. The testing
results indicate that as the run pair length (sum of on period
and off period) increases, the dynamic error of meter grad-
ually decreases. Meanwhile, as the impulse intensity of the
dynamic current testing signal increases, the meter’s dynamic
error also increases. The errors demonstrate the sensitivity
of the proposed run-length domain characteristics, which
have the potential to induce significant errors in dynamic
electricity metering situations.

VII. CONCLUSION
This study focuses on representing and extracting sensitive
characteristics from CD electricity metering signals to esti-
mate their impact on electricity meter errors.

In this paper, we propose a theory for mapping CD
electricity signals from the amplitude domain to the run-
length domain, which involves transforming signals from
the amplitude domain into run sequences in the run-length

domain. We then propose a RMD (Run-Length Domain
Decomposition) method to extract truncated curves in signal
amplitude and decompose signals into both a slowly vary-
ing quasi-steady mode and a rapidly fluctuating dynamic
mode. By comparing the RMDmethod with traditional EMD
(Empirical Mode Decomposition) in signal decomposition,
we find that the EMD method loses wide-ranging stochastic
fluctuations, retaining only transient and short-time fluctu-
ations. In contrast, the RMD method preserves extensive
stochastic fluctuations and further captures long-term and
ultra-long-term fluctuations. Therefore, the overall decom-
position performance of the RMD method proposed in this
paper is superior to that of the EMD method.

To address the extraction of sensitive characteristics that
induce substantial errors in electricity metering, we construct
characteristic functions and parameters in the run-length
domain to facilitate the extraction of these sensitive character-
istics over prolonged durations. By employing the run-length
domain mapping theory and analyzing characteristic func-
tions in the run-length domain for photovoltaic CD electricity
metering signals, we identify three sensitive Run Charac-
teristics. For example, the current amplitude runs exhibit
multiple fluctuationmodes and rapid speeds, as well as strong
impulsive characteristics.

Validation experiments confirm the impact of these sen-
sitive Run Characteristics on electricity meter errors. The
error induced by current impulse intensity can reach up to
−15.53%, while the error induced by multiple fluctuation
modes and rapid speeds can reach up to 12.10%. The testing
results indicate that both run pair length and impulse intensity
are two key sensitive characteristics to affect the dynamic
error of the electricity meter.

These findings on sensitive run characteristics will provide
valuable insights for supplementing international electricity
meter standards IEC 62052-11, particularly when considering
the prevalence of new energy sources. Furthermore, future
research will concentrate on synchronous testing methods
for testing the dynamic error in electricity meters, aiming
to propose supplementary testing approaches in accordance
with IEC 62052. These findings will serve as a basis for
recommending modifications to international standards.
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