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ABSTRACT With the advancement of consumer-grade RGB-D cameras, obtaining depth information for
indoor 3D spaces has become increasingly accessible. This paper systematically reviews 3D reconstruction
algorithms for indoor scenes using these cameras, serving as a reference for future research. We cover
reconstruction processes and optimization algorithms for both static and dynamic scenes. Additionally,
we discuss commonly used datasets, evaluation metrics, and the performance of various reconstruction
algorithms. Findings indicate that the balance between reconstruction quality and speed in static scene
reconstruction, as well as deformation, occlusion, and fast motion of objects in dynamic scenes are currently
major concerns. Deep learning and Neural Radiance Fields (NeRF) are poised to provide new perspectives

and methods to address these challenges.

INDEX TERMS 3D reconstruction, indoor scenes, static scenes, dynamic scenes, deep learning, neural

radiance fields.

I. INTRODUCTION

In recent years, with the rapid development of computer
vision and artificial intelligence technologies, the application
of 3D reconstruction technology in indoor environments
has received widespread attention. Depending on the input
data, 3D reconstruction algorithms can be divided into RGB-
D camera-based, stereo array-based, visual-inertial-based,
and monocular pure RGB-based types. Compared to other
reconstruction methods, the RGB-D camera-based approach
can directly obtain the color and depth information of
each pixel, reducing the complex depth calculation process
and more accurately capturing the geometric structure of
objects. Additionally, this method has advantages such as
high reconstruction accuracy, fast speed, and high system
integration, making it very suitable for complex indoor
reconstruction tasks. With the advent of consumer-grade
depth cameras like Kinect and RealSense, their lower cost
and higher real-time performance have greatly promoted the
development and application of indoor 3D reconstruction.
In smart home systems, using RGB-D cameras for indoor
3D reconstruction can generate accurate home models,
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enhancing the automation and intelligence levels of smart
home systems. In logistics and warehouse management, it can
increase the automation level of warehouse management
and logistics operations, improving efficiency and accuracy.
In robot navigation applications, using RGB-D cameras
to generate 3D maps of the environment can enhance
the robot’s autonomous navigation capabilities and task
execution efficiency, improving its adaptability in complex
environments. This has led many scholars to research indoor
3D reconstruction algorithms based on RGB-D cameras.
Reference [1] provides a comprehensive overview of
the application of visual odometry and visual SLAM in
the field of mobile robotics, discussing various sensor
data fusion methods and emphasizing their application in
actual robot navigation. Reference [2] summarizes the latest
advancements in indoor scene modeling and discusses public
datasets and programming libraries, but the technologies
covered are only up to 2015. Reference [3] divides indoor
scenes into static and dynamic scenes, mainly focusing on
summarizing traditional reconstruction algorithms, with less
attention to emerging deep learning methods. Reference [4]
discusses in detail the working principles, applications, and
role of RGB-D cameras in 3D reconstruction, introducing
relevant datasets and future research directions. However,
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it lacks specific performance comparisons of the latest
algorithms and technologies. Reference [5] is a recent
review article on the latest indoor reconstruction algorithms,
covering various RGB-D camera technologies and their
application scenarios, but this article mainly focuses on static
3D reconstruction algorithms, with less consideration for
applications in dynamic environments.

As we can see, some scholars have already summarized
indoor reconstruction algorithms based on RGB-D cameras,
but these studies have their limitations. Moreover, the
development of deep learning technologies and neural
radiance fields (NeRF) has also provided new directions
for this field. Therefore, it is necessary to comprehensively
review and summarize the applications of RGB-D cameras in
indoor 3D reconstruction, providing a systematic knowledge
framework to help researchers quickly understand the latest
advancements and key technologies in this field. The main
contributions of this paper are as follows: First, we classify
indoor 3D reconstruction algorithms based on RGB-D cam-
eras into static and dynamic scenes, revealing the advantages
and disadvantages of each method through classification
and comparison of different technical approaches, aiding
researchers in choosing the most suitable technical path and
optimizing existing methods. Second, we summarize the
general process of static and dynamic 3D reconstruction
algorithms and outline different reconstruction algorithms
at each stage. Third, we update the applications of deep
learning and neural radiance fields in this field, analyzing
their advantages and disadvantages, providing new directions
and solutions for future research. Fourth, we provide
comprehensive RGB-D datasets and evaluation standards,
offering reliable resources and tools to facilitate researchers
in technical validation and performance comparison.

The main structure of this paper is as follows: Section II
briefly reviews the development history of major static
and dynamic 3D reconstruction algorithms in recent years.
Section III provides a description of static scene reconstruc-
tion, dividing the reconstruction pipeline into different steps,
and detailing the optimizations made by various researchers
in each step. Section IV focuses on three-dimensional
reconstruction of dynamic scenes, with the processing of
dynamic objects being the main research content of this
chapter. Section V introduces the datasets and evaluation
metrics used in the research process. Finally, Section VI
summarizes this paper.

Il. RELATED WORK

In this subsection, we briefly review the development history
of the main algorithms for indoor 3D reconstruction based
on RGB-D cameras. Figure 1 shows some classic algorithms
organized according to the timeline.

In static scenes, RGB-D cameras are the only moving
objects. By capturing the camera’s trajectory, we can fuse
the obtained depth data into a reconstructed model, and
then extract the surface to generate a static 3D model.
Reference [6] proposed the first algorithm, KinectFusion,

VOLUME 12, 2024

which utilizes an RGB-D camera for real-time 3D recon-
struction. Additionally, they outlined a typical reconstruction
pipeline for static 3D reconstruction, comprising depth map
processing, camera pose estimation, scene reconstruction,
and surface extraction. However, KinectFusion is limited
by the voxel model and memory, and it can only perform
reconstruction on small scenes. Kintinuous [7] extended
KinectFusion to large scene reconstruction by moving the
voxel model. In addition, it integrated loop detection and
optimization, greatly improving the reconstruction quality.
Moreover, Voxelhashing [8] employed voxel hashing as
a model storage approach, significantly enhancing storage
efficiency. Redwood [9] used an offline method to segment
the input RGB-D sequence and separately reconstructed
each segment, and then used the keyframes that overlap
between the segments to register them, thereby reducing the
accumulated error and obtaining high-quality 3D models.
These methods are all based on voxel models. ElasticFu-
sion [10] creatively used surfel representation to continuously
optimize the reconstructed map and improve the accuracy of
reconstruction and pose estimation. It can achieve real-time
high-quality surface reconstruction of small scenes. Bundle-
fusion [11] integrated the research ideas of predecessors and
proposed a parallel optimization framework that fully utilized
sparse features and dense geometry and photometric terms to
perform a sparse-to-dense correspondence matching. In terms
of pose optimization, They used a local-to-global blocking
strategy and added robust tracking ability to recover from
tracking failures (i.e., relocalization), which can generate
reconstructions of higher quality in real-time compared to
offline methods [9]. With the development of advanced deep
learning models [12], [13] and artificial intelligence models
in multimodal learning [14], [15], applying advanced neural
networks to scene reconstruction has also become a signifi-
cant trend. PointGroup [16] and 3D-MPA [17] applied U-Net
and graph convolutional networks to 3D scenes, respectively,
achieving segmentation of 3D point clouds. Reference [18]
transferred pre-trained ViTs to the RGB-D domain for
3D object recognition, cross-modally fusing the RGB and
depth representations co-encoded by ViT. TR3D [19] used
fusion modules to transform traditional 3D object detection
methods into multimodal detection methods, demonstrating
impressive performance improvements. An overview of static
3D reconstruction algorithms is shown in Table 1.

In practical situations, it is inevitable to encounter dynamic
objects in a scene, such as people walking or pets playing.
Therefore, the assumption of a completely static environment
can be easily broken. In this case, not only is the camera
moving, but also the dynamic objects in the scene are moving,
which makes it difficult to track the camera trajectory and
leads to reconstruction failure. Therefore, we must deal with
these dynamic objects. Before processing dynamic objects,
it is necessary to first identify them. Since dynamic objects
in a scene have different motion tendencies than static
backgrounds, we can distinguish them by analyzing such
motion characteristics [29], [30], [31], [33]. Another method
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FIGURE 1. The research history of 3D reconstruction in static and dynamic scenes.

to identify dynamic objects is based on deep learning [32],
[34], [35], using prior knowledge and semantic information
to directly segment dynamic objects. For camera pose estima-
tion, a straightforward method is to treat the data of dynamic
objects as outliers and remove them to eliminate their
influence on camera pose [36], [37], [39], [40]. However,
direct removal of dynamic objects may result in information
loss and affect the quality of scene reconstruction. In contrast,
using the features of dynamic objects for pose estimation
is more meaningful and beneficial [38], [41]. Additionally,
the model fusion strategy for dynamic scene reconstruction
is also improved accordingly based on the static fusion
strategy [29], [42], [43]. An overview of the dynamic 3D
reconstruction algorithm is shown in Table 2.

Different from traditional reconstruction methods, [44]
proposed an implicit Neural Radiance Field (NeRF) to
represent three-dimensional scenes. It utilizes Multilayer
Perceptrons (MLP) to learn the 3D information of the scene
and can synthesize new viewpoint images through volume
rendering. Compared to complex traditional reconstruction
processes, NeRF’s reconstruction process is simpler and
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can provide a more continuous representation of the scene.
NeRF’s implicit representation method provides a new
direction for indoor 3D reconstruction based on RGB-
D cameras, and its implicit scene representation method
further improves the quality of scene reconstruction. In static
reconstruction, iMAP [23] first demonstrated that MLP
can be the sole scene representation in real-time SLAM
systems with handheld RGB-D cameras. NICE-SLAM
[26] combined hierarchical scene representation and neural
implicit representation to achieve real-time, efficient, and
detailed RGB-D surface reconstruction in large-scale scenes.
Reference [45] effectively utilized RGB-D data by combining
implicit functions (truncated signed distance function, TSDF)
and volumetric radiance fields, improving the accuracy and
completeness of geometric reconstruction. However, due to
the use of multilayer perceptrons and complex optimization
algorithms, this method has a long computation time and is
not suitable for real-time applications. GO-Surf [46] built
on [45] by directly optimizing multiresolution feature grids
and the signed distance function (SDF) to achieve fast
and accurate surface reconstruction. Recently, [47] proposed
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TABLE 1. Overview of RGB-D-based Static 3D Reconstruction Methods: This report discusses the details of different algorithms from the aspects of
camera tracking, model fusion, and loop closure, all of which are key technologies for static 3D reconstruction methods based on RGB-D cameras.

Camera Tracking

Model Fusion

Method ICP Feature Voxel-based ~ Surfel-based  NeRF-based Loop Closure  Year
KinectFusion [6] v - v - - - 2012
Kintinuous [7] v - v - - v 2012
Octree-based Fusion [20] v - - - 2013
Voxel hashing [8] v - - - - - 2013
ElasticFusion [10] v - - v - - 2015
InfiniTAM v3 [21] v - v - - v 2017
BundleFusion [11] v - v - - v 2017
ManhattanSLAM [22] v v - v - v 2021
iMAP [23] v - - v - 2021
FastFusion [24] - v - - - v 2022
HRBF-Fusion [25] - v - - v v 2022
NICE-SLAM [26] - v - - v - 2022
Co-SLAM [27] - v - - v - 2023
PLRF-SLAM [28] - v - - v - 2024

TABLE 2. Overview of RGB-D-based Dynamic 3D Reconstruction Methods: This report discusses the details of different algorithms from the aspects of
segmentation of dynamic objects, camera tracking, and model fusion, all of which are key technologies for static 3D reconstruction methods based on

RGB-D cameras.

Method Segmentation of Dynamic Objects =~ Camera Tracking Model Fusion Year
Motion-based DL-based direct indirect TSDF  Surfel Point-based
Dynamicfusion [29] v - - v v - - 2015
VolumeDeform [30] v - - v v - - 2016
Killingfusion [31] v - - v v - - 2017
Co-fusion [32] v v v - v - 2017
Staticfusion [33] v - v - - v - 2018
EM-fusion [34] - v - v v - - 2019
DM-SLAM [35] v v v - - - v 2020
RE-SLAM [36] v - v - - v 2020
Flowfusion [37] v - v - - - v 2020
Rigidfusion [38] v v - v - v - 2021
RTCB-SLAM [39] - v v - v - - 2022
RGB-D SLAM(PC) [40] v - v - - - v 2022
DPF-SLAM [41] v - v v - 2022
RGB-D SLAM(IPE) [42] v - v - - v - 2022
DSV-SLAM [43] - v v - - - v 2023

a 3D Gaussian-based scene representation. It retains the
desirable properties of the continuum radiation field while
avoiding unnecessary computations in space, and greatly
improves its rendering speed while ensuring the rendering
quality. In dynamic reconstruction, D-nerf [48] extended
the application domain of NeRF from static to dynamic
scenes by introducing the time dimension and learning
canonical representations of dynamic scenes. Although this
method has a high computational complexity, it excels
in handling non-rigid motion and generating high-detail
images, showcasing the potential of neural radiance fields in
dynamic scene applications. Recursive-NeRF [49] introduced
uncertainty prediction, recursively passing query points to
different levels of neural networks based on complexity to
achieve adaptive representation at the detail level, balancing
efficiency and quality. Although this method improves
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computational efficiency, it requires storing multiple levels
of neural networks, resulting in high memory consumption,
especially when handling large-scale scenes. Reference [50]
proposed a new method called NDR (Neural-Dynamic
Reconstruction) for recovering high-fidelity geometry and
motion from monocular RGB-D cameras in dynamic scenes.
Although the method is effective, it has high computational
complexity, long training times, and a large demand for
computational resources.

Ill. RECONSTRUCTION OF STATIC SCENES

As shown in Figure 2, the process of static 3D reconstruction
mainly includes depth image enhancement, camera tracking,
model fusion, and surface extraction. In this chapter, we will
use the basic process of static 3D reconstruction as a
framework to introduce the improvements made by different
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FIGURE 2. Overview of the static indoor reconstruction pipeline. The first step is to input RGB-D images and enhance the depth images.
The second step is to use RGB-D data for camera tracking, which estimates the camera pose. If camera tracking fails, the camera relocation
function is launched to recover from the failure. The third step involves incorporating surface information of the scene into the model
using the tracked poses. The fourth step is to extract smooth and dense surfaces using surface extraction algorithms. Finally, camera pose

is globally optimized through loop detection and processing.

Structured Light Camera
Projector

W 4

(a)

Light Object

Time
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FIGURE 3. The Principles of Depth Cameras Based on Structured Light (a) and Time-of-Flight (b). Structured light-based approaches involve
projecting patterned light onto an object to g te distinct phase information, which is then translated into depth data by a computational
unit. Time-of-flight methods determine the distance from the camera to the target object by emitting light pulses and measuring the duration

before their reflection is detected.

reconstruction algorithms in each step of the reconstruction
process.

A. DEPTH IMAGE ENHANCEMENT

Currently, RGB-D cameras are mainly divided into two
types: structured light and time-of-flight (TOF). As shown
in Figure 3, Both types of RGB-D cameras can easily
acquire color images and depth information. However, the
depth images obtained are often marred by ‘“holes” due
to factors such as the material and structure of the object
being measured, as well as rapid movements of the camera,
resulting in data loss. This phenomenon is more common
in consumer-level depth cameras. The goal of depth image
enhancement is to denoise, refine, and enhance the depth
measured initially.

Traditional methods such as median filtering, Gaussian
smoothing, and bilateral filtering have been used to improve
depth image quality. Reference [51] begins with median
filtering in the 2D image space for noise reduction, followed
by a two-step algorithm employing Gaussian smoothing on
the 3D surface to enhance the depth of videos. Additionally,
KinectFusion [6] utilizes bilateral filtering [52] to remove
noise from original depth images, enhancing image quality.
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Since the RGB image obtained by the camera is often clear,
[53], [54], [55] improve the accuracy of the depth image
or supplement the missing parts of the depth image by
corresponding the RGB map to the depth image. To achieve
smooth object surfaces, [56] reconstructs locally smooth
scene segments and deforms them for alignment, effec-
tively addressing high-frequency noise and low-frequency
distortion in depth images.With the advancement of super-
resolution techniques, this technology has also been applied
to enhance the resolution of depth images [57], [58], [59],
thereby improving the precision of reconstructions.

In recent years, depth-enhancement algorithms based on
deep learning have made great progress. These methods
leverage the powerful learning capabilities of neural networks
to predict surface normals and occlusion boundaries from
RGB maps, which are then merged with depth maps captured
by depth cameras to complete the missing parts in the original
depth maps. A depth network [60] was developed to forecast
object surface normals and occlusion boundaries from RGB
maps. This predicted data was subsequently merged with
depth maps captured by a depth camera, completing the
missing parts in the original depth maps. Moreover, [61]
proposed a cascaded CNN structure (DDRNet) to enhance
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low and high frequency information in deep data. Super-
vised deep learning approaches often necessitate ground
truth data from actual scenes, a requirement that poses
significant acquisition challenges. Training networks with
synthetic data presents a potential solution. However, the
domain transfer issue between synthetic and real data
may impair performance. References [62] introduced three
methods for unsupervised domain adaptation of a depth
denoising network, transitioning from synthetic to real-world
data. Addressing the challenge of acquiring real datasets,
researchers have turned to unsupervised [63], [64] and self-
supervised [65], [66], [67] learning techniques to directly
denoise depth maps in the absence of ground truth.

B. CAMERA TRACKING

In a static scene, the scene can be scanned by moving
the camera to obtain RGB-D data. For each frame of
image captured by the camera, the camera trajectory and
poses need to be tracked to fuse the RGB-D data into
the model. Nevertheless, the accuracy of this process can
be compromised by factors including the precision of
algorithms, occlusions, and the velocity of camera motion,
necessitating subsequent optimization of the pose estimation.

Tangent plane
Destination

Destination surface
point

Source
point /

Source
surface

FIGURE 4. The point-to-plane ICP algorithm. It optimizes the camera’s
pose by minimizing the distance between the source point and the
tangent plane of the corresponding destination point.

1) POSE ESTIMATION

a: ICP-BASED

To accurately estimate the camera pose between different
frames, [68] introduced the Iterative Closest Point (ICP)
algorithm. The ICP algorithm is a classical point cloud
registration technique that iteratively aligns two or more point
clouds to minimize the error between them. Assume there are
two sets of points: the target point set Q = {q1, g2, ..., qn}
and the source point set P = {p1, p2, ..., pm}. The goal of the
ICP algorithm is to find a rotation matrix R and a translation
vector t to minimize the following mean squared error:

m
ER, 1) =" |IRpi +t = qmatcn(y|I* (1)

i=1
In this context, gmatch(;) Tepresents the nearest neighbor of p;,
that is, the point in Q closest to p;. Considering the heavy
dependency of the point-to-point Iterative Closest Point (ICP)
algorithm on initial values, suboptimal starting points may
lead to an increase in the number of iterations or inaccuracies
in the results. Therefore, [69] introduces a point-to-plane ICP
algorithm (Figure 4), which improves camera positioning
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by minimizing the sum of squared distances between each
source point and the tangent plane of its corresponding target
point, thereby accelerating convergence:

m

2
ER.0) =D (Mhaeno®RPi +1 = dmacn)) (@)

i=1

Nmatch() 1S the normal vector corresponding to Gmatch()-
Building upon these advancements, [70] integrated point-to-
point ICP and point-to-plane ICP into a single probabilistic
framework to form a new algorithm called GICP, which
exhibits more robustness against incorrect matches. Due to
the cumulative error generated by frame-to-frame match-
ing, the camera trajectory can experience drift, severely
affecting the accuracy of pose estimation. KinectFusion [6]
used a frame-to-model matching method, greatly reducing
cumulative error. Subsequently, [7], [9], [711, [72], [73],
[74], and [75] added dense photometric validation based on
ICP geometric registration to further optimize the matching
algorithm. When matching two sets of point clouds, in order
to consider the local features of point clouds (normal vectors,
curvature), [76] defined an error function during the iterative
solving process that not only included the projected distance
of normal vectors between point clouds, but also the direction
error of normal vectors, making pose estimation more robust.
In addition, there are some other ICP variants, such as
efficient ICP [77], non-rigid ICP [78], etc.

b: FEATURE-BASED

The ICP algorithm performs well under the assumption of
minor motion between frames. However, it tends to converge
to local optima during rapid camera movements, where the
difference between successive frames is significant. In order
to cope with this situation, [79], [80], [81], [82], [83], [84]
extracted feature points (SIFT, SURF, ORB) from color
images and use these sparse features to quickly match
the pose of each frame. ORB-SLAM [82] is a classic
feature-based visual SLAM system. It combines FAST
feature detection and BRIEF feature description, ensuring
the speed of feature point detection and the stability of
description. However, it is limited to feature matching
between image frames and is unstable under varying
lighting conditions and when feature points are missing.
ORB-SLAM? [83] improves pose estimation by supporting
stereo and RGB-D sensors, utilizing depth information for
further optimization. Building on this, ORB-SLAM3 [84]
further improves the pose estimation algorithm, supports
the construction and management of multiple maps, and
enhances pose estimation accuracy through the collaborative
work of multiple sensors. In addition to using point features
for matching, useful edge features [85], [86] can also
be extracted from depth images to establish correspond-
ing constraints, thereby enhancing the robustness of pose
estimation. To ensure the real-time and accuracy of pose
tracking, [87] introduced an information-theoretic approach
for point selection in RGB-D direct odometry measurements.
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This approach simplifies the optimization process while
maintaining accuracy by identifying and utilizing data points
that carry the most information. CPA-SLAM [89] models
the environment using a global model composed of planes,
which reduces significant image drift. Reference [88] extracts
3D facial landmarks during face reconstruction for model
fine-tuning to ensure the accuracy of head pose estimation.
To achieve high-precision feature tracking under rapid sensor
motion, [24] performed feature tracking within an extended
Kalman filter framework. This framework integrates IMU
data to better accomplish sensor motion estimation.

¢: HYBRID METHOD

Pose matching algorithms based on ICP usually require
aligning the entire point cloud data, resulting in high
computational costs, which are not suitable for real-time 3D
modeling of large scenes. In contrast, feature-based matching
algorithms can better cope with the limitations of real-time
requirements. However, feature-based matching algorithms
often require dense features, and the reconstruction quality is
significantly affected when the number of matching features
in the scene decreases [90]. Combining sparse feature
matching with ICP is a good method to balance real-time
performance and reconstruction quality. BundleFusion [11]
first utilizes sparse SIFT features for coarse pose alignment,
and then refines the estimated pose using dense photometric
and geometric terms similar to the ICP algorithm, achieving
real-time accurate pose estimation and solving the real-time
issue of high-quality reconstruction. References [91] and
[92] combined edge information with the ICP algorithm to
enhance robustness and accuracy. Recently, [93] introduced
an enhanced 3D scene reconstruction method using Fast Point
Feature Histograms (FPFH) and Iterative Closest Point (ICP)
techniques. It improves model robustness and accuracy by
modifying the weight calculation formula and employing an
enhanced FPFH descriptor for initial registration estimation.
To further increase the ICP iteration speed, it also utilizes a
Best Bin First (BBF) strategy to reduce data dimensionality.

d: NERF-BASED

The advent of NeRF offers a new paradigm for camera pose
optimization. These methods leverage the power of neural
networks to synthesize novel views and provide accurate
pose estimates, significantly enhancing the robustness and
accuracy of camera tracking in static scenes. iNeRF [94]
estimates the camera pose by inverting NeRF. Specifically,
NeRF optimizes the parameters ® of the scene using a given
set of camera poses T and observed images /, while iNeRF
inversely solves the problem of recovering the camera pose T
given the weights ® and image [ as inputs:

T =argmin L(T | I, ©) (3)
TeSE(3)

To solve this optimization problem, iNeRF obtains some
estimated camera poses T € SE(3) in the coordinate system
of the NeRF model and renders the corresponding image
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observations. To update the pose T, the same photometric loss
function L used in NeRF is employed:

L= lCr) - Ccwl3 “

rer

Here, r € R represents a set of sampled rays, and C(r)
is the observed RGB value of the pixel corresponding to
ray r in an image. Although iNeRF successfully applied
NeRF to pose estimation and achieved excellent results, it still
requires an initial pose as a starting point, which affects
the convergence of the optimization and the final accuracy.
With the development of deep learning, considering the
exceptional performance of Generative Adversarial Networks
(GANs) in image generation, [95] combines GANs with
NeRF to optimize initial pose estimations during reconstruc-
tion. It does not rely on known camera poses and can optimize
from a completely random initialization, which is particu-
larly useful in uncertain and complex scenes. Additionally,
[96] employs a coarse-to-fine camera registration strategy
and demonstrates the impact of positional encoding on
alignment, effectively optimizing the neural network’s scene
representation while addressing pose misalignment issues in
large-scale cameras. To further address errors arising from
drastic camera movements, [97] introduced an undistorted
monocular depth prior based on NeRF and proposes novel
loss functions to constrain the relative poses between adjacent
frames.

Bundle Adjustment is a technique used to optimize camera
parameters and 3D point coordinates in 3D reconstruction. Its
main purpose is to improve the accuracy of 3D reconstruction
by minimizing the reprojection error. Specifically, the
optimization problem can be represented as:

min D i — 7 (i )| 5)
L]

where P; represents the parameters of the i-th camera, X;
represents the coordinates of the j-th 3D point, x;; is the
observed 2D coordinate of the j-th 3D point in the i-th camera,
and 7 (P;, X;) is the projection of the 3D point X; onto the 2D
image plane through the camera parameters P;.

Inspired by the Bundle Adjustment (BA) algorithm, the
NBA (Neural Bundle Adjustment) method proposed by [98]
optimizes the implicit surface and camera poses without
relying on known camera extrinsics. Specifically, NBA
updates the 3D point X at each step as follows:

X <X - pX)Vo(X) (6)

where ¢(X) is the distance value output by the SDF (Signed
Distance Field) network in the neural radiance field, and
V¢(X) is the gradient at that point. After updating the 3D
point X, the reprojection error is calculated based on the
feature trajectory T, jointly optimizing the SDF network ¢,
the estimated camera poses P, and the updated 3D point set X.
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2) LOOP CLOSURE

During the pose matching of each frame, both ICP-based
and feature-based pose matching algorithms can produce
errors, and these errors increase with the number of frames.
After the camera completes a full rotation around the scene,
accumulated errors can cause a misalignment between the
starting and ending points. Therefore, we must process loop
closure after pose matching to ensure global consistency and
reduce the impact of accumulated errors on reconstruction
quality. Reference [99] defined keyframes and registers the
frames between them to eliminate local errors, and uses the
entropy ratio criterion to check loop closure. Reference [71]
utilized efficient Pose graph optimization and Sparse bundle
adjustment for global consistency alignment. However, this
global optimization distributes the residual error over the
entire path, resulting in the destruction of the details of
the object surface. To further optimize pose estimation,
[9] divides all frames into equally sized blocks with one
overlapping frame between adjacent blocks. Each small
block is reconstructed first, then the overlap frames are
used to register the blocks and detect loop closure, and
finally erroneous loops are removed to achieve global con-
sistency in reconstruction. Subsequently, BundleFusion [11]
performed sparse-to-dense global pose optimization and
solves loop closure by integrating and re-integrating previous
RGB-D frames during movement, enabling it to correct
all drifts. Although this method produces better positional
optimization, it requires a large amount of computational
resources. To enhance pose estimation accuracy in large-
scale scenes, [100] introduced a two-pass loop closure
detection method that integrates global and local image
features to identify loop closure candidates. Recently, [24]
utilized subgraph-based depth image encoding and 3D
graph deformation for loop closure to maintain global
consistency in the reconstructed model. Reference [101]
introduced local 3D deep descriptors (L3Ds) for loop closure
handling. L3Ds are compact representations of patches
extracted from point clouds, learned using deep learning
algorithms, significantly enhancing loop closure detection
accuracy.

Another way to address cumulative errors is to assume
the scene structure in the world frame and directly align
each tracking frame with the scene structure, rather than
with keyframes or the last frame. One of the most common
assumptions is the Manhattan assumption [102], [103],
which represents the scene using a set of orthogonal planes
aligned with the world’s three main axes, simplifying the
scene understanding and enabling efficient inference of
scene geometry and object position. Structure-SLAM [104]
employed a convolutional neural network(CNN) to forecast
normals and compute drift-free rotations leveraging geo-
metric features under the Manhattan assumption, effectively
addressing low-texture regions in indoor settings. Building
upon Structure-SLAM, [105] incorporated planar features
within the Manhattan framework and introduced an advanced
meshing module for reconstructing scene structures, thereby
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enhancing localization and mapping accuracy.To make
the Manhattan assumption more suitable for real-world
scenes, ManhattanSLAM [22] directly detected Manhattan
frames(MFs) from planes and modeled the scene as a Mixture
of Manhattan Frames (MMF), estimating unbiased rotation
by observing MFs across frames.

3) RELOCALIZATION

Due to factors such as high camera movement speed or
changes in viewpoint, camera tracking may fail. Therefore,
the ability to quickly recover and perform relocalization when
camera tracking fails is essential in the 3D reconstruction
process. There are several methods for camera relocalization,
including the following:

a: KEYFRAME-BASED

This method requires defining and storing keyframes. When
the camera tracking fails, it needs to query the images and
estimate the camera pose by measuring the overall image
similarity with a known set of keyframes. Reference [106]
explored an effective keyframe-based relocation method.
In the stage of determining keyframes, besides the threshold
based on the distance in space, a similarity discrimination
with previous keyframes was added to avoid collecting
redundant information. In order to quickly retrieve candidate
poses in case of tracking loss, this method uses an efficient
frame encoding based on ferns. Keyframe-based methods
can perform camera relocation in real-time, but they rely on
matching input images with a keyframe database and cannot
re-locate in a new pose.

b: KEYPOINT-BASED

This relocation method mainly utilizes the sparsity of
feature points. During successful tracking, feature points are
detected in the image, and their corresponding descriptors
and positions in the world coordinate system are stored in a
database. When camera tracking is lost, the current frame’s
key points and descriptors are calculated, and a match is
performed against the database. After a successful match,
the current image’s pose can be obtained to complete camera
relocation [107], [108], [109], [110], [111], [112], [113].The
challenges of this method include: (1) the choice of feature
point and descriptor calculation method, (2) how to store
key points and their corresponding descriptors, and (3) how
to perform feature matching between frames. Inspired by
the idea of visual Bag-of-words, [108] stored the extracted
SIFT feature descriptors into a vocabulary during successful
tracking, and utilized the Term Frequency-Inverse Document
Frequency (TF-IDF) of the visual words in each node to rank
the nodes. When tracking is lost, refined relocation poses are
obtained by matching the descriptor set in each node with
the descriptors extracted from the query image to recover
from tracking failure. Reference [110] proposed using a
regression forest to directly predict the 3D correspondence
of all pixels in the current image to the scene. Compared
with traditional keypoint-based methods, this method does
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FIGURE 5. (a) is a schematic diagram of 2D pixels and 3D voxels, and
(b) is a schematic diagram of the octree structure.

not require explicit detection, description, or matching of
key points, making it simpler and faster. However, it must
train the regression forest in advance on the scene of interest
offline, and cannot achieve real-time camera relocation.
Reference [112] overcame the limitation of having to train
offline by dynamically adapting pre-trained forests to new
scenarios.

¢: HYBRID METHOD

Researchers have integrated keyframes and keypoints to
enhance relocation accuracy while maintaining real-time
performance. Upon tracking failure, [82] adopted the
DBoW2 algorithm [114] to identify matching candidate
keyframes, subsequently calculating ORB features within
these keyframes and employing the PnP algorithm [115] to
alternately estimate the current frame’s pose. Reference [86]
merged edge features with the keyframe-based method [106],
securing robust loop closure and relocalization capabilities.

C. MODEL FUSION

The pose matching algorithm calculates the initial pose,
which is further enhanced by closed-loop processing. After
that, the surfaces of the scene need to be fused into the 3D
model according to the camera’s position. Currently, there are
mainly two types of surface fusion models used: voxel-based
and surfel-based.

1) VOXEL-BASED

As shown in the figure 5(a), an image can be represented
by square pixels in 2D space, and extending the pixels
to 3D is a voxel. This can intuitively reflect the shape
of an object. Reference [116] was the first to propose
using the TSDF (Truncated Signed Distance Function) grid
model to fuse depth information on the basis of voxel
representation. KinectFusion [6] further applied this model
to 3D reconstruction using RGB-D cameras. This method
requires fixing the size of the scene before reconstruction,
making it difficult to scale the scene. For large-scale
scene reconstruction, which requires substantial memory,
KinectFusion falls short. Therefore, various scholars have
extended the original TSDF voxel model:
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a: MOVING VOLUME

To overcome the limitations of voxel representation, [7],
[72], [117] expanded the reconstruction area to infinite
space by moving voxels. Thomas Whelan [7] utilized a
cyclic buffer data structure to effectively recycle GPU
memory, addressing the issue of insufficient memory for
large-scale scene reconstruction with voxel models. The
algorithm enabled camera translation and rotation in the
real world, incrementally enlarging the reconstructed surface.
Reference [117] proposed the Moving Volume KinectFusion
method, which establishes a TSDF buffer and a swap
buffer. Utilizing a double buffering mechanism to map
between volumetric models during camera movement, the
method allows for online processing of volume rotations and
translations through voxel interpolation.

b: OCTREE-BASED

The geometry of most objects is very sparse with respect
to the whole scene body, which means that the voxels in
the TSDF model are mostly empty and all this storage
space is wasted. The octree structure is a data model first
proposed by Dr. Hunter [118] in 1978. As shown in 6(b),
this structure can effectively utilize memory by dividing the
scene space, thereby improving storage efficiency. Although
its definition is simple, it is difficult to maintain the
parallelism of the GPU due to the sparsity of its nodes.
Reference [20] and [119], designed a novel octree data
structure to improve the reconstruction update and surface
prediction parts of KinectFusion, which can fully utilize the
parallelism of the GPU, greatly improving storage efficiency
and further expanding the reconstruction scale. To reduce
memory consumption, [99] fused the acquired depth and
color information into a multiscale octree representation
of a signed distance function, which can maintain low
memory usage while achieving high accuracy. To further
improve storage efficiency, [120] defined an octree data
structure that supports volume multiresolution 3D mapping
and mesh partitioning, reducing memory consumption by
only allocating units close to the surface.

c: VOXEL HASHING

Although the octree structure can improve the storage
efficiency of the model to some extent, complex octree
structures still have additional computational complexity and
pointer overhead. A simple spatial hashing scheme is used
in [8] to compress space, which allows data to flow efficiently
in and out of a hash table, enabling real-time access and
updates of surface data in the scene without the need for
complex hierarchical data structures. Voxel hashing has been
widely used in real-time 3D reconstruction [21], [121], [122].

d: DEEP LEARNING-BASED

The ability of neural networks to learn rich prior knowledge
provides new directions for the development of scene
representation. When exploring cluttered indoor scenes with
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an RGB-D camera, [123] initialized the truncated signed
distance function (TSDF) reconstruction of each object with
compact instance segmentation using Mask-RCNN, which
resulted in a resolution related to object size and novel 3D
foreground masks. Reference [124]reconstructed real-time
scenes with both geometry and semantic information by
incorporating semantic predictions from neural networks into
the voxel-based model built on Voxel hashing.

2) SURFEL-BASED

Voxel-based methods are expensive for handling loop
closures in real-time 3D reconstruction because precise
compensation may involve changing the entire volume.
Moreover, the size of the voxel volume is typically fixed in
practice, which limits the adaptivity of representation. If an
object is relatively small or thin compared to the voxel size,
it can seriously affect the reconstruction quality.

In surfel-based scenes (Figure 6). This representation has
the following advantages: (1) Flexibility. When performing
point fusion updates, the data is updated using weighted
fusion, where the radius of the surface patch is related to the
distance between the camera center and the scene surface.
The farther the distance, the larger the radius of the surface
patch, and this updating method can effectively reconstruct
the entire surface. (2) High adaptability. It can measure more
densely distributed points at high resolution. (3) It can easily
handle thin objects.

Object
surface

Surfel

FIGURE 6. Representation of object surface by Surfels. The position
information, radius of the surface patch, normal vector, color information,
and time information of each point are stored.

Reference [125] first introduced the concept of surfels
and provide a detailed description of surface scenes. Elas-
ticFusion [10] utilized this representation for real-time dense
scene reconstruction. The system continuously optimizes the
reconstructed map to improve the accuracy of reconstruction
and pose estimation, and employs Random Ferns to detect
loop closures for global consistency. With the development
of deep learning, in order to fully utilize the semantic infor-
mation of the scene, Semanticfusion [127] combined CNN
and ElasticFusion to successfully fuse semantic predictions
from multiple viewpoints into a surfel-based representation.
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Picture

FIGURE 7. Indoor semantic segmentation results. Figure taken from [126].

Reference [126] proposed an indoor RGB-D image semantic
segmentation network with multi-scale feature fusion based
on ElasticFusion. It integrates the visual color features and
depth geometric features of RGB-D images, improving the
accuracy of image semantic segmentation. The segmentation
results are shown in Figure 7. DeepSurfels [128] integrated
feature information learned from RGB images with detailed
representations of facets, making it possible to reconstruct
large-scale scenes in real-time. To obtain high-quality surface
texture, [129] employed Shape-from-Shading (SfS) and
spatially-varying spherical harmonics (SVSH) techniques
to simultaneously optimize geometry, texture, and camera
poses. The main drawback of the surfel representation is
its discreteness, which can be addressed by the meshing
approach. Reference [130] created a triangle mesh and
performs real-time mesh reconstruction from RGB-D video,
which works well for reconstructing thin objects. However,
this method requires camera poses as additional input.
In contrast, [25] utilized Hermite Radial Basis Functions
(HRBF) implicits for direct camera tracking and RGB-D
reconstruction, which is a dynamic surface representation that
effectively reduces the influence of noise and reconstructs
using surface photometric constraints.

3) NERF-BASED

Explicit representations like voxel and surfel allow real-time
scene reconstruction, but they face challenges in mapping
accuracy and balancing memory consumption. Moreover,
they lack in novel view synthesis capabilities. In recent
years, with the introduction of NeRF, implicit representations
have overcome limitations associated with explicit represen-
tations, generating high-fidelity reconstructions with reduced
memory usage. These implicit representations achieve this
by continuously querying scene properties to generate
high-quality images from novel viewpoints. IMAP [23]
demonstrated for the first time that Multi-Layer Perceptrons
(MLPs) can serve as the sole scene representation in real-time
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SLAM systems using handheld RGB-D cameras, utilizing
keyframe structures and multi-processing computation flows.
Reference [131] utilized the point cloud provided by
COLMAP and reprojection errors to enforce depth con-
straints in NeRF, effectively enhancing the rendering speed
and reconstruction quality of NeRF. To reduce computational
costs and enhance scalability, NICE-SLAM [26] applied the
hierarchical scene representation concept to NeRF. However,
due to the local updates performed by NICE-SLAM'’s feature
grid, it fails to achieve reasonable hole filling. Co-SLAM [27]
combined coordinate and sparse parameter encoding for
scene representation and employed dense global bundle
adjustment using rays sampled from all keyframes. Simul-
taneously, [132] proposed a NeRF-based mapping approach
using a hierarchical hybrid representation, leveraging implicit
multiresolution hash encoding and explicit octree Signed
Distance Function (SDF) priors to describe scenes at different
detail levels, achieving real-time high-fidelity dense mapping
and dynamic expansion capabilities. Since NeRF does not
reconstruct actual surfaces and pseudo-shadows occur when
using Marching Cubes to extract voxel-based surfaces,
[45] used Truncated Signed Distance Functions (TSDF) to
represent surfaces, extending them to commodity RGB-D
sensors to reconstruct high-quality 3D scenes. Recently,
NGEL-SLAM [133] employed a sparse octree grid integrated
with implicit neural maps, ensuring memory efficiency and
precise environmental depiction.

D. SURFACE EXTRACTION

Once the surface information of a scene has been fused
into a model based on the camera pose, a surface extraction
algorithm is required to obtain a visual representation of
the surface. Depending on how the reconstructed scene is
represented and stored, surface extraction algorithms can be
classified into raycasting and marching Cubes.

1) RAYCASTING

The surface extraction method proposed by [134] based on
Raycasting primarily involves using rays emitted from the
camera center and passing through pixels to project onto the
object surface to find the iso-surface.

Isosurface

Image /

Eyes
A

FIGURE 8. Diagram of Raycasting. It detects and calculates intersections
with objects in the scene by casting rays, thereby extracting surface
information.
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FIGURE 9. Diagram of Marching Cubes.

The basic process of this method is as follows (Figure 8):
firstly, a ray is projected along the viewing direction from
each pixel on the image plane, which passes through the
surface of the object. Then, sampling is performed at a certain
step size, and linear interpolation algorithms are used to find
the intersection point with the surface. This essentially means
checking the value of the truncated signed distance function at
each voxel along the ray until the first zero-crossing is found.
This algorithm is widely used for surface extraction in voxel
models [6], [7], [8], [11], [117], [129].

2) MARCHING CUBES
The marching cubes algorithm was initially proposed by
Lorensen [135], who divided the three-dimensional geometry
into small cubes called voxels and defined the voxels using
scalar values at the eight corners of each cube. As shown in
the Figure 9, if the data value at a vertex of the cube is greater
than or equal to the value of the surface we are constructing,
the vertex is assigned a value of 1, and 0 otherwise. Under
this assumption, when the surface intersects with a cube,
the intersection points between the isosurface and the edges
of the cube are calculated using interpolation, and then the
intersection points of each edge are connected in a certain way
to represent the isosurface inside the cube. After finding the
isosurface passing through this cube, move to the next cube
to continue searching for the isosurface. This is the process
of extracting the surface using the marching cubes algorithm.
Due to the huge amount of storage required to reconstruct
high-quality models, the octree storage method has been
applied to the reconstruction models to get rid of the limita-
tions of commercial computer memory. However, extracting
the reconstructed surface from the octree representation is
more complicated than extracting it from a regular voxel
grid. Reference [136] and [137] extended the Marching
Cubes algorithm by addressing the inconsistencies that arise
when adjacent leaf nodes in the octree have different depths.
Reference [138] proposed a method of marking edges with
Hermite data to generate signed grid contours, and extended
this method to octrees. By aligning the vertices of the dual
grid with the characteristics of the implicit function, [139]
can extract iso-surfaces that capture small, thin, and even
sharp features in the surface without excessively refining the
octree. Reference [140] introduced the concept of an edge tree
to provide a method for directly extracting watertight mesh
without restricting the octree topology or modifying vertex
values.
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With the application of deep learning and NeRF tech-
nology in 3D reconstruction, [141] proposed a data-driven
method called Neural Marching Cubes (NMC) for extracting
triangular meshes from discrete implicit fields. This method
addresses the shortcomings of traditional surface extraction
methods in recovering geometric features such as sharp edges
and smooth curves. Specifically, NMC redesigns the mesh
subdivision template and introduces neural networks to learn
vertex positions and mesh topology, thereby better preserving
geometric features. Recently, [142] proposed another method
called NeuralMeshing. This method generates meshes iter-
atively, making it suitable for shapes of various scales and
capable of adapting to local curvature, thereby significantly
improving the quality of surface extraction.

In conclusion, the integration of deep learning into static
3D reconstruction has brought significant advancements,
providing robust and accurate solutions for depth image
enhancement, camera tracking, model fusion, and surface
extraction. These methods leverage the powerful learning
capabilities of neural networks to improve the quality and
efficiency of 3D reconstructions, offering new perspectives
and directions for future research in this field.

IV. RECONSTRUCTION OF DYNAMIC SCENES

Dynamic scenes consist of both dynamic objects and static
backgrounds. Figure 10 illustrates the general process of
dynamic reconstruction. In the following chapter, we will
discuss recent developments in dynamic 3D reconstruction,
focusing on three aspects: segmentation of dynamic objects,
Camera tracking, and model fusion.

A. SEGMENTATION OF DYNAMIC OBJECTS

In contrast to static 3D reconstruction, dynamic scenes
contain freely moving objects that significantly affect
camera pose estimation. Moreover, entities such as human
beings and animals undergo non-rigid deformations while
in motion. To handle the reconstruction of these dynamic
objects, the first step is to distinguish between dynamic
and static features, a process known as motion segmenta-
tion. Various approaches, including motion analysis-based
methods and deep learning-based methods, are employed for
motion segmentation in the scene to identify the dynamic
characteristics.

1) MOTION ANALYSIS-BASED METHODS

Methods based on motion analysis separate dynamic objects
from the static background by detecting object movement
within the scene. Examples of such methods include geomet-
ric methods, optical flow methods, etc. DynamicFusion [29]
utilized geometric features to separate dynamic objects and
defined a canonical model specifically for reconstructing
non-rigidly deforming dynamic objects. The canonical model
was transformed to the live frame using voxel deformation
fields. This method addresses the deformation issues of
dynamic objects during motion, enhancing the robustness
and accuracy of reconstruction. Similar to this approach,
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Nerfies [143] enhanced NeRF by optimizing an additional
continuous volume deformation field, which warps each
observed point into a canonical 5D NeRF representation. D-
NeRF [48] incorporated time as an additional input to the
system and divides the learning process into two main stages:
one stage encodes the scene into canonical space, and another
stage maps the canonical representation into a deformed
scene specific to a particular time. VolumeDeform [30]
combined SIFT features extracted from RGB images with
depth maps for motion tracking, enhancing the robustness
of matching point recognition. References [33] and [144]
applied K-means clustering to perform visual clustering and
assigned static weights to each clustered pixel or point. Ref-
erence [145] estimated static weights based on the distances
between corresponding point and line features and applied
filtering to the data related to dynamic targets using these
static weights, achieving precise localization and tracking of
the targets. Reference [146] constructed a foreground model
based on the mutual motion between two frames and com-
bined it with RGB-D frame information to segment dynamic
and static feature points. Reference [36] initially employed
a simple and efficient clustering algorithm to group spatially
and appearance-related pixels of each keyframe into differ-
ent regions, then identified Candidate Dynamic Keypoints
(CDK) in consecutive frames with large reprojection errors
and recognized regions with a high CDK ratio as dynamic
regions. Reference [147] observed that regardless of camera
movement, the triangles formed by any three fixed points
on a static object remain fixed, and these triangles formed
by the three points in different camera coordinate systems
are similar. Therefore, the authors determined whether a
feature point is static or dynamic by comparing the similarity
of the triangles formed by three sets of feature points in
two keyframes. Reference [148] introduced a grid-based
feature extraction approach that enables fast and efficient
extraction of high-quality FAST feature points. Addition-
ally, it combined inertial measurement units for motion
prediction, achieving feature tracking and motion consistency
detection.

2) DEEP LEARNING-BASED METHODS
Unlike traditional methods based on motion analysis, deep
learning-based methods can learn semantic information as
priors from training datasets, and the extraction of semantic
information through various image processing techniques
has different impacts on dynamic scene problems. Currently,
many methods use semantics to make motion segmentation
more robust [35], [39], [43], [149], [150], [151], [152], [153],
[154], [155], [156], [157], [158]. These methods employ
deep neural networks for semantic segmentation and object
recognition on RGB-D images to achieve dynamic object
detection and tracking.

Mask-RCNN [39] is an instance-level segmentation
algorithm based on images that can provide prior information
on dynamic objects in a scene. As shown in Figure 11(a),

112753



IEEE Access

J. Zhu et al.: Survey of Indoor 3D Reconstruction Based on RGB-D Cameras

Static Background

Static
or
Dynamic

Processing

RGB-D
Images

Dynamic Objects

Camera .| Background
Tracking Reconstruction
Model Fusion
N Object
Reconstruction

FIGURE 10. Overview of the dynamic indoor reconstruction pipeline. The first step is data acquisition, which is the same as in static 3D
reconstruction. The second step is data preprocessing, which involves not only denoising the raw image data but also separating the dynamic objects
from the scene. Then, camera tracking is performed using the static background information to align the current frame data with the previous frame
or model, finding the correspondences between them and reconstructing the static background. Meanwhile, the dynamic objects are reconstructed
separately. Finally, the dynamic objects and static background are merged to complete the reconstruction of the entire scene.

FIGURE 11. Segmentation of dynamic regions. (a) is the result of
Mask-RCNN. (b) is the result optimized using the connected component
analysis method. Figure taken from [39].

it can provide bounding boxes for dynamic objects. However,
within the bounding boxes, some static background areas are
classified as dynamic foreground areas, and some dynamic
foreground objects are classified as static background.
In RGB-D data, utilizing the depth difference between
dynamic regions and static background can better optimize
segmentation results. Additionally, compared to smooth areas
within objects, the normal and variance differences at the
boundary between dynamic regions and their adjacent static
background are also greater. Therefore, [39] uses connected
component analysis to optimize the segmentation results.
Specifically, the dynamic weight of a pixel is given by the
following formula:

O=04+ 0, + 10, @)

where Oy is the depth difference, O, is the variance, y; is the
weight for the normal difference O,, and is obtained by the
following formula:

Oq = max |(v; — V) - n| 3)
ieN

0, if((v; —v)-n) <0
ieN | 1 —(n;-n), else

©))
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FIGURE 12. The propagation of dynamic probabilities during tracking,
where green points indicate feature points with initial dynamic
probabilities, blue points represent identified static feature points, and
red points represent dynamic feature points. Figure taken from [154].

where v represents the point on the depth map, n is the
normal of that point, N denotes the set of neighborhood point
indices for v, and v; represents the neighboring points of v.
Figure 11(b) shows the results optimized using the connected
component method based on the value of O.

Additionally, PSPNet-SLAM [151] and DDL-SLAM [152]
use PSP-Net and DU-Net respectively as deep learning
(DL) models for segmenting dynamic scenes and static
backgrounds. However, these segmentation methods using
DL models require high memory consumption and com-
putational cost. To improve the real-time performance of
the reconstruction system, LRD-SLAM [153] proposed a
fast deep convolutional neural network (FNet) for semantic
segmentation, which can quickly and accurately identify
pedestrian information in a given scene.

Moreover, [154] found that most classic semantic SLAM
methods generate semantic results for each frame individ-
ually, such as DynaSLAM [155], DS-SLAM [156], and
DM-SLAM [35], leading to redundant operations. Since
the input to visual SLAM is a sequence of continuous
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frames, the segmentation results of consecutive frames have
many similarities, making it unnecessary to segment each
frame. Reference [154] segments only the keyframes and
propagates the segmentation results of the keyframes to their
adjacent frames, significantly avoiding the time delay caused
by segmenting each frame while ensuring segmentation
accuracy. The experimental results are shown in Figure 12.
Recently, [43] and [157] employed YOLO v5 for detecting
dynamic objects in the scene, further enhancing segmenta-
tion accuracy. DDN-SLAM [158] leveraged deep semantic
system priors and conditional probability fields for effective
segmentation. Through the creation of depth-guided static
masks and the use of joint multi-resolution hashing encoding,
it achieves rapid hole filling and superior mapping quality,
effectively reducing the impact of dynamic information.

B. CAMERA TRACKING

In static scene reconstruction, for slightly moving dynamic
objects, we treat them as static and ignore their motion during
pose estimation by utilizing rigid alignment. However, due
to significant variations in the motion of dynamic objects
in dynamic scenes, directly applying static algorithms for
camera pose tracking would lead to failure. Therefore, the
handling of dynamic objects is crucial for solving the problem
of dynamic 3D reconstruction. One approach considers
dynamic objects as outliers and directly removes them during
the reconstruction process, focusing on pose estimation for
the static scene. This method is referred to as the direct
approach. Another approach involves utilizing the features
of dynamic objects while simultaneously reconstructing both
static and dynamic objects in the scene. This approach is
known as the indirect approach. In this chapter, we discuss
how to handle dynamic objects from these two perspectives in
order to achieve accurate pose estimation in dynamic scenes.

1) DIRECT APPROACH

In a real indoor environment, it is inevitable to encounter
dynamic objects, such as freely moving people or rolling
balls. These dynamic objects can significantly impact camera
tracking: during localization, the camera struggles to acquire
sufficient static features due to occlusions caused by dynamic
objects, leading to localization failure. When dealing with
loop closure, the displacement of dynamic objects confuses
the camera as the scene exhibits different visual appearances
compared to when the camera last observed the dynamic
objects. Direct approaches solve the interference of dynamic
objects on camera pose estimation by removing the data of
dynamic objects during reconstruction.

Reference [159] introduced a robust background model-
based dense-visual-odometry (BaMVO) algorithm to esti-
mate the background for each frame and perform camera
pose estimation by eliminating foreground moving objects.
This method effectively reduces the impact of dynamic
objects on the camera trajectory, enhancing reconstruction
accuracy. Similarly, [146] filtered out the data associated
with dynamic objects directly in the preprocessing stage
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to enhance the robustness of RGB-SLAM. Reference [160]
utilized a bayesian framework for dynamic region detection,
considering prior knowledge and observation information
generated during object detection. After obtaining the
detection results, dynamic regions are removed, and only
features from static regions are extracted for camera
tracking. Reference [150] combined ORB-SLAM?2 with the
PSPNet [161] semantic segmentation network to propose
the PSPNet-SLAM system, which first removes dynamic
points with large optical flow values using optical flow
and then performs secondary filtering using PSPNet to
ensure more accurate matching. Most of these methods
detect dynamic objects by analyzing only a few consecutive
frames. However, since many dynamic objects may remain
static for a short period of time, this can lead to failure
in detecting moving objects. Based on this observation,
LC-CRF SLAM [162] constructed a long-term consistent
conditional random field (CRF) that provides more accurate
camera trajectory estimation through long-term observations
across multiple frames. Semantic information based on deep
learning can eliminate the influence of dynamic objects, but it
involves high computational cost and cannot handle unknown
objects. Reference [163] proposed a real-time semantic
RGB-D SLAM system tailored for dynamic environments,
which performs semantic segmentation only on keyframes
to remove known dynamic objects and maintains a static
map for robust camera tracking. After removing dynamic
objects, [153] repaired missing static background information
using information from keyframes to facilitate subsequent
point cloud reconstruction. Reference [42] introduced a
hierarchical representation method for images, segmenting
images into planar and non-planar regions. By removing
dynamic non-planar objects, it segments and tracks multiple
dynamic planar rigid objects. Reference [40] created a sparse
graph using Delaunay triangulation from all map points, and
then used the correlation of the mapped points in the graph to
divide the points in the scene into groups, where the largest
group is considered to be the static map points. Finally, only
these static points were used in estimating the camera motion.
Recently, [43] incorporated an improved dense point cloud
generation module into ORB-SLAM3 [84], which removes
dynamic objects using dynamic object information extracted
by YOLO v5, resulting in a point cloud representation
of the static scene and obtaining clearer camera poses by
eliminating dynamic objects.

2) INDIRECT METHOD

Instead of removing dynamic objects, the indirect method
analyzes features, assigning weights to both static and
dynamic objects. Based on these weights, it fully utilizes
static and dynamic features to achieve scene tracking and
mapping. References [41], [164], and [165] assigned weights
to static points and utilized these static weights to eliminate
the influence of dynamic objects. Reference [164] employed
depth edge points for frame-to-keyframe registration, where
each edge point is assigned a static weight that is then
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used in the Intensity-assisted Iterative Closest Point (IAICP)
algorithm for motion estimation, thereby reducing the impact
of dynamic components. Additionally, effective loop closure
detection was incorporated to decrease tracking errors.
Reference [165] utilized double K-means clustering to detect
dynamic objects, followed by establishing static weights
for the feature points in the current frame, which compre-
hensively consider static probability and static observation
value (SON). Finally, the traditional RANSAC algorithm
was modified to suit dynamic reconstruction. With the
advancement of deep learning, the integration of semantic
knowledge into dynamic reconstruction yields excellent
results. Reference [41] proposed the DPF-SLAM algorithm,
which combines the dynamic prior probability obtained from
semantic segmentation with the dynamic probability obtained
from dynamic point detection, thereby reducing the influence
of dynamic objects on camera localization.

In dynamic scene reconstruction, it is commonly assumed
that the predominant portion of image frames represents
the static background. However, in complex scenes with
numerous dynamic objects, without semantic segmentation,
a significant portion of dynamic objects may be mistakenly
identified as static backgrounds. Moreover, dynamic objects
can occlude a substantial amount of color and depth
information, leading to insufficient static information in
visual input to support accurate self-motion estimation of
the camera. Reference [32] employed a multi-model fitting
approach to identify dynamic objects in the scene using
motion segmentation and semantic segmentation. Each object
was reconstructed individually, and over time, increasingly
refined dynamic models can be obtained. Complete geomet-
ric objects play a crucial role in tracking camera trajectories.
Reference [166] inferred the complete geometric shapes of
each object to establish correspondences among instances,
enabling the estimation of object poses in each frame.
Reference [167] employed multiple motion segmentation
methods to segment the motion models of different moving
objects, obtaining accurate masks for the moving objects and
generating 4D models and trajectories of the moving objects
in a global reference frame, while reconstructing dense maps
of the static background. Reference [168] introduced rigid
and motion constraints to model articulated objects, allowing
for the joint optimization of camera pose, object motion, and
object 3D structure. This approach corrects estimation errors
in camera pose, prevents tracking loss, and generates a 4D
spatiotemporal map that includes both dynamic targets and
static scenes.

C. MODEL FUSION
The fusion of dynamic scenes extends the fusion of

static scenes and includes two approaches: voxel-based,
surfel-based, and NeRF-based.

1) VOXEL-BASED
DynamicFusion [29], as a pioneering real-time dynamic
3D reconstruction algorithm, extended Projective TSDF to
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reconstruct and fuse scenes. VolumeDeform [30] utilized a
voxel model that not only stores scene data in the undeformed
pose, such as TSDF values, color, and confidence value, but
also stores information about the current spatial deformation,
represented by deformation field parameters. These mainly
focus on scenes with individually deformable objects moving
in a non-rigid manner. When multiple dynamic objects are
present in the scene, MID-Fusion [169] integrates depth,
color, semantic, and foreground probability information into
an object model based on an octree volume representation
using foreground and background masks. EM-Fusion [34]
reconstructed dynamic objects based on the TSDF model
and creatively used Expectation-Maximization (EM) to
determine the unknown association between pixels and
objects. Reference [170] introduced a neural scene flow
field, which defines a set of voxel boundary implicit fields
using a sparse voxel octree, to simulate local properties
and achieve the reconstruction of complex dynamic scenes.
These TSDF representations store different dynamic objects
of the entire scene as multiple 3D models, enabling easy
fusion and updating based on their respective poses. However,
during surface extraction, ray casting needs to be performed
separately for each object model. Additionally, occlusion
handling during ray casting is required to determine surface
visibility when objects are occluded. To address these issues,
[171] proposed a novel map representation method called
TSDF++, which allows simultaneous reconstruction of both
static scenes and dynamic objects within a 3D volume model.

2) SURFEL-BASED

Volumetric methods can generate smooth triangle meshes,
but they suffer from high computational and memory
costs. Surfel-based methods, on the other hand, are more
efficient, but post-processing is required if a mesh model
is desired [172]. In the case of non-rigid objects in
dynamic scenes, the computation becomes more complex,
making surfel-based representations a promising solution for
real-time dynamic reconstruction. Co-Fusion [32] extended
the surfel-based mapping framework of ElasticFusion to
handle dynamic scenes, enabling tracking and reconstruction
of segmented dynamic objects based on motion and semantic
cues in each frame. However, Co-Fusion lacks real-time capa-
bilities for dynamic scene reconstruction. MaskFusion [173]
built upon Co-Fusion to create a real-time dynamic 3D recon-
struction system, representing each geometric entity as a set
of surfaces and incorporating semantic information into the
map. Reference [33] proposed a strategy to assess the feasi-
bility of each surfel by estimating the dynamic probability of
each input point and eliminating surfels that match dynamic
input points. Reference [174] achieved real-time non-rigid
reconstruction using a stream of depth images as input,
along with surfel-based scene representation, effectively
handling topological changes and tracking failures, resulting
in efficient dynamic 3D reconstruction. Surfel maps typically
consist of a large number of surfels, requiring powerful GPUs
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for online processing. Reference [175] introduced the use of
superpixels to generate surfel maps, significantly improving
storage efficiency and speed. If an observation or fusion
count falls below a threshold within a certain time frame,
the corresponding surfels are considered outliers and are
removed to mitigate the influence of dynamic objects on the
reconstruction results. The SLAM system proposed in [176]
relies on super-surface elements [177], which are planar
patches generated from superpixels, to model the static parts
of the environment.

3) NERF-BASED

There have been numerous attempts to apply NeRF to
scenes from RGB video streams [178], [179]. However,
these methods reconstruct scenes under the assumption of
accurate camera poses, heavily relying on previous camera
registration, which can fail when objects undergo significant
motion. Unlike NeRF reconstruction solely from RGB data,
the introduction of depth information makes these issues
more manageable. Simultaneously, to handle geometries
beyond the sensor’s explicit range and regions with low
reflectivity, raw continuous-wave ToF images are used
instead of direct depth maps, effectively enhancing the view
synthesis quality in dynamic scenes [180].

Reference [181] proposed a new framework called
Time-Aware Neural Voxels (TiNeuVox), which by explic-
itly representing temporal information in dynamic scenes,
making the modeling and rendering of dynamic scenes more
efficient. Specifically, it inputs the time embedding #; =
®,4(y(#;)) and the coordinates of the sample points (x, y, z)
into a compact deformation network ®,, resulting in the
deformed coordinates (x', y', Z):

Xy, 7 =®40x,y, 2, 1) (11)

Additionally, to more accurately reconstruct the motion
trajectories of points and improve training speed, [181]
utilizes a multi-distance interpolation method to capture
motion at different scales:

V=vi®- vy By, (12)
Vi = interp(x, y, z, V[:: s, (13)

v is the concatenation result of interpolated features vy,
across multiple scales. v,, is obtained by interpolating at
the point (x,y,z) after sampling the voxel grid V with
a stride of s,,. Moreover, Neural-Dynamic Reconstruction
(NDR) was proposed to recover high-fidelity geometric
shapes and motion of dynamic scenes from monocular
RGB-D cameras [182]. It employs a novel neural reversible
deformation network to represent and constrain non-rigid
deformations. A topologically aware strategy is employed
to establish correspondences for fused frames. Building
upon this, DNA-Net [183] modeled dynamic motions using
articulated bones, aiding the model in faster convergence and
making it more suitable for applications such as human pose
manipulation. Due to errors in pose estimation that SFM
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algorithms often produce in highly dynamic scenarios with
poor-textured surfaces, [184] reconstructed the entire scene
using both static NeRF and dynamic NeRF. The static NeRF
is responsible for reconstructing static scenes and estimating
camera poses and focal lengths. Simultaneously, the dynamic
NeRF simulates the dynamic aspects of the scene from
the video. Recently, the effectiveness of depth-constrained
NeRF in dynamic operating rooms [185] has been validated,
demonstrating the generation of geometrically consistent
views from novel perspectives.

V. DATASET AND EVALUATION METRICS

A. DATASETS

In this section, we present the relevant datasets used by the
static and dynamic reconstruction algorithms. Table 3 briefly
summarizes the scenes, details, applications and publication
years included in the relevant datasets.

The TUM dataset [186] utilizes Microsoft Kinect to
capture RGB-D data of office scenes and an industrial hall.
The dataset consists of 39 sequences, including color images,
depth maps, and ground truth camera poses associated with
time. The frl and fr2 sequences primarily feature static
scenes. The fr3 sequences are used for quality evaluation
of dynamic 3D reconstruction. In the fr3/sitting sequence,
two people are sitting and lightly moving while chatting
at a table. The fr3/walking sequence involves two people
walking around a table, exhibiting highly dynamic motion.
Additionally, the dataset provides two evaluation metrics,
Relative Pose Error (RPE) and Absolute Trajectory Error
(ATE), which can be used to assess the performance of visual
SLAM systems.

ICL-NUIM dataset [187] is used for evaluating RGB-D
visual odometry, 3D reconstruction, and SLAM systems. The
data acquisition involves capturing images from a camera
trajectory of 3D models rendered using POVRay. The dataset
includes two different scenes, a living room and an office,
with the living room scene being a newly introduced scene
that includes relevant 3D polygon models to assess the
accuracy of the final reconstruction results. Aug-ICL-NUIM
dataset [9] expands the ICL-NUIM dataset with challenging
camera trajectories and realistic noise models, enhancing the
dataset in various ways to accommodate the evaluation of
complete scene reconstruction pipelines.

The CoRBS dataset [188] provides real depth and color
data, along with ground truth camera trajectories and 3D
models of the scenes. It includes 20 KinectV2 image
sequences captured from four different scenes. The data is
directly provided in a global coordinate system, enabling
direct evaluation without the need for further alignment or
calibration.

The NYUD v2 dataset [189] consists of 1449 indoor
RGB-D images captured using Microsoft Kinect devices,
accompanied by detailed annotations. However, due to its
relatively small scale, it is challenging to apply it to deep
learning architectures. The SUN3D dataset [190] offers a
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TABLE 3. Overview of static and dynamic datasets.

Dataset Scenes Details Applications Years
. . ) . . Evaluation of drift in visual odometry sys-
TUM Static/Dynamic 39 sequences from office and industrial hall tems and global pose error in SLAM systems 2012
Evaluation of visual odometry , SLAM tra-
ICL-NUIM Static 8 sequences from living room and office jectory estimation and surface reconstruction 2014
accuracy
CoRBS Static 29 Kinect V2 image sequences captured from four  Evaluation of §D reconstruction and visual 2016
different scenes odometry algorithms
64 scenes with a total of 108,617 frames (2,347 are 2011(v1)
NYU Depth Static labeled)
464 scenes and 407,024 frames (1,449 images are 2012(v2
labeled) 3D reconstruction, object recognition and s- v2)
. Large-scale RGB-D video dataset containing indoor emantic segmentation for indoor scenes
SUN3D Static . . 2013
scenes such as homes, offices, shopping malls, etc.
The RGB-D Ob- o i 300 objects in 51 categories 2011
ject Dataset
SceneNN Static Grldf:led 100 scenes with vertex-by-vertex and pixel- 2016
by-pixel annotations.
. 5M rendered RGB-D images, 16K randomly gener-
SceneNet RGB-D Static ated 3D tracks in synthetic layout 2017
PASCAL VOC Dynamic More than 20 potential mobile object classes, such as N ‘ 2010
people, cats, dogs, etc. Training segmentation networks to segment
COCO dataset Dynamic Phot.ogr.zlphs of 91 object types anq a total of 2.5  dynamic objects 2014
million instances of markers in 328k images
ShapeNet Dynamic More than 3M 3D models, of Whlch 220K models are 2015
categorized into 3,135 categories
The Bonn RGB-D o . JT . o . Evaluation of drift in visual odometry sys-
Dynamic Dataset Static/Dynamic 24 dynamic sequences and 2 static sequences tems and global pose error in SLAM systems 2019
Two full loops, totaling more than 50,000 frames, .
HRPSlam Dynamic acquired from the on-board camera on the HRP-4 RGB-D. Dynamic S.LAM Benchmarks for 2019
. Evaluating Humanoid Robots
humanoid robot
DeepDeform Dynamic {lOO sceqes, 390,000 frames, 5,533 densely aligned N(?n—ngld 3D reconstruction based on a data- 2020
frame pairs driven approach
The Oxford-THM Dynamic 60-minute video of the human body walking indoors Motion planning, mapping and human trajec- 2023

Dataset

tory prediction

large-scale RGB-D video database that includes semantic
information and corresponding pose information for objects
in each scene. The RGB-D Object dataset [191] contains
300 objects from 51 categories, providing high-quality color
and depth images for each frame in the videos. Additionally,
it introduces RGB-D-based object recognition and detection
techniques that significantly improve the reconstruction
quality by leveraging both color and depth information.

In widely used RGB-D datasets, there is a challenge
of lacking comprehensive and fine-grained annotations.
Binh-Son Hua et al. introduced SceneNN [192], which
collects RGB-D information from over 100 indoor scenes,
including dormitories, offices, classrooms, etc. The authors
reconstructed each scene using triangle meshes and added
per-vertex and per-pixel annotations, enriching the dataset
with fine-grained information. John McCormac introduced
SceneNet RGB-D [193], which provides accurate pixel-level
semantic information for scene understanding tasks such
as object detection, semantic segmentation, and instance
segmentation. Additionally, it provides camera poses and
depth data to facilitate the study of geometric problems in
computer vision.

112758

The PASCAL VOC dataset [194] provides more than
20 object classes that can be used for handling potentially
moving objects, such as humans, cats, and dogs. This dataset
can be used to train segmentation networks for segmenting
dynamic objects. Compared to PASCAL VOC, the MS
COCO dataset [195] offers a larger number of categories
and instances, enabling models to better learn contextual
information. ShapeNet [196] is a large-scale 3D model
dataset that includes 3D models from various semantic
categories, making it suitable for part segmentation tasks.

The Bonn RGB-D dynamic dataset [197] provides rich
and complex dynamic data, including 24 highly dynamic
scenes. To apply data-driven methods to non-rigid 3D
reconstruction, DeepDeform [198] utilizes a semi-supervised
labeling approach and obtains a large dataset of 400 scenes,
consisting of over 390,000 RGB-D frames and 5,533 densely
aligned frame pairs. HRPSlam [199] is the first system
to capture dynamic RGB-D data using a humanoid robot,
simulating scenarios such as human walking with jitter or
falling. The provided dataset includes two complete loops
and can be used for evaluating global loop closure or local
reconstruction in dynamic environments. The Oxford-IHM
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dataset [200] uses multiple large objects as static obstacles
and records the walking trajectories of people in indoor
environments.

B. EVALUATION METRICS

In 3D reconstruction, the accuracy of the camera pose directly
affects the reconstruction accuracy, making it crucial to
evaluate pose accuracy. If the pose error is large, it can
cause the reconstructed model to be distorted or inaccurate,
thereby affecting the overall quality of the model. The metrics
for evaluating pose accuracy mainly include Relative Pose
Error (RPE), Absolute Pose Error (ATE), and Alignment
Error (AE). The overall quality of the reconstruction can
be measured by surface accuracy. Next, we will specifically
introduce these evaluation metrics.

Relative Pose Error (RPE): RPE measures the local
accuracy of the trajectory over a fixed time interval A. For
the estimated trajectory Py, ..., P, € SE(3) and the ground
truth trajectory Qy, ..., Q, € SE(3), the relative pose error
at time step i is given by:

-1
E=(07"0ira)  (P'Pira) (14)
From a sequence of n camera poses, we can obtain m =
n — A relative pose errors. The overall relative pose error is
evaluated by calculating the root mean square error (RMSE)
of the translation components across all time indices:
l m 1/2
RMSE(E1, A) = | — > [lrans(Ey)|? (15)
"
where trans(E;) represents the translation component of
the relative pose error E;. The Relative Pose Error is
an important metric for evaluating the local accuracy of
trajectory estimation. By comparing the relative motion over
a period of time, it effectively measures and analyzes the
system’s pose accuracy over short time intervals.

Absolute trajectory error (ATE): ATE provides a direct
numerical measure that intuitively reflects the algorithm’s
accuracy and the global consistency of the trajectory. When
calculating ATE, the trajectories are first aligned using the
Horn method [201], which finds the rigid body transforma-
tion S corresponding to the least-squares solution that maps
the estimated trajectory P; to the ground truth trajectory Q;.
After obtaining this transformation, the absolute trajectory
error F; at time step i can be computed as:

F;:= Q; 'SP, (16)

The Absolute Pose Error is evaluated by calculating the root
mean square error (RMSE) of the translation components
across all time indices:

1/2

1 n
RMSE(F10) := (= 3 ltrans(F7)|” (a7)
i=1

ATE can effectively measure the accuracy and consistency of
reconstruction systems, providing a standardized evaluation
tool for the comparison of different algorithms.

VOLUME 12, 2024

TABLE 4. Absolute Trajectory Error (ATE) of different algorithms on the
TUM dataset (m). The best results are in bold and the second best results
are in italics. The best results are in bold and the second best results are
in italics.

Method frl/desk  fr2/xyz  fr3/office  fr3/nst
DVO SLAM [74] 0.021 0.018 0.035 0.018
Kintinuous [7] 0.037 0.029 0.030 0.031
Voxelhashing [8] 0.023 0.022 0.023 0.087
ElasticFusion [10] 0.02 0.011 0.017 0.016
ORB-SLAM2 [83] 0.016 0.004 0.010 0.019
Redwood [9] 0.027 0.091 0.030 1.929
LC Reconstruction [122] 0.018 0.015 0.025 -
RGBDTAM [75] 0.027 0.004 0.027 0.016
Bundlefusion [11] 0.016 0.011 0.022 0.012
RH Reconstruction [203] 0.015 0.006 0.009 0.014
BAD SLAM [204] 0.017 0.011 0.017 0.019
ID-RGBDO [87] 0.051 0.007 0.038 0.018
Manhattanslam [22] 0.027 0.008 - -
Fastfusion [24] 0.018 0.012 0.024 -
Hbrf-fusion [25] 0.014 0.005 0.007 0.016
iMAP [23] 0.049 0.020 0.058 -
NICE-SLAM [26] 0.027 0.018 0.030 -
Co-SLAM [27] 0.024 0.017 0.024 -
NGEL-SLAM [133] 0.015 0.005 0.010 -

TABLE 5. Surface Accuracy of different algorithms on the ICL-NUIM
dataset (m). The best results are in bold and the second best results are
in italics.

Method Ir_kt0  1Ir_ktl Ir_kt2  Irk_kt3
KinectFusion [6] 0.071 0.144 0.216  0.359
DVO SLAM [74] 0.032 0.061 0.119 0.053
Kintinuous [7] 0.011  0.008 0.009 0.150
Voxelhashing [8] 0.014  0.004 0.018 0.120
Redwood [9] 0.020 0.020 0.013  0.022
ElasticFusion [10] 0.007  0.007 0.008 0.028
LC reconstruction [122]  0.013  0.011 0.001 0.014
Bundlefusion [11] 0.005 0.006  0.007 0.008
RH reconstruction [203]  0.004  0.005 0.004  0.006
Hbrf-fusion [25] 0.004 0.004 0.003 0.007

Alignment Error (AE): AE [202] is a comprehensive metric
that balances the effects of scale, rotation, and translational
drift on the trajectory. Suppose pi, ...,p, € R represent
the tracked positions from frame 1 to frame n. Let S C [1; n]
and E C [1; n] represent the frame indices for the start and
end segments, respectively, for which aligned ground truth
positions p € R? are provided. Independently aligning the
tracked trajectory with the start and end segments provides
two relative transformations:

. A2
T8 := arg min Z (Tpi - p,-) (18)
TeSim(3) 5

T8 := arg min Z (Tpi —[7,-)2 (19)

TeSim3) jcp

where Sim(3) represents the group of similarity transfor-
mations in three-dimensional space. The alignment error
between the tracked trajectories when aligned at the start and
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TABLE 6. Absolute Trajectory Error (ATE) of different algorithms on the TUM dataset (m). The best results are in bold and the second best results are in

italics.
Fr3_s_static  Fr3_s_xyz Fr3_s_half Fr3_w_static Fr3_w_xyz Fr3_w_half

ORB-SLAM?2 [83] 0.008 0.010 0.035 0.390 0.614 0.789
Co-fusion [32] - 0.027 - - 0.696 -
Staticfusion [33] 0.014 0.039 0.041 0.015 0.093 0.681
DynaSLAM [155] - 0.015 0.017 0.006 0.015 0.025
DS-SLAM [156] 0.007 - 0.015 0.008 0.025 0.303
Maskfusion [173] 0.021 0.031 0.052 0.035 0.104 0.106
ReFusion [197] 0.009 0.040 0.110 0.017 0.099 -
DM-SLAM [35] 0.006 - 0.018 0.008 0.015 0.027
RE-SLAM [36] 0.006 - - 0.007 0.018 0.027
PLD-SLAM [205] 0.006 0.009 0.015 0.007 0.014 0.026
MOSD-SLAM [206] 0.007 0.013 0.019 0.010 0.014 0.028
LC-CRF SLAM [162] - 0.013 0.026 0.028 0.020 0.030
SPON-SLAM [165] 0.009 0.009 0.015 0.011 0.016 0.036
RigidFusion [38] - 0.097 - - 0.195

ORB-SLAM3 [84] - 0.026 0.230 - 0.162 0.189
RS-SLAM [163] - 0.012 0.017 0.011 0.019 0.029
RTCB-SLAM [39] 0.006 0.012 0.017 0.016 0.014 0.023
DSV-SLAM [43] - 0.017 0.176 - 0.014 0.055
RTDSLAM [207] - 0.008 0.020 0.007 0.015 0.023
SEG-SLAM [157] 0.006 0.011 0.016 0.008 0.014 0.024
CPR-SLAM [208] - 0.011 0.022 0.010 0.016 0.049
DDN-SLAM [158] - 0.010 0.017 0.010 0.014 0.023

TABLE 7. Results of Relative Pose Error (RPE) in translation error for different algorithms on the TUM dataset (m/s). The best results are in bold and the

second best results are in italics.

Fr3_s_static  Fr3_s_xyz Fr3_s_half Fr3_w_static = Fr3_w_xyz Fr3_w_half
ORB-SLAM2 [83] 0.010 0.012 0.023 0.193 0.483 0.322
Co-fusion [32] - 0.027 - - 0.329 -
Staticfusion [33] - 0.028 0.030 0.013 0.121 0.207
Dynaslam [155] 0.013 0.015 0.019 0.009 0.022 0.028
RigidFusion [38] - 0.035 - - 0.134 -
DS-SLAM [156] 0.008 - - 0.010 0.033 0.030
Em-fusion [34] - 0.026 - - 0.060 -
Semantic SLAM [209] 0.009 - - 0.010 0.020 0.027
RS-SLAM [163] - 0.017 0.026 0.012 0.023 0.042
RTCB-SLAM [39] 0.007 0.014 0.022 0.014 0.018 0.024
RTDSLAM [207] - 0.021 0.036 0.010 0.021 0.024
CPR-SLAM [208] - 0.018 0.032 0.014 0.024 0.087
end segments is given by: [10], [11], [22], [23], [24], [25], [26], [27], [74], [75], [83],
[87], [122], [133], [203], [204].
) 1 < gt g 12 As shown in Table 4, we tested different algorithms on
Calign = n Z 175" pi — Te"pill (20) four sequences from the TUM dataset: frl/desk, fr2/xyz,

i=1

Surface accuracy: Surface accuracy measures the quality
of algorithmic reconstruction by calculating the distance
between the estimated surface and the ground truth surface.
For the distances of all vertices in the reconstruction, there
are five standard statistics: mean, median, standard deviation,
minimum and maximum. A smaller value for this indicator
indicates a better quality reconstruction.

1) EVALUATION IN STATIC SCENARIOS
In this section, we quantitatively compared the ATE and
surface accuracy of the following algorithms: [6], [7], [8], [9],
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fr3/office, and fr3/nst, and calculated the absolute trajectory
error (ATE) for each algorithm on this dataset. By comparing
the ATE results, we can assess the accuracy of the pose
estimation of the algorithms and thereby evaluate their
performance. The data in the Table is sourced from the
respective papers, where ““-”” indicates that the corresponding
data was not found in the paper. The results are reported
with three decimal places of precision. From the experimental
results, Hbrf-fusion [25] achieved the best results in the
fr1/desk and fr3/office scenes and also performed well in
the fr2/xyz and fr3/nst scenes. This is because it uses the
dynamic implicit Hermite radial basis function (HRBF) as a
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method for representing continuous surfaces, unlike explicit
methods such as Kintinuous [7], Voxelhashing [8], and
ElasticFusion [10]. Additionally, NGEL-SLAM [133], which
uses neural implicit representations, also achieved good
results in the frl/desk, fr2/xyz, and fr3/office scenes. The
results show that implicit representation methods can better
align reconstructed trajectories, reduce trajectory errors,
and thus improve reconstruction quality. For evaluating the
quality of surface reconstruction, the ICL-NUIM dataset
provides ground truth 3D models for generating virtual
scan sequences. We use the Ir_ktO, Ir_ktl, Ir_kt2, and
Ir_kt3 sequences from the living room scene in this dataset
as a benchmark for estimating the algorithm’s surface
reconstruction performance. The surface accuracy (median
distance) of each method is shown in Table 5. From the
experimental results, the implicit representation method
Hbrf-fusion [25] achieved the best results in the Ir_ktO
and Ir_kt1 scenes, and the second-best results in the Ir_kt2
and Ir_kt3 scenes. Its surface accuracy surpasses explicit
representation methods such as KinectFusion [6], DVO
SLAM [74], and Kintinuous [7]. The results indicate that
the implicit representation method used by Hbrf-fusion
can significantly reduce reconstruction errors and improve
surface accuracy.

2) EVALUATION IN DYNAMIC SCENARIOS

In this section, we quantitatively compared the ATE and RPE
of the following algorithms: [32], [33], [34], [35], [36], [38],
[39], [43], [83], [84], [155], [156], [157], [158], [163], [165],
[173], [197], [205], [206], [207], [208], [209].

We used dynamic sequences from the TUM dataset
to evaluate the performance of dynamic reconstruction
algorithms. The sequences in the sitting (s) category, where
two people are conversing at a desk, are used to assess
the robustness of the algorithms to slowly moving dynamic
objects. The sequences in the walking (w) category, where
two people are walking in an office scene, can be used
to evaluate the robustness of the algorithms to quickly
moving dynamic objects. Tables 6 and 7 respectively list
the performance of outstanding algorithms on the TUM
dataset in recent years. We use ATE and RPE as evaluation
metrics for the algorithms. In the tables, static, xyz, and
half represent different camera movement modes. The data
in the tables are sourced from the respective papers, where
“-” indicates that corresponding data was not found in the
paper. The results are reported with three decimal places of
precision. The best results are in bold and the second best
results are in italics. From the experimental results, with
the development of deep learning and the introduction of
semantic information, models can achieve excellent results
not only in low dynamic scenes such as Fr3_s_static,
Fr3_s_xyz, and Fr3_s_half but also in highly dynamic envi-
ronments like Fr3_w_static, Fr3_w_xyz, and Fr3_w_half,
obtaining accurate camera trajectories. Examples include
PLD-SLAM [205], RTCB-SLAM [39], RTDSLAM [207],
SEG-SLAM [157], and DDN-SLAM [158].
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VI. CONCLUSION
This study investigates and analyzes indoor scenes, classi-
fying them into static and dynamic scenes, and provides a
comprehensive survey of recent reconstruction algorithms.
For static scenes, we outline the general reconstruction pro-
cess and introduce various optimization algorithms employed
in each step. From the reviewed methods, it can be seen
that traditional static reconstruction tasks often use explicit
scene representations, such as voxels and surfels, which
enable real-time scene reconstruction but result in artifacts
and holes. This is due to the discontinuous nature of explicit
representation methods. The emergence of neural radiance
fields (NeRF) provides an implicit representation for 3D
reconstruction, making the scene representation more contin-
uous. However, because it requires densely sampling points in
space and using MLP to learn scene information, it consumes
a lot of training resources and time. Currently, to balance
training time and quality, a promising direction is to
combine explicit and implicit representations, such as Point-
NeRF [210], H>-Mapping [132], and NGEL-SLAM [133].
In contrast, dynamic scenes involve not only camera
motion but also other moving objects, which may interfere
with camera tracking. Therefore, for reconstructing dynamic
scenes, it is necessary to identify dynamic objects through
motion segmentation, eliminate or utilize dynamic features
for pose estimation, and integrate the scene data into the
reconstruction model. Currently, a popular approach is to use
deep learning methods to leverage semantic information of
the scene to segment dynamic objects, thereby improving
the quality of scene reconstruction. Additionally, NeRF also
provides a new direction for dynamic reconstruction. Because
NeRF uses MLP to represent the scene more continuously,
it can even fill in information that the camera has not
observed.
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