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ABSTRACT A fast and improved scale-invariant feature transform (SIFT) image stitching algorithm is
proposed based on texture classification to solve the problem of huge computational complexity. In the
preprocessing stage, the phase correlation algorithm is used to calculate the overlapping regions of the
images, and the structural similarity (SSIM) of the overlapping regions are calculated to avoid the impact
caused by inaccurate calculation of the phase correlation algorithm. Meanwhile, gradient based texture
classification method is used to avoid ineffective calculations in weak texture regions. A circular eight
regions descriptor structure was designed in the descriptor generation stage. And the sum of gradients in
five directions within each region was calculated to obtain a feature descriptor with a dimension of only 40.
The time of feature point matching was reduced due to the descriptors of lower dimensions. Further, a twice
matching method was proposed based on extreme value classification to reduce the time cost of feature point
matching. The experimental results show that compared to existing algorithms, this algorithm has the best
performance in terms of time cost and stitching quality in two datasets. Compared to the SIFT algorithm,
the time was reduced by 73.24% and 47.58%, the root mean square error (RMSE) was reduced by 94.87%
and 84.36%, the number of images with failed stitching has decreased by 93.35%. The proposed algorithm
significantly reduces the time cost and improves the quality of image stitching. The proposed algorithm has
certain application value in the field of real-time image stitching.

INDEX TERMS Scale-invariant feature transform (SIFT), texture classification, extreme value classifica-
tion, twice matching.

I. INTRODUCTION
Image stitching is a technique that calculates the transforma-
tion relationship between two or more images and fuses them
to obtain a larger field of scene. Image stitching is one of
the important research projects in the field of image process-
ing, widely used in super-resolution reconstruction, medical
detection, remote sensing, and other fields [1], [2], [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Orazio Gambino .

At present, feature-based image stitching algorithms have
better performance, such as Harris [4], features from accel-
erated segment test (FAST) [5] oriented FAST and rotated
BRIEF (ORB) [6], binary robust invariant scalable keypoints
(BRISK) [7], scale-invariant feature transform (SIFT) [8].
The SIFT algorithm has good invariance in rotation, scaling,
and affine transformations. The SIFT algorithm also achieves
good performance in accuracy and robustness, which can
effectively ensure the quality of image stitching. There-
fore, the SIFT algorithm has attracted the attention of many
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researchers. However, the computational complexity of the
SIFT algorithm is enormous, making it difficult to meet the
real-time requirements in engineering.

In recent years, numerous researchers have proposed solu-
tions from various stages of image stitching. Cai et al. [9]
combined edge detection to segment subregions with rich
edge information in the preprocessing stage, limiting the
region for feature point extraction. Li et al. [10] divided
the image to be stitched into four sub-blocks and calculated
similar sub-blocks through the normalized cross-correlation
coefficient of image energy. Liu et al. [11] and Li et al. [12]
divided image regions based on the similarity of shared
information between images. Shi et al. [13] calculated
the feature blocks of overlapping regions using the fuzzy
C-means algorithm. Liu et al. [14] determined the overlap-
ping regions of images using a binary tree model and the
BRISK algorithm. Li et al. [10], Liu et al. [11], Li et al. [12],
Shi et al. [13], and Liu et al. [14] all restricted the algorithm
to similar regions, reducing the computational region of the
algorithm. The methods of calculating similar sub-blocks
and overlapping regions can effectively reduce the computa-
tional regions required by the algorithm. However, the image
stitching effect will decrease when the calculation results are
inaccurate.

In the feature point matching stage, Yang et al. [15] used
the HSI color model to constrain the random sample con-
sensus (RANSAC) algorithm. Ma et al. [16] proposed a
guided local preservation matching method. Wang et al. [17]
used RANSAC algorithm for coarse matching and least
squares matching for fine matching. Kupfer et al. [18] lim-
ited the matching range of feature points by using their
information. Zhou et al. [19] reduced the dimensionality
of SIFT descriptor by using convolutional neural networks,
thereby reducing the data dimensionality in the matching
stage. Li et al. [20] have also limited the matching space
of feature points at the low-level pyramids started match-
ing from the high-level pyramids to achieve the matching
from rough to fine. Wang et al. [21] calculated the feature
blocks of images using the fuzzy C-Means algorithm and
combined the information of the feature blocks during the
matching stage to reduce the search space for feature point
matching. Gao et al. [22] the gridded BRISK method was
used to improve the efficiency of feature point matching.
Deng et al. [23] improved the accuracy and efficiency of
feature point matching by introducing block link constraints
and shape distortion constraints. Wang et al. [24] limited the
space for feature point search during matching by calculating
the coordinates of the image, thus accelerating the speed of
stitching. Zhang et al. [25] added genetic algorithm in the
feature point matching stage, which improved the efficiency
of feature point matching. An et al. [26] used cosine similar-
ity and bidirectional consistency detection for feature point
matching, reducing the time cost of the algorithm. At this
stage, in order to improve the efficiency of thematching stage,
existing algorithms usually combine the feature information

of the image to constrain the space of feature point search.
However, the efficiency of feature point matching will be
affected when the number of feature points is small and the
calculation of constraint relationships between feature points
is too complex.

The above researches have focused on improving the speed
of image stitching algorithms in one stage, so there are cer-
tain limitations to their improvement. To further improve
the speed of the algorithm, some researchers have made
improvements from multiple aspects. Wang et al. [27] used
phase correlation algorithms and texture classification to cal-
culate image overlapping regions and texture classification.
They also use the results of texture classification to limit the
space for feature point matching search. The speed of image
stitching has been accelerated in the preprocessing stage and
feature point matching stage. Chen et al. [28] used the Canny
edge detection operator to limit the range of feature point
detection, and designed an 18 dimensional circular descrip-
tor. Liu et al. [29] detected overlapping regions in images
and used the descriptor based on gradient normalization for
feature point matching. The above two teams have reduced
the time cost of the algorithm from two aspects preprocess-
ing and descriptor. Zhao et al. [30] optimized the number
of feature point extraction by changing the contrast thresh-
old of feature point extraction. Meanwhile, they eliminated
mismatches based on location information and RANSAC.
Liang et al. [31] made a design based on the characteristics of
FAST, weighted angular diffusion radial sampling (WADRS)
and matching method. This method can achieve fast regis-
tration while ensuring registration accuracy. Liu et al. [32]
downsampled the image to reduce the computational com-
plexity and the number of feature points. Meanwhile, using
MN-SIFT feature descriptors for feature point matching
reduces the time cost of the matching stage. Wu et al. [33]
used the SIFT-OCT algorithm for feature point extraction,
which reduced the number of feature points. In addition, the
efficiency and quality of matching had been improved using
arccos and fast sample consensus (FSC) algorithm [34] for
feature point matching. Zhao et al. [30], Liang et al. [31],
Liu et al. [32], and Wu et al. [33] have improved the speed
of the algorithm through two stages: feature point extraction
and matching. Through of Wang Yuhao and coworker’s [35]
efforts, a mask method was used for the algorithm to limit
the space for feature point extraction in the preprocessing
stage. Furthermore, they structured a smaller dimensional
descriptor and proposed a feature point matching method for
extreme value classification in the stages of descriptor and
feature point matching. This algorithm has achieved good
accuracy and efficiency. Tang et al. [36] calculate the over-
lapping regions of images by phase correlation algorithm.
They improved the feature point extraction method of the
SIFT algorithm, and limited the number of feature point
extraction. They also structured a feature descriptor with
only 56 dimensions. This algorithm greatly reduces the time
cost of high-resolution image stitching. Wang et al. [35] and

124184 VOLUME 12, 2024



Z. Tang et al.: Fast Image Stitching Algorithm Based on Texture Classification and Improved SIFT

Tang et al. [36] improved the efficiency of image stitching in
three stages. The improvements made in each stage of image
stitching in the above literature are shown in table 1.

TABLE 1. Improvement of image stitching algorithms by various
algorithms.

The image stitching algorithm’s speed has been better
enhanced from many aspect improvements. In the prepro-
cessing stage, current research typically requires independent
calculations for regions of interest or texture in images. How-
ever, the SIFT algorithm also requires calculating gradients,
which can reflect the strength of image textures. Therefore,
we would reduce the time cost of the preprocessing stage by
using image gradients for texture classification. Regarding
the construction of descriptors, current research is consider-
ing how to construct lower dimensions while ensuring the
accuracy of feature point matching. A descriptor with good
accuracy and lower dimensions was designed. In the feature
point matching stage, the research focus is on how to have
good matching accuracy and less time cost. On the basis of
reference [35], we propose a simple and fast feature point
matching method, and use FSC algorithm for fine matching,
achieving good stitching quality and efficiency. We com-
pared it with the current researches in the three stages of
our improvement. The experimental results show that the
proposed algorithm has the lowest time cost and good per-
formance in each stage. In summary, the SIFT algorithm
has been improved in three stages, and the main work is as
follows:

(1) In the preprocessing stage, the phase correla-
tion algorithm was used to calculate the overlapping
regions of the images. Then, the structural similarity (SSIM)
[37] of the overlapping regions calculated to ensure the accu-
racy of the phase correlation algorithm calculation. Next, the
overlapping regions are divided into complex texture regions
and weak texture regions based on gradients. And the compu-
tational space of the SIFT algorithm was limited to complex
texture regions, which thereby reducing the computation of
useless regions.

(2) In the descriptor generation stage, we designed a circu-
lar descriptor with only 40 dimensions. This descriptor has
good matching performance, which effectively reduces the
time cost of feature point matching stage.

(3) In the feature matching stage, a twice matching method
based on extreme value classification was proposed, and the
FSC algorithm was used for fine matching. This method
achieved better matching results and the time overhead was
reduced.

This paper is organized as follows. Section II shows
the steps and principles of the SIFT algorithm. Section III
introduces the proposed algorithm, detailing the prepro-
cessing method, descriptor structure, and feature point
matching method. Section IV introduces the experimental
datasets, platform, and analyzes the parameter settings of the
algorithm. Section V presents objective evaluation indica-
tors and analyzes algorithm performance. Finally, Section VI
makes a summary of this paper.

II. SIFT IMAGE STITCHING ALGORITHM
The flowchart of the SIFT image stitching algorithm is
shown in figure 1. Firstly, the SIFT algorithm extracts spatial
extremum points in the scale space. Then, unstable edge
response points and extreme points of poorer contrast are
removed to obtain the keypoints of the image. Next, generate
descriptors for keypoints to represent the image information
around them. Finally, match the feature points and calculate
the correspondence between images for image fusion.

FIGURE 1. Flow chart of SIFT image stitching algorithm.

A. EXTRACTING OF SPATIAL EXTREME POINTS
The image is downsampled to obtain images of different
sizes. And convolve the images using a Gaussian filter to
obtain a Gaussian pyramid, as follows:

L(x, y, σ ) = G(x, y, σ ) ⊗ I (x, y) (1)

where, I(x, y) represents the input image,G(x, y, σ ) represents
the Gaussian filter. The Gaussian filter is as follows:

G(x, y, σ ) =
1

2πσ 2 e
−

(x−m/2)2+(y−n/2)2

2σ2 (2)
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where, σ denotes the standard deviation of the normal dis-
tribution, m and n are the size of the Gaussian filter, and x
and y are the positions of the corresponding elements of the
Gaussian filter.

Then, subtract between two adjacent layers of an octave
of Gaussian pyramids to obtain the difference of Gaussian
(DOG), as follows:

D(x, y, σ ) = L(x, y, kσ ) − L(x, y, σ ) (3)

where, L(x, y, kσ ) from formula (1), k represents the scale
factor of two scale spaces. The DOG model is shown in
figure 2.

FIGURE 2. DOG model.

Next, search for local extremum points after establishing
the DOG. As shown in figure 3, compare any point (x, y) with
all points in a 3 × 3 × 3 region centered on that point, it is
a local extreme point when the value of point (x, y) is the
maximum or minimum value.

B. REMOVING UNSTABLE EDGE RESPONSE POINTS AND
EXTREME POINTS OF POORER CONTRAST
The extreme points of low and the edge response points of
poor stability contrast need to be further removed after the
extreme points are obtained.

Calculate the D(X̂ ) value of the extreme point, and the
calculation formula is as follows:

D(X̂ ) = D+
1
2

∂DT

∂X0
X̂ (4)

where, X̂ = (x, y, σ )T denotes the center offset of the relative
interpolation,D denotes the first term of the Taylor expansion

FIGURE 3. Search for local extremum points.

of the spatial scale function D(x, y,σ ) at the extreme point.
Then, all extreme with a value of D(X̂ ) less than 0.03 were
discarded to obtain more stable extreme points.

The location and scale of a feature point can be pinpointed
accurately by a Hessian matrix, which can be expressed as:

H =

[
Dxx Dxy
Dxy Dyy

]
(5)

Then, the stability of the point is presented by the following
formula:

stability =
(Dxx + Dyy)2

DxxDyy − D2
xy

<
(r + 1)2

r
(6)

where, r represents the parameter which controls feature
value. Remove all points that do not conform to formula (6).

C. DESCRIPTOR GENERATION
For the SIFT operator to be rotated invariant, the main direc-
tion of the keypoints needs to be determined by the following
formula:

m(x, y) =√
(L(x + 1, y) − L(x − 1, y))2 + (L(x, y+ 1)−L(x, y− 1))2

(7)

θ (x, y) = arctan(
L(x, y+ 1) − L(x, y− 1)
L(x + 1, y) − L(x − 1, y)

) (8)

where L represents the scale space value of the keypoints, and
formulas (7) and (8) are the corresponding gradient modulus
value and direction, respectively. The direction of the max-
imum is the main direction. In addition, if the direction is
greater than 80% of the maximum value, set them as sec-
ondary directions for the keypoints. All main and secondary
directions will be retained as separate feature points.

Then, the pixels around the feature points are rotated to
the corresponding direction to ensure the invariance of the
descriptor direction. As shown in figure 4, the rotated region
is divided and the cumulative gradient is calculated in eight
directions of each subregion to form a 128 dimensional
feature descriptor.
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FIGURE 4. Descriptor of SIFT.

D. FEATURE POINTS MATCHING
Feature points need to be matched after generating descrip-
tors. The SIFT algorithm needs to calculate the distance
between feature point descriptors between two images during
matching, and the calculation formula is as follows:

d(i, j) =

√√√√ n∑
k=1

(xi(k) − yj(k))2 (9)

where d(i, j) represents the distance between the i-th feature
point in the first image and the j-th feature point in the second
image, n represents the dimension of the descriptor, and xi(k)
and yj(k) denote the descriptors of the i-th and j-th feature
points in the two images, respectively.

III. PROPOSED METHOD
The main work is to improve the efficiency of the SIFT
algorithm through multiple stages of improvement. The
algorithm flowchart is shown in figure 5. Firstly, in order to
reduce unnecessary calculations in non-overlapping regions
in subsequent processes, phase correlation algorithm was
used to calculate the overlapping regions between the images
to be stitched. But the SSIM of the overlapping regions
(SSIMo) were calculated to ensure the accuracy of the phase
correlation algorithm. When the SSIMo is greater than or
equal to the set threshold Tp, it indicates that the phase
correlation algorithm calculates accurately. And subsequent
algorithms use the images of the overlapping regions. Other-
wise, if the phase correlation algorithm calculates incorrectly,
subsequent algorithms will use the original images. Then,
the image is divided into complex texture regions and weak
texture regions based on the gradient of the image. And fur-
ther limit the SIFT algorithm’s calculation in complex texture
regions, which thereby avoids the SIFT algorithm from per-
forming calculations in regions where feature points cannot
be effectively extracted. Subsequently, feature point detection
and descriptor generation were performed on complex texture

regions. In the descriptor generation stage, a circular eight
regions descriptor structure was designed, and the sum of
gradients in five directions within each region was calculated
to obtain a feature descriptor with a dimension of only 40.
Descriptors of lower dimensions reduce the time of feature
point matching. Next, in the feature point matching stage,
a twice matching method based on extreme value classifi-
cation is proposed, which effectively reduces the time cost
of the feature point matching stage by performing extreme
value classification and twice matching on the feature points.
Finally, use the FSC algorithm for fine matching and calcu-
late the projection transformation matrix to complete image
fusion.

FIGURE 5. Algorithm flow chart.

A. PHASE CORRELATION ALGORITHM AND SSIM
The phase correlation algorithm can effectively calculate
the overlapping regions between images, which can reduce
ineffective calculations in non-overlapping regions. However,
phase correlation algorithms can only calculate the offset
between images. The calculation results of phase correla-
tion algorithms may be inaccurate when there are complex
image transformations between images. Therefore, in order
to determine the images to be used by subsequent algo-
rithms, we calculate the SSIM of the overlapping regions

VOLUME 12, 2024 124187



Z. Tang et al.: Fast Image Stitching Algorithm Based on Texture Classification and Improved SIFT

(SSIMo) after calculating the phase correlation algorithm.
When SSIMo is greater than or equal to the set threshold
Tp(0.52), subsequent algorithms use images of overlapping
regions. Otherwise, subsequent algorithms will use the orig-
inal image. This method can effectively avoid the impact of
inaccurate calculation by phase correlation algorithms. The
formula for this method is described as follows:

fs =

{
fov Oov ≥ Tp
for Oov < Tp

(10)

where, fs is the images used by subsequent algorithms, fov
represents the images of the overlapping regions, for repre-
sents the original images, Tp is the set threshold.

1) PHASE CORRELATION ALGORITHM
The principle of phase correlation algorithm is as follows.
The phase correlation algorithm transforms two images
into the frequency domain, and then uses the normalized
cross power spectrum to calculate the translation parameters
between the images. If there is shift (x0, y0) in part of the two
images, that is,

f2(x, y) = f1(x − x0, y− y0) (11)

Then, use Fourier transform to transform the two images into
the frequency domain to obtain F1(µ, v) and F2(µ, v). At this
time, the relationship between images is:

F2(µ, v) = e−j(µx0−vy0)F1(µ, v) (12)

The cross-power spectra of F1 and F2 is:

F∗

1 (µ, v)F2(µ, v)∣∣F∗

1 (µ, v)F2(µ, v)
∣∣ = e−j(µx0−vy0) (13)

Inverse Fourier transform is performed on the right side
of the above formula to obtain the impact response function
δ(x − x0, y-y0), search for the point (x0, y0) corresponding
to the maximum value of A. (x0, y0) is the optimal trans-
lation amount between images, thus obtaining the range of
overlapping regions.

2) SSIM
The calculation formula for SSIM is as follows:

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)
(14)

whereµx andµy represent the average grayscale values of the
two images, σx and σy represent the standard deviation of the
grayscale values of the two images, σxy denotes the covari-
ance of the two images, C1 and C2 are constants. The larger
the SSIM, the greater the similarity of the image and the
smaller the difference. The setting of the threshold for SSIM
of overlapping regions will be discussed in the next section.

3) TEXTURE CLASSIFICATION BASED ON GRADIENT
Feature points would be extracted in the overlapping regions
after obtaining the overlapping regions of the images. How-
ever, not all overlapping regions can effectively extract
feature points. Typically, feature points are distributed in
complex texture regions, while it is difficult to extract feature
points in weak texture regions [27], [28], [35], [38], [39].
Therefore, texture classification of images can further reduce
the useless computational regions of subsequent algorithms.
The current calculation methods for texture classification
require separate algorithm design, which adds some addi-
tional time overhead. However, the SIFT algorithm calculates
corresponding gradient during the calculation process, and
gradient can effectively reflect the texture changes of the
image. Therefore, we will use gradient for texture classifi-
cation to reduce unnecessary time overhead. The calculation
formula for image gradient is as follows:

G =

√
(f (x, y) ⊗ Sx)2 + (f (x, y) ⊗ Sy)2 (15)

where, f(x, y) represents the original image, ⊗ represents
convolution, Sx and Sy denote the horizontal and vertical
directions of the Sobel operator, respectively. The Sobel
operator is shown in formulas (16) and (17).

Sx =

 −2 0 2
−1 0 1
−2 0 2

 (16)

Sy =

 −2 −1 −2
0 0 0
2 1 2

 (17)

The gradient corresponding to figure 6 (a) is shown in
figure 6 (b). It can be seen from figure 6 (b) that regions with
larger gradients in the image correspond to complex texture
regions in figure 6 (a), while regions with smaller gradients
correspond to weak texture regions. This indicates that the
gradient changes of the image can effectively reflect the
changes of image texture. Therefore, the method of texture
classification based on gradient is feasible. We divide the
image into complex texture and weak texture regions using
the threshold Tt . The formula of texture classification based
on gradient is described as follows:

ftc(x, y) =

{
1 G(x, y) ≥ Tt
0 G(x, y) < Tt

(18)

where, ftc is the image for texture classification,G(x, y) is the
gradient in the corresponding position of the image, and Tt is
the set threshold. 1 and 0 represent complex texture regions
and weak texture regions, respectively.

The image for texture classification is shown in figure 6 (c)
(white represents complex texture regions, and black rep-
resents weak texture regions), the result of using threshold
directly for texture classification exists independently in pixel
units. Due to the fact that the SIFT algorithm needs to detect a
region of 3×3× 3 for extreme point detection, directly estab-
lishing a Gaussian pyramid based on this classification result
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FIGURE 6. Results of texture classification: (a) original image; (b) corresponding gradient image; (c) the results of texture classification; (d) the
result of texture classification after dilation operation.

will not be conducive to subsequent extreme point detection.
In addition, the methods in references [38], [39] all employ
texture classification based on 5 pixels× 5 pixels sub-blocks.
Therefore, we apply dilation processing on complex texture
regions on the basis of threshold classification. The dilation
process is as follows:

f ⊕ se = {x : se(x) ∩ f ̸= ∅} (19)

where, f is the dilated image, se is the structural element, and
the structural element used is a 5 pixels × 5 pixels square.
The result of dilatation operation is shown in figure 6 (d),
where there are no isolated points in the dilated region, and
it is more continuous overall. After texture classification is
completed, feature points will be extracted in complex texture

regions. The threshold setting for texture classificationwill be
discussed in the next section.

4) IMPROVED DESCRIPTOR
The corresponding descriptor needs to be calculated after the
feature point extraction is completed. The SIFT algorithm
needs to calculate the cumulative sum of gradients in 8 direc-
tions (45o being one direction) of a 4 × 4 region to obtain
a descriptor with 128 dimensions. Descriptor with larger
dimensions result in a higher time cost for feature point
matching. The calculation range of the descriptor in the SIFT
algorithm is a square region.When the SIFT algorithm rotates
the calculation region to the main direction of the feature
points, there will be a problem of inconsistent calculation
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range of the descriptor [40]. In response to the above problem,
this paper proposes a descriptor with a circular structure
(radius of 6σ ), as shown in figure 7. And we only calculated
the cumulative sum of gradients in 5 directions for each
region to further reduce the dimension of the descriptor. The
construction method of descriptors is as follows: Establish
double concentric circles with feature point as pole point and
R1, R2 as polar radius, the ratio of R1 to R2 is 0.6. Then,
the two concentric circles are divided into 4 equal parts to
generate 8 regions. Finally, the cumulative sum of gradients
in 5 directions for each region is calculated as descriptors for
feature points. The number of directions for the cumulative
sum of gradients, the ratio of R1 and R2, and the radius of the
circle will be discussed in the next section.

FIGURE 7. The structure of descriptor.

5) TWICE MATCHING METHOD BASED ON EXTREME VALUE
CLASSIFICATION
In response to the problem of high time cost in feature
point matching stage, reference [35] divides feature points
into two categories based on whether they are maxima or
minima during feature point extraction, and restricts the
matching search space to the same category during thematch-
ing stage. Simple labeling achieved good matching accuracy
and efficiency. According to formula (9), it is necessary to
calculate the distance between the complete descriptors when
calculating the distance between two feature points, which
inevitably leads to an increase in the time cost of the matching
stage.

To further improve the efficiency of the matching stage,
we proposed a twice matching method based on refer-
ence [35]. The specificmethod is as follows: firstly, divide the
descriptors into two equal parts (corresponding to the inner
and outer ring regions of the double ring descriptors), and
calculate the distance between the first part for the descriptors
of the two feature points. If it is greater than or equal to the
set threshold, the difference between the currently calculated

feature points is significant, and the current feature points
do not match. If the distance is less than the set thresh-
old, calculate the distance between the second part of the
descriptors. Then, add up the descriptor distances of the two
parts to obtain the final descriptor distance. Finally, deter-
mine the matching of feature points based on the nearest
neighbor distance ratio (NNDR) and FSC algorithm. The
formula for calculating the distance between descriptors is as
follows:

d1(i, j) =

√√√√ n/2∑
k=1

(xi(k) − yj(k))2 (20)

d(i, j) =

√√√√ n∑
k=n/2+1

(xi(k) − yj(k))2 + d1(i, j)d1(i, j) < Td

(21)

where, d1(i, j) represents the distance between the first half of
the descriptor, and Td denotes the set threshold. The setting
of thresholds will be discussed in the next section.

IV. DATASETS AND ANALYSIS OF ALGORITHM
PARAMETERS
A. DATASETS AND PLATFORM
Dataset 1: The dataset we collected, this dataset contains
150 pairs of images from mobile phones and digital cameras,
including scenes of buildings, mountains, cities, rivers, farm-
land, etc. The images have rigid or affine transformations,
and the image sizes range from 1400 pixels×1700 pixels to
2040 pixels×2040 pixels.

Dataset 2: This dataset is sourced from the Kaggle
website [41]. This dataset contains 1582 pairs of images,
including scenes such as buildings, roads, and vehicles. The
images have rigid or affine transformations, and the images
size are 1920 pixels× 1080 pixels.
We randomly selected 80% of the images in dataset 1 as

the training set, and used 5-fold cross validation method
to calculate the relevant parameters in the training set. The
remaining 20% of images in dataset 1 and the images in
dataset 2 are used as the testing set.

In addition, the implementation platform for the pro-
posed algorithm and all compared algorithms is a 64 bit
Windows 11 operating system with a CPU of Intel(R) Core
(TM) i7-12700F 2.10 GHz and 16 GB RAM.

B. ANALYSIS OF ALGORITHM PARAMETERS
1) ANALYSIS OF THE THRESHOLD FOR SSIM IN
OVERLAPPING REGIONS
In order to obtain the threshold for SSIM in the overlapping
regions, different thresholds are set to determine whether
subsequent algorithms use images of the overlapping regions
(the images of the overlapping regions are used when greater
than or equal to the threshold). And calculate the number of
successfully stitched images, as shown in figure 8. It can be
seen from figure 8 that as the threshold increases, the number
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FIGURE 8. The effect of the threshold for SSIM on image stitching: (a) training set; (b) validation set.

of successfully stitched images gradually increases on both
the training and validation sets. The results calculated by the
phase correlation algorithm are inaccurate when the SSIM
of the overlapping regions is small, which results in fewer
successful image stitching. As the threshold increases, the
requirement for SSIM in the overlapping regions of the image
gradually increases, which effectively reduce the impact of
inaccurate phase correlation algorithm calculations. When
the threshold is greater than or equal to 0.52, the number
of successfully stitched images remains unchanged. When
the SSIM of the overlapping regions is greater than or equal
to 0.52, the result calculated using the phase correlation
algorithm is accurate. Therefore, we set the threshold for
SSIM of the overlapping regions to 0.52.

2) ANALYSIS OF THRESHOLD FOR GRADIENT BASED
TEXTURE CLASSIFICATION
To obtain the specific threshold for texture classification,
different thresholds are set for texture classification after
calculating the overlapping regions. Andwe calculate the pro-
portion of complex texture regions, the proportion of feature
points in complex texture regions and the corresponding gra-
dient, as shown in figure 9. According to figures 9 (a) and (b),
it can be seen that on both the training and validation sets,
the proportion for the number of feature points gradually
decreases with the increase of threshold, and the decreas-
ing trend gradually increases. Figures 9 (c) and (d) show
the gradient corresponding to figures 9 (a) and (b). It can
be seen from figures 9 (c) and (d) that the overall gra-
dient shows a decreasing trend, and the trend gradually
increases. The gradient decreases more significantly when
the threshold is greater than or equal to 0.085. It can be
seen from figures 9 (e) and (f) that the proportion of complex
texture regions gradually decreases as the threshold increases,
and the decreasing trend gradually slows down. When the

threshold is 0.085, the proportions of five cross validations
on the training and validation sets are higher than 0.9 in terms
for the proportion of feature points, and the average value
are higher than 0.92. In terms of the proportion of complex
texture regions, all five cross validations were less than 0.5 on
the training set. On the validation set, four cross validations
were less than 0.5, one cross validation was 0.58, and the
average of five cross validations was below 0.5. When the
threshold is 0.085, it reduces a few feature points, but also
greatly reduces the complex texture regions. For the SIFT
algorithm, reducing the number of feature points has minimal
impact on image stitching, but reducing the computational
region by half has a significant impact on algorithm speed.
Therefore, we set the threshold for texture classification
to 0.085.

3) ANALYSIS OF DESCRIPTOR STRUCTURE PARAMETERS
The impact of different number of ring divisions and the ratio
of inner ring radius (ratio ofR1 toR2) on the averagematching
rate was calculated, as shown in figure 10. It can be seen from
figure 10 that on both the training and validation sets, the
five cross validations and their average values perform poorly
when the number of ring divisions is 2 and 3. The results are
close and with a small difference when the number of ring
divisions reaches 4-8. Therefore, we set the number of ring
divisions to 4. Observing the line segments with a number of
ring divisions, only the fifth cross validation on the validation
set reaches its maximum value when the ratio of R1 to R2
is 0.7. The remaining 9 cross validations all reached their
maximum value when the ratio of R1 to R2 was 0.6, and the
average values of the validation set and training set reached
their maximum value when the ratio of R1 to R2 was 0.6.
Therefore, we set the ratio of R1 to R2 to 0.6.
After determining the structure of the descriptor, the influ-

ence of the number of directions on the matching rate
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FIGURE 9. The effect of gradient threshold on the region of complex texture regions: (a), (c) and (e) training set; (b), (d) and
(f) validation set.
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FIGURE 10. The influence of the equal fraction of the ring and the ratio of R1 and R2: (a), (c), (e), (g), (i) and (k) training set;
(b), (d), (f), (h), (j) and (l) validation set.
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FIGURE 10. (Continued.) The influence of the equal fraction of the ring and the ratio of R1 and R2: (a), (c), (e), (g), (i) and
(k) training set; (b), (d), (f), (h), (j) and (l) validation set.
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FIGURE 11. The influence of the number of directions in the cumulative sum of statistical gradients: (a) and (c) training set;
(b) and (d) validation set.

and feature point matching time was analyzed to obtain
the number of directions for the cumulative gradient sum,
and the results are shown in figure 11. As shown in
figures 11 (a) and (b), the average matching rate of all cross
validations shows a trend of first increasing and then sta-
bilizing with the increase of the number of directions, and
tends to stabilize after the number of directions reaches 5.
It indicates that the improvement in feature point matching
rate is relatively small after the number of directions reaches
5. Figures 11 (c) and (d) show that the time for all cross vali-
dation increases with the increase of the number of directions.
This indicates that the larger the dimension of the feature
descriptor, the greater the time cost of feature point matching.
Therefore, we set the number of directions for the cumulative
gradient sum to 5. At this time, the feature point matching
rate is good, and the subsequent increase in the number of

directions has a smaller impact on the feature point matching
rate, and its time cost is relatively small.

In addition, it is necessary to further determine the calcu-
lation range of the descriptor. Figure 12 shows the impact
of different corresponding scale multiples of feature points
on matching rate and descriptor generation time. It can be
seen from figures 12 (a) and (b) that as the calculation range
increases, the average matching rate of all cross validations
first increases and then decreases. The average matching rate
achieves good results when the corresponding scale multiples
of feature points reaches 6. Figures 12 (c) and (d) show that
as the calculation range increases, the descriptor generation
time significantly increases. Therefore, we set the descriptor
calculation range to sixfold the corresponding scale of feature
points, which has a better matching rate and smaller time
cost.
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FIGURE 12. The impact of descriptor calculation range: (a) and (c) training set; (b) and (d) validation set.

4) ANALYSIS OF THRESHOLD FOR TWICE MATCHING
METHOD BASED ON EXTREME VALUE CLASSIFICATION
To obtain the threshold for initial matching in twice matching
methods, we analyzed the influence of different thresholds
on the average matching rate and feature point matching
time, and the results are shown in figure 13. It can be seen
from figures 13 (a) and (b) that as the threshold increases,
the average matching of all cross validations first increases
and then stabilizes. When the threshold for initial matching
reached 0.33, the average matching rate of all cross vali-
dations remained stable, with minimal subsequent changes.
This indicates that the impact of the threshold on feature
point matching is minimal when the threshold reaches 0.33.
Figures 13 (c) and (d) show that as the threshold increases,
its time cost gradually increases. It indicates that the larger

the threshold, the fewer erroneous matches are removed,
resulting in an increase in the number of second matches.
In summary, we set the threshold for initial matching to
0.33, which results in a better matching rate and lower time
cost.

V. EXPERIMENT RESULTS AND DISCUSSION
A. OBJECTIVE EVALUATION INDICATORS
To evaluate the quality of image stitching, we used SSIM,
peak signal to noise ratio (PSNR) and root mean squared error
(RMSE) [42] for evaluation.

The calculation formula for PSNR is as follows:

PSNR = 10 log10(
2bits − 1
MSE

) (22)
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FIGURE 13. The influence of different initial matching thresholds: (a) and (c) training set; (b) and (d) validation set.

MSE =
1
MN

M∑
x=1

N∑
y=1

[f1(x, y) − f2(x, y)]2 (23)

In formula (22), bits represents the bit depth of the pixel value
(its value is 8), MSE denotes the mean square error of two
images, and the calculation formula for MSE is shown in
formula (23). In formula (23), M and N represent the size
of the image, f1 and f2 represent two images. The larger the
SSIM and PSNR, the greater the similarity of the image and
the smaller the difference.

The calculation formula for RMSE is as follows:

RMSE =

√√√√ 1
N

N∑
i=1

(1xi)2 + (1yi)2 (24)

where N is the number of evaluated points, and 1xi and
1yi are the residual differences of the i-thcheckpoint pair in
the x and y directions. The smaller the RMSE, the smaller the
error in image registration.

B. ANALYSIS OF PREPROCESSING METHODS
We conducted experiments on the testing set to analyze the
effectiveness of the proposed algorithm in the preprocessing
stage. We used SIFT algorithm, SIFT + phase correlation
algorithm, the algorithm of reference [27] (phase correla-
tion algorithm + 5 × 5 sub-block texture classification),
and the proposed algorithm for feature point extraction.
Then, we used the descriptor of SIFT algorithm and the
NNDR + RANSAC method for feature point matching. It is
worth noting that images that fail to be stitched are not
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TABLE 2. Comparative analysis of feature point extraction methods in dataset 1.

TABLE 3. Comparative analysis of feature point extraction methods in dataset 2.

TABLE 4. Comparison of descriptors in dataset 1.

TABLE 5. Comparison of descriptors in dataset 2.

subjected to statistical calculations, and the results are shown
in tables 2 and 3.

It can be seen from tables 2 and 3 that the proposed
algorithm and SIFT algorithm have the least number of
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TABLE 6. Comparison of matching methods in dataset 1.

TABLE 7. Comparison of matching methods in dataset 2.

failures, indicating that the proposed algorithm effectively
avoids the impact of inaccurate phase correlation calculation
by calculating the SSIM of the overlapping regions. In terms
of preprocessing time, the average values of the algorithms
proposed on the two datasets increased by 0.0454 seconds
and 0.0390 seconds respectively compared to the SIFT +

phase correlation algorithm. The proposed algorithm only
takes 0.0454 seconds and 0.0390 seconds to complete tex-
ture classification, which is only 35.97% and 28.91% of
the algorithms of reference [27]. This indicates that the
proposed algorithm effectively utilizes the gradients in the
SIFT algorithm calculation process, reducing the time cost
of texture classification. Meanwhile, the proposed algorithm
has the minimum standard deviation, indicating that the time
required for classifying different image textures is relatively
stable. The proposed algorithm has the minimum mean and
standard deviation in terms of feature point extraction time.
It is proved that the proposed algorithm effectively reduces
the computational region of the SIFT algorithm and has
good stability. In terms of the average number of feature
points, the SIFT algorithm has the highest number, followed
by the SIFT + phase correlation algorithm. It is indicated
that the phase correlation algorithm effectively reduces the
number of feature points in non-overlapping regions. The
algorithm of reference [27] and the proposed algorithm have

fewer feature points, indicating that although the texture
classification method reduces the region calculated by the
SIFT algorithm. However, the slightly reduces the number
of extractable feature points. Combining the two datasets,
the algorithm proposed has the best performance in terms
of average matching rate. This indicates that the proposed
algorithm extracts more accurate and stable feature points.
In terms of its standard deviation, the SIFT algorithm per-
forms better, while the proposed algorithm has relatively
large numerical values. However, the proposed algorithm
is significantly better than the SIFT algorithm in terms of
mean, so the feature point matching rate extracted by the
proposed algorithm performs the best. In summary, in the pre-
processing stage, the proposed algorithm effectively utilizes
the gradients of the image, completing texture classification
in only 0.0454 seconds and 0.0390 seconds. The feature point
extraction time is shorter, and the extracted feature points
have the best matching rate. This indicates that the proposed
algorithm is more accurate, fast and effective.

C. ANALYSIS OF DESCRIPTORS
We conducted experiments on the testing set to analyze the
effectiveness of the proposed descriptor. On the basis of
using the proposed algorithm to extract feature points, the

VOLUME 12, 2024 124199



Z. Tang et al.: Fast Image Stitching Algorithm Based on Texture Classification and Improved SIFT

FIGURE 14. Images to be stitched: (a) and (b) bridge; (c) and (d) mountain range;(e) and (f) building.

descriptors of SIFT, reference [28], [35], [36] and the pro-
posed algorithm were used for descriptor generation. Then,
the NNDR + RANSAC method was used for feature point

matching. Similarly, images that failed to be stitched were not
subjected to statistical calculations, and the results are shown
in tables 4 and 5.
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TABLE 8. Comparison of algorithm times.

According to tables 4 and 5, the proposed descriptor has
the least number of failures, indicating that it can better
describe image information. In terms of the time for descrip-
tor generation, the generation time is longer due to the fact
that all descriptors except SIFT are circular descriptors. The
descriptor generation time of references [28] and [36] is
longer due to the larger calculation range and construction
method of more complex. The generation time of refer-
ence [35] and the proposed descriptor is close, with both
having shorter descriptor generation times. In terms of the
standard deviation for descriptor generation time, the small
standard deviation of the proposed algorithm indicates that
the fluctuation of descriptor generation time for different
images is relatively small. In terms of feature point matching
time, the mean and standard deviation are the smallest for
descriptor of reference [28] due to the smallest dimension.
The proposed descriptor is only slightly higher than that of

reference [28]. Combining the times of descriptor generation
and feature point matching, the proposed descriptor has the
least comprehensive time. This indicates that the proposed
descriptor is structurally simple and has a smaller dimension.
Combining the matching rate, SSIM, PSNR, and the number
of failures. The descriptor of SIFT algorithm has the best
matching rate, but it has a higher number of failures, poorer
SSIM and PSNR. This indicates that there are many incorrect
matches in the descriptor of the SIFT algorithm, resulting in
an increase in the number of failures and a decrease in image
quality. The proposed descriptor has good matching rate,
SSIM and PSNR, as well as the lowest number of failures.
This indicates that the proposed descriptor can accurately
describe image information and avoid incorrect matching.
In summary, the proposed descriptor has a simple construc-
tion and small dimensions. It can accurately describe the
information of images, which is more conducive to feature
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FIGURE 15. The result of feature point matching (The red line indicates incorrect matches, while the blue line indicates correct matches): (a) SIFT;
(b) reference [27];(c) reference [28]; (d) reference [33]; (e) reference [35]; (f) reference [36]; (g) Proposed algorithm.

point matching and has good matching performance and
efficiency.

D. ANALYSIS OF MATCHING METHODS
On the basis of extracting feature points and gener-
ating descriptors using the proposed algorithm, feature
points matching was performed using NNDR + RANSAC,

NNDR+ FSC, reference [35] (extreme value classification+

FSC), proposed algorithm + RANSAC, and proposed
algorithm + FSC, respectively. Similarly, images that failed
to be stitched were not subjected to statistical calculations,
the experimental results of the testing set are shown in
tables 6 and 7.

Tables 6 and 7 shows that the NNDR + FSC algorithm
has a longer feature point matching time and lower matching
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FIGURE 16. Results of image stitching: (a) SIFT; (b) reference [27];(c) reference [28]; (d) reference [33]; (e) reference [35]; (f) reference [36];
(g) Proposed algorithm.
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FIGURE 16. (Continued.) Results of image stitching: (a) SIFT; (b) reference [27]; (c) reference [28]; (d) reference [33]; (e) reference [35]; (f) reference [36];
(g) Proposed algorithm.

rate compared to the NNDR + RANSAC algorithm. But
the performances of the number of failures, SSIM, PSNR,
and RMSE are significantly better. This indicates that FSC
algorithm has a higher time cost, but it can extract more
accurate feature point matching results, thereby improving
the quality of image stitching. Compared to the NNDR +

FSC algorithm, the algorithm of reference [35] needs to
classify the feature points in the feature point extraction
stage. Therefore, there will be additional time overhead,
but it only increases the time by 0.0035-0.0042 seconds.
In terms of feature point matching time, the algorithm in
reference [35] has significantly lower time overhead than
the NNDR + FSC algorithm, which indicated that the sim-
ple extreme value classification can effectively reduce the
time for feature point matching. In addition, in terms of
matching rate, SSIM, PSNR and RMSE, the algorithm of
reference [35] has similar performance to NNRD + FSC,
indicating that the algorithm of reference [35] also has better
stitching quality. Therefore, the algorithm of reference [35]
has faster efficiency and better image stitching quality. Due to
the fact that the proposed algorithm is also based on extreme
value classification, it is consistent with the algorithm of
reference [35] in terms of feature point extraction time. The
proposed algorithm + RANSAC has the minimum time cost,
indicating that the proposed twice matching method based
on extreme value classification can effectively reduce the
time cost of feature point matching stage. The matching
rate of SSIM, PSNR and RMSE is similar to NNDR +

RANSAC. Therefore, the proposed algorithm + RANSAC
can effectively reduce the time cost of feature point matching

stage and has good stitching quality. The time cost of the
proposed algorithm + FSC is slightly higher than that of
the proposed algorithm + RANSAC, indicating that this
method also effectively reduces the time cost of the feature
point matching stage. The matching rate of SSIM, PSNR and
RMSE is close to reference [35], proving that this method
can achieve more accurate feature point matching and effec-
tively improve the quality of image stitching. The proposed
algorithm + FSC has better stitching quality and is close
in time compared to the proposed algorithm + RANSAC.
The proposed algorithm + FSC can effectively reduce the
time cost of feature point matching stage. Meanwhile, it can
match feature points more accurately and has better stitching
quality.

E. ANALYSIS OF ALGORITHM TIME
We selected three representative pairs of images from the
testing set, as shown in figure 14. The sizes of figures 14 (a),
(b), (c), and (d) are 1750 pixels × 1750 pixels. The sizes of
figures 14 (e) and (f) are 1368 pixels × 1824 pixels.

For the image in figure 14, we used SIFT algorithm, the
proposed algorithm, the algorithms of references [27], [28],
[33], [35], and [36] for image stitching. And the time for each
stage were calculated, as shown in table 8.

It can be seen from table 8 that the time cost of feature
point matching is highest because of the SIFT algorithm has a
huge number of feature points, thereby resulting in the highest
overall time cost. The algorithm of reference [27] effectively
reduced the time of feature point extraction and number of
feature points using preprocessing methods, which results in
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relatively smaller time costs for subsequent stages and total
time. The algorithm of reference [28] reduces the time of
feature point extraction through preprocessing. Although its
descriptor calculation is relatively complex, its dimensions
are small. Therefore, its descriptor generation time is longer,
but the feature point matching time is smaller. The total time
is relatively small. The algorithm of reference [33] reduces
the number of feature points by restricting their extraction
and optimizes the matching stage, thereby reducing the time
of the three stages of the algorithm. The algorithm of ref-
erence [35] reduces the computational region of the SIFT
algorithm and number of feature points through prepro-
cessing, and its descriptor dimension is smaller. Therefore,
the time cost for the subsequent three stages is relatively
smaller, and the overall speed is fast. The algorithm of ref-
erence [36] obtained the minimum number of feature points
through preprocessing and special feature point extraction
methods. The time of feature point extraction is longer
because the feature point extraction method is more com-
plex. However, due to its minimum number of feature points
and smaller descriptor dimensions, the times of descrip-
tor generation and feature point matching are very small,
resulting in a smaller total time. The proposed algorithm
effectively reduces the computational region of the SIFT
algorithm through phase correlation and texture classifica-
tion. The time of feature point extraction is minimized. In the
stage of descriptor generation, the time of descriptor gener-
ation is relatively short due to the small number of feature
points and the relatively simple calculation of descriptors.
In the feature point matching stage, the time cost of the
feature point matching stage is relatively small due to its
smaller descriptor dimensions and faster efficiency of the
twicematchingmethod based on extreme value classification.
In terms of total time, the proposed algorithm is only 28.76%,
15.63%, and 51.86% of SIFT, respectively. And the pro-
posed algorithm has the best performance compared to other
algorithms.

F. ANALYSIS OF IMAGE STITCHING QUALITY
The results of feature point matching and stitching using the
above algorithm are shown in figures 15 and 16. As shown
in figure 15, the algorithm of reference [28] has the highest
number of mismatches due to its poor descriptor perfor-
mance. Due to the fact that the algorithm of reference [36]
has the fewest number of feature points, it also has the fewest
number of mismatches. Both the SIFT algorithm and the
algorithm in reference [27] have a relatively small num-
ber of mismatches. Because the FSC algorithm can more
accurately remove the mismatched feature points of the
NNRD algorithm, the algorithm of reference [35] has rela-
tively larger number of mismatches. Although the algorithm
of reference [33] also uses the FSC algorithm, due to its
fewer feature points, the number of mismatches is relatively
small. Compared to the algorithm of reference [35], the
proposed algorithm also uses the FSC algorithm, but it has
fewer number ofmismatches. This indicates that the proposed

TABLE 9. Comparison of algorithm stitching quality.

algorithm extracts more stable feature points and the pro-
posed descriptor has better performance.

As shown in figure 16, the stitched images using the above
algorithm have no significant visual differences. To accu-
rately and objectively evaluate the stitching quality of each
algorithm, the corresponding matching rate, SSIM, PSNR
and RMSE are shown in table 9. As shown in table 9, due to
the fact that the FSC algorithm can more accurately remove
the mismatched feature points of the NNRD algorithm, the
proposed algorithm has a lower matching rate. In terms of
SSIM, PSNR and RMSE, the proposed algorithm has the best
performance, indicating that it can effectively improve the
quality of image stitching.

G. ALGORITHM COMPREHENSIVE PERFORMANCE
TESTING
To more accurately evaluate the performance of the
algorithm, the above seven algorithms were independently
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TABLE 10. Comparison of algorithm performance in dataset 1.

TABLE 11. Comparison of algorithm performance in dataset 2.

used for image stitching on the test set. Meanwhile, the
number of failures, algorithm time, matching rate, SSIM,
PSNR, and RMSE were calculated, and the results are shown
in tables 10-11 (images that failed to be stitched were not
subjected to statistical calculations).

As shown in tables 10-11, in terms of the mean of
time, the proposed algorithm has the best performance
compared to other algorithms. The improvement of the pro-
posed algorithm is relatively small due to the large overlap
regions of the images in dataset 2. Compared with the SIFT
algorithm, the proposed algorithm has reduced the time by
73.24% and 47.58%, respectively. Meanwhile, the proposed
algorithm has a small standard deviation in time, indicating
its good stability. In terms of matching rate, the algorithm of
reference [27] has the best performance due to the fact that
the algorithms of references [27] and [36] use the RANSAC
algorithm. Although the matching rate is relatively low when
the proposed algorithm uses the FSC algorithm, it has better
performance compared to the other three algorithms. In terms
of the number of failures, the proposed algorithm has the
best performance. The proposed algorithm reduces number of
failures by 93.35% compared to the SIFT algorithm. In terms

of RMSE, the proposed algorithm performs second only to
the algorithm of reference [35] in dataset 1, and has the best
performance on dataset 2. Compared to the SIFT algorithm,
the RMSE of the proposed algorithm decreased by 94.87%
and 84.36%, respectively. In terms of SSIM and PSNR, the
proposed algorithm has the best performance in dataset 1,
while the algorithm proposed in dataset 2 performs relatively
well. However, considering the number of failures, it can be
concluded that the proposed algorithm has the best image
stitching quality. This indicates that the proposed algorithm
improves the quality of image stitching. In summary, the pro-
posed algorithm improves the efficiency and quality of image
stitching.

H. DISCUSSION
It can be seen that the proposed algorithm effectively reduces
the computation of non-overlapping regions and weak tex-
ture regions in the preprocessing stage from the above
experimental results. The time required is also reduced for
feature point extraction. At the same time, the proposed
algorithm avoids the impact caused by inaccurate calculation
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of phase correlation algorithms. In the descriptor stage, the
proposed descriptor has better matching performance and
smaller dimensions compared to other descriptors. And the
proposed descriptor effectively reduces the time cost of fea-
ture point matching stage. In the feature matching stage, the
proposed twice matching method based on extreme value
classification effectively reduces the time overhead of the
feature point matching stage compared with other methods.
And this method improves the stitching quality by combining
with the FSC algorithm. The effectiveness of the pro-
posed algorithm was validated in all three stages mentioned
above.

According to the analysis of time, stitching quality, and
comprehensive performance, the proposed algorithm has the
lowest time overhead and higher stitching quality compared
to existing algorithms. Compared with the SIFT algorithm,
the time has reduced by 73.24% and 47.58%, the RMSE has
reduced by 94.87% and 84.36%, and the number of images
with failed stitching has decreased by 93.35%. The proposed
algorithm significantly reduces time costs and improves
image stitching quality.

However, it is known from the principle of the algorithm
that the proposed algorithm will not achieve ideal results in
preprocessing when dealing with images with large overlap-
ping regions and complex textures. It would result in less
overall improvement of the algorithm. At the same time, the
resolution of the image has a direct impact on the efficiency
of the algorithm, so the time of the proposed algorithm will
also be relatively long when the image resolution is huge.
In addition, the proposed algorithm’s image stitching quality
is not satisfactory when dealing with complex affine trans-
formations. Therefore, we will consider studying the speed
improvement of high-resolution complex texture images
and handling complex affine transformations in further
work.

VI. CONCLUSION
In conclusion, A fast image stitching algorithm based on
texture classification and improved SIFT is presented, which
is improved in three stages. The effective regions of images
are calculated using phase correlation algorithm and gradient
based texture classification method. And a feature descriptor
with only 40 dimensions was designed. Meanwhile, a twice
matching method based on extreme value classification was
proposed to reduce the time cost of feature point match-
ing. Importantly, the proposed algorithm has the lowest time
overhead and higher stitching quality compared to existing
algorithms. The proposed algorithm significantly reduces
time costs and improves image stitching quality. A better
stitching quality and efficiency are achieved applying the
new algorithm. It also proves that the proposed algorithm
has potential application value in real-time image stitch-
ing. However, when the preprocessing effect is poor, the
algorithm improvement is relatively small. In addition, the
proposed algorithm is difficult to handle complex affine trans-
formations. Therefore, we will consider studying the speed

improvement of high-resolution complex texture images
and handling complex affine transformations in further
work.
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