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ABSTRACT This study proposes a passive human identification system based on wireless signals. The
proposed system comprises three phases; preprocessing and standardization of recorded channel state
information (CSI) signals and the extraction of relevant data using principal component analysis (PCA),
transformation of the signals into feature vectors, and finally construction of classification models.
To evaluate the proposed approach, we collected data from ten subjects in an indoor environment while
performing a set of activities. The proposed approach was tested using three different activities: walking,
sitting/standing, and picking up a pen, achieving subject identification accuracy of 97.3%, 99.75%,
and 65.5%, respectively. The results suggest that activity-based identification systems can serve as an
effective alternative to traditional methods such as passwords and smart cards.

INDEX TERMS Channel state information (CSI), gait recognition, human identification, Wi-Fi.

I. INTRODUCTION
The recent advancements in communication technologies,
particularly wireless communications, have facilitated the
integration of wireless capabilities into various devices [1].
This presents researchers with the opportunity to utilize
the abundance of wireless signals for various purposes,
including the use of channel state information (CSI) to
recognize and classify human activities [2], passive activity
recognition [3], [4], [5], [6], subject identification [7], human-
human interaction [8], [9], [10], and subject localization [11],
enabled by advances in Machine Learning technologies.
While CSI data has the potential to offer valuable insights
into the movements and actions of individuals, it is sensitive
to fluctuations in the environment.

Among the aforementioned applications, subject identifi-
cation has been heavily researched with various techniques
proposed in the literature. Historically, identification systems
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relied on secret information shared between the system
and the subject participating in the identification process.
However, such an approach has the risk of secret information
being leaked or easily predicted if not chosen carefully. As a
result, researchers have investigated alternative techniques
such as fingerprint recognition [12], voiceprint analysis [13],
and face recognition [14]. While these methods can be
effective in determining a subject’s identity, they do not
utilize existing infrastructure in the same way that techniques
utilizing overflowing wireless signals, such as CSI, do.

In this research, we present a passive human identification
system that utilizes wireless communication between two
devices to identify a human based on the activity being
performed. The transmitter device sends Wi-Fi packets to
the receiver, and any movement between the two devices
will be reflected in the CSI values of the exchanged packets.
By analyzing these CSI changes and extracting relevant
features, we aim to determine the identity of the moving
subject. To improve the accuracy of our system, we apply
noise reduction and feature selection techniques to the
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recorded wireless signals. To validate the effectiveness of our
approach, we conducted experiments using a dataset compris-
ing ten subjects performing three different activities (walking,
sitting down, and standing up from a chair, and picking up
a pen from the ground). All experiments were conducted
in the same environment but at different times to ensure
the authenticity and reliability of the results. The proposed
solution has several advantages compared to the traditional
methods of subject identification. One of themain advantages
is that it does not require any specific action from the subject,
such as providing a password or scanning a fingerprint.
Instead, it relies on the subject’s natural movements, which
are captured and analyzed using wireless communication
technology. This makes the proposed solution a passive
and non-intrusive method of subject identification. Another
advantage is that it can be implemented using the existing
infrastructure, namely, devices with wireless communication
capabilities, without the need for any additional hardware or
software. This makes the proposed solution a cost-effective
and scalable solution. Finally, the proposed solution can be
easily integrated into various applications, such as security
systems, health monitoring systems, and smart homes.

The main contribution of our work can be summarized in
the following:

1) All the experiments were performed using actual data
acquired from real volunteering subjects. No simula-
tions were performed;

2) A passive, non-intrusive method for subject iden-
tification is presented using CSI values, utilizing
the existing infrastructure of wireless communication
devices without the need for additional hardware
or software, making it a cost-effective and scalable
solution;

3) A methodology for noise reduction and feature selec-
tion to improve the accuracy of the proposed method is
developed;

4) Different activities are tested for subject identification
purposes; and

5) A new user identification approach based on new
activities is presented.

The remainder of this paper is organized as follows;
Section II, reviews the state-of-the-art methods while
Section IV presents preliminaries Next, in Section IV,
a description of the environment and the collected data is
provided alongside the different data transformations that we
apply to prepare the data for the identification procedure.
The experiments performed and the obtained results are
included in Section V while the final remarks are presented
in Section VI titled as the conclusion.

II. RELATED WORK
In this section, we review the existing approaches that focus
on human identification using CSI signals. Most commonly
used approaches in human identification systems [15]
leverage the gait of subjects. Gait-based human identifi-
cation systems can be categorized based on the utilized

sensors into; camera-based, wearable-based, and Wi-Fi-
based human identification systems.

In the first category, the gait of the subject is captured using
cameras to identify subjects [16], [17], [18], [19], [20], [21].
Castro et al. [16] employed convolutional neural networks
(CNNs) to learn the discriminative features, which are then
fed into an SVM classifier to determine the identity of the
subject, achieving comparable performance to the state-of-
the-art. Li et al. [17] proposed an end-to-end gait recognition
method that extracts the pose and shape features from anRGB
gait sequence. Two gait datasets namely, OUMVLP [22]
and CASIA-B [23], were used to evaluate the performance
of the proposed system. Experiment results showed that
the proposed system outperforms the existing approaches in
terms of gait identification (assuming uncooperative subjects)
and verification (assuming cooperative subjects).

In the second category, different wearable sensors, such
as accelerometer, are used to capture the gait information
of subject individuals [24], [25], [26], [27], [28]. The work
of Sun et al. [24] uses a publicly available accelerometer
dataset [29] to evaluate the performance of their proposed
recognition system. The dataset was collected by attaching
three accelerometer sensors to the body of the subject.
Experiments’ results suggest that to get the best results, the
sensors should be placed in positions that are not affected
by movements of body parts (e.g., not affected by hand
movements). Although the researchers were able to achieve
high accuracy, the proposed system restricts the subject’s
movements due to the attached sensors. Thus, they are
not practical for everyday use. Zeng et al. [25] collected
acceleration data [30] measured in the y-axis and z-axis
using Wii Remotes attached to the subjects’ bodies to train
recognition models. The authors of [26] investigated the
efficiency of using the built-in accelerometer in smartphones
to record the gait data of subject individuals. However, the
collected dataset was noisy as it was collected in a real-world
uncontrolled environment. An equal error rate (EER) of
15.08% was achieved when trying to identify the different
gait activities.

In the third category, Wi-Fi signals are used to capture
human gait. Jakkala et al. [7] and Pokkunuru et al. [31]
employed deep learning techniques to identify the subject
individuals. In [31], the researchers used a deep CNN
composed of 23 layers deep CNN to identify the subject
individuals based on processed CSI measurements. The
proposed approach achieved an average accuracy of 87.76%.
Similarly, the work presented in [7] processes the collected
CSI data by the use of a window-based denoising and
normalization process. Deep CNN is then used to learn the
discriminative features, achieving an average accuracy of
97.12%. Another work that focuses on utilizing theWi-Fi CSI
values is presented in [32]. In this work, the authors developed
an approach for cross-state and cross-scene gait identification
via unsupervised domain adaptive using Wi-Fi CSI values.
To achieve the desired results, the authors implement a new
data distribution metric, cross-attention distance, to achieve
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class-aware condition alignment at the class level. The
experimental results demonstrate significant achievements,
achieving a recognition accuracy of 94.61% in the cross-state
gait recognition task.

III. PRELIMINARY
Wi-Fi communication between two devices is based on
Orthogonal Frequency Division Multiplexing (OFDM) tech-
nology, which is usually accompanied with Multi-input
Multi-Output (MIMO) systems. The use of multiple transmit-
ters and multiple receivers in any MIMO system establishes
multiple streams between the sender and the receiver. The
number of streams in any MIMO system is given by
NTx × NRx , whereNTx is the number of transmitting antennas
and NRx is the number of receiving antennas.

The received signal in each of the streams can be
expressed as:

Y = H × X + N , (1)

where X is the transmitted signal, Y is the received signal,
H is the channel matrix, and N is noise added to the signal
while it propagates from the transmitter to the receiver.

The received OFDM signal is divided into different
subcarriers, each of which can be quantified by the CSI
values. Each CSI value is realized by two characteristics,
namely the amplitude and phase, and can be expressed as
follows:

CSIi = |CSIi|ej̸ CSIi , i ∈ 1, . . . , 30, (2)

where |CSIi| and ̸ CSIi represent the amplitude and phase of
the CSI value associated with the ith subcarrier, respectively.

IV. MATERIALS AND METHODS
In this section, we present the CSI dataset used to validate our
proposed subject identification system.Moreover, we present
the different stages comprised within our proposed system,
including signal processing, feature extraction and selection,
and building the classification models. Figure 1 provides a
graphical illustration of our proposed system.

A. DATA COLLECTION
To validate the performance of our proposed subject identi-
fication system, a set of experiments was designed to record
the CSI values associated with the exchanged Wi-Fi signals.
The experimental procedure was approved by the Institution
Review Board (IRB) office at the Jordan University of Sci-
ence and Technology under approval number (19/110/2017).
Ten subjects participated in the data collection process.
Before performing any of the experiments, each subject was
asked to sign a consent form. The subjects were informed
that their personal information would not be disclosed and
that they had the right to stop participating in any of the
experiments at any time if they chose to do so. Specifically,
the subjects volunteered to perform a set of pre-explained
activities between a pair of transmitting and receiving
devices, each of them is equipped with ‘‘Intel Ultimate N

Wi-Fi Link 5300’’ network card that was calibrated based
on the settings provided in [33]. Using the tool described
in [34], wewere able to record the CSI values that describe the
changes the subject movements exert on the exchangedWi-Fi
signals. It is worth mentioning that the CSI toolbox [34] uses
the OFDM technique as a modulation scheme for wireless
transmission channels.While collecting the data, we faced the
issue of synchronizing the different subjects. All participating
subjects must follow the same timing when performing the
experiments to provide an unbiased dataset. To achieve this,
we developed a sound-generating program to indicate to the
participating subjects when to start the activity and when to
finish it. Also, this program generates beeps to inform the
subject of the start and finish of the sub-activities within each
main activity. Another issue we faced was the existence of
outliers in the collected dataset. These outliers have many
sources. They might be introduced to the dataset following
a hardware-related issue, or they can simply be introduced
from the noise present in the environment since we are
not performing the activities in a controlled environment.
To combat these outliers, we are using the Hampel filter to
remove them and smooth the data. More information of the
Hampel filter can be found in Section IV-D1.

B. ENVIRONMENT DESCRIPTION
All the experiments were conducted in an office room that
has a length and width of 4.7 m and 4.7 m, respectively.
Figure 1(A) shows a schematic diagram of the utilized office.
The transmitter and receiver were set to be 3.7 m apart with
no obstacles between them, thus all the experiments were
performed in a Line-of-Sight (LoS) scenario. The subject
performing the experiments was instructed to perform the
activities in the area between the transmitter and the receiver.

C. ACTIVITY DESCRIPTION
The volunteering subjects were asked to perform a prede-
termined set of activities. To synchronize the movements of
the subjects, the recording device is programmed to emit a
beeping sound to inform the subject of the end of the current
sub-activity and the beginning of the next sub-activity. In this
study, we investigated three different activities to determine
the identity of a subject.

The first activity we are using to identify the subject
is walking (i.e., Gait). A sample of a recorded walking
activity signal is provided in Fig. 2, which shows that the
walking activity comprises the following four activities: First,
starting in front of the transmitter, the subject walks toward
the receiver. The subject then turns when he/she reaches
the receiver and walks back to the transmitter. Once the
subject reaches the transmitter, he/she turns again, which
concludes the current trial. By reviewing the literature, walk-
ing is the dominant activity used to determine the identity
of the subject. In this work, in addition to walking, we are
investigating two other activities. Specifically, we consider
the activity of sitting on a chair, then standing up from
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FIGURE 1. The structure of our proposed subject identification system. (A) top view sketch of the data
collection environment, (B) the main steps that comprise the signal processing stage, (C) the two main steps
taken to transform the processed signal into a feature vector, and (D) the final stage of building the
classification model.

the said chair, and the activity of picking a pen up from
the ground. A sample signal captured when performing the
activity of sitting and standing up from the chair is provided
in Fig. 2b. To perform the stand/sit activity, a chair was placed
in the middle of the distance between the transmitter and the
receiver. The subject was then instructed to start the activity
sitting on that chair. When the subject hears a beep, they
will stand up. Then, the second beep instructs the subject to
stay still in their standing position. After that, the third beep
informs the subject to sit on the chair and wait until the final
beep is heard, which indicates the end of the activity. The last
activity we are investigating is picking a pen from the ground.
A sample signal recorded from picking a pen up from the
ground is provided in Fig. 2c. The subjects were instructed
to pick a pen from the ground within a specific time interval.
The pen was placed in the middle of the distance between
the transmitter and the receiver. The beginning and the end
of the time interval are determined by hearing two beeps.
Specifically, the first and second beeps indicate the beginning
and end of the activity, respectively.

D. PROPOSED SYSTEM
The purpose of this work is to provide a comparison
between the effectiveness of different activities in determin-
ing the identity of the subject performing them. To that
end, we propose an ML-based system capable of subject
identity identification comprised of three phases, namely:
signal processing, building representative feature vectors, and
building the classification model.

1) PHASE1 (SIGNAL PROCESSING)
To prepare the data, we perform a multi-step signal trans-
formation to remove the noise, converting the signal to a
stationary signal, and standardizing it.

1) Removing outliers: outliers refer to sample points
within a signal that are not following the natural
progression of the signal. As suggested by other
researchers [35], [36], [37], to remove these outliers,
we applied the Hampel filter [38], which uses a sliding
windowwith a fixed length. If the testing point deviates
from the mean of the points in the window by more
than three standard deviations, the point is removed
and replaced by the mean of the points in the sliding
window. The choice of using the Hampel filter can be
attributed to many factors including: Using the Hampel
filter does not distort the original data sequence since
it replaces the detected outlier with the mean value of
the defined window. Furthermore, the Hampel filter
is adaptable to non-Gaussian noise thus in addition to
Gaussian errors it can also detect non-Gaussian errors.
Other justifications behind the use

2) Converting into a stationary signal: Stationary signals
refer to a signal with constant or slowly changing
statistical properties as described in [39]. To extract
the statistical properties of a signal, it needs to be in
stationary format. To determine whether a signal is
stationary, a test called the Augmented Dickey-Fuller
(ADF) test [40] is performed. If the hypothesis is that a
unit root exists in the time-series signal, then the ADF
test proves the hypothesis, and the signal is assumed
to be non-stationary. On the other hand, if the test fails
the hypothesis, then the time series signal is assumed to
be stationary. If a signal is proven to be non-stationary,
then we convert it to a stationary signal by using the
differencingmethod. Thismethod is applied as follows:

Ynew = Yt − Yt−1, (3)

where Yt and Yt−1 represent the value of the sample
point within the signal at time indices t and t − 1,
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FIGURE 2. Samples of the signals for each of the three activities
considered in this study. (a) illustrates a sample of the signal recorded for
the walking activity, (b) illustrates a sample of the signal recorded for
sitting down/standing up from a chair, and (c) illustrates the signal
recorded when the subject picked up a pen from the ground.

respectively, and Ynew will replace the value of Y at
time t .
In addition to the ADF test we used to determine if the
CSI time-series data is stationary or not, we reviewed
the literature. We found several research articles such
as [41] indicating that the CSI time-series data found
in modern communication signals are non-stationary.

3) Standardization: The time-series signal is divided by
the standard deviation of the signal to construct a
signal with a standard deviation equal to 1, to ensure
that the features have the same range, especially
since all activities have the same time range. Thus,
they are compared easily, and the performance of the
classification model can be enhanced.

4) Dimensionality reduction: For each performed activity,
we record data across 30 different subcarriers. How-
ever, building a classification model using data from

all subcarriers is costly in terms of time, memory,
and computation. Therefore, to reduce the amount of
data while retaining data patterns, we use the Principal
Component Analysis (PCA) technique [42].
The different signal transformations are shown in
Fig. 1(B). Moreover, Fig. 3 shows the effects of the
different preprocessing transformations when applied
to a sample signal.

2) PHASE2 (BUILDING REPRESENTATIVE FEATURE
VECTORS)
To build the classification models responsible for iden-
tifying the subject, several representative features must
be extracted. These representative features, also known
as feature vectors, are obtained by analyzing the already
processed signals. A total of 565 features divided into
16 categories were extracted. Table 1 shows the fea-
tures, their category, and a description of each presented
feature.

Using all of these features to build the classification
models, will have two primary effects; First, it will impose
a burden on the processing using due to the large amount
of data. Second, some features may collide with other
features, degrading the performance of the classification
model. To resolve these two problems, we select a subset of
features using a feature selection algorithm as described in
Algorithm 1. Specifically, we used the minimum redundancy
maximum relevance (mRMR) method to reduce the number
of features. Algorithm 1 shows the procedure by which
we rank the extracted features. By examining Algorithm 1,
only one pass over all the features is sufficient to determine
the features that are higher than a certain threshold.
Therefore, the complexity is of order O(n) where n is
the number of available features. To determine the value
of the threshold, we performed a series of preliminary
experiments in which we investigated the effect of threshold
value along with the number of used PCA components on
the system’s accuracy for each of the performed activities.
From these experiments, the threshold value to distinguish
between relevant and irrelevant features for each activity was
determined.

3) PHASE3 (CLASSIFICATION MODEL)
To determine the identity of the subject, for each of the
investigated activities a classification model was constructed.
The first goal of the performed experiments is to determine
the number of principal components and the number of
features that result in the highest identification accuracy.
For each component/features combination, a support vector
machine (SVM) model was developed to identify the
subject’s identity performing the activities. Once the best
combination is determined, we fine-tuned the SVM model
by performing a grid search to determine the optimum
SVM parameters, namely, the gamma parameter and the C
parameter.
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FIGURE 3. The generated signals after applying each of the preprocessing transformations to a sample signal.

Algorithm 1 mRMR-Based Feature Selection
input : The principal components, each shown as a

feature vector
output: The features sorted based on their

importance

1 Normalize the features in the remaining feature
vectors;

2 Apply the mRMR feature selection algorithm;
3 for All features do
4 if featureScore > Threshold then
5 FeatureToSelect = featureID

(mod featureCount);
6 end
7 end
8 Using the selected features, rebuild the feature

matrix by excluding any unwanted features;

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we evaluate the performance of our system
and present a discussion of the results of our proposed subject

identification system that are obtained for each of the three
considered activities described in Section IV-C. We also
compare the performance of our proposed system with other
existing subject identification systems.

A. EVALUATION PROCEDURES AND METRICS
To evaluate the performance of our proposed systems,
we have developed four evaluation procedures, namely:
Walking-based evaluation procedure, Sit/stand up-based
evaluation procedure, Pick a pen from the ground-based eval-
uation procedure, and combined-based evaluation procedure.

In the first evaluation procedure, each subject is asked
to walk between a signal transmitter and a signal receiver
as explained in Section IV-C. To evaluate the performance
of the proposed system, we arranged the walking data
into four configurations. First, the whole 16-second data
was used including the walking activity and the turning
activities. Second, we removed the turning activity from the
data and we used only the walking activity to train and
test the classification models. For the third configuration,
we only used the data gathered from when the subject
walked from the transmitter to the receiver. Finally, for the
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TABLE 1. Extracted features.

fourth configuration, only the data from when the subject
moved from the receiver to the transmitter was used.

In the second evaluation procedure, data is organized
into four configurations. First, the whole data capture was
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TABLE 2. The employed performance evaluation metrics. TP, TN, FP, and
FN denote the true-positive, true-negative, false-positive, and
false-negative values, respectively.

used including the no-movement data portion, the sitting
data portion, and the standing data portion. In the second
configuration, we removed the no-movement data portion and
used only data with sitting or standing activities. For the third
configuration, we only used the sitting data portion, while the
standing data portion was used for the fourth configuration.

In the third evaluation procedure, subjects are asked to pick
a pen from the ground in any pose they are comfortable with.

The performance of our proposed system is evaluated by
the following, shown in Table 2.

B. RESULTS OBTAINED FOR THE WALKING ACTIVITY
To determine the effectiveness of the walking activity in
determining the identity of the subject, we trained the
classificationmodel using four different configurations. First,
we fed the whole 16-second recorded data into the SVM
classifier and built the classification model based on this data.
For the second configuration, we trained the classification
model using the walking data alone without the turning
activity that occurs at either the transmitter or the receiver. For
the third and fourth configurations, we built the classification
models based on the walking data from the transmitter to the
receiver or by using the data from the subject walking back
from the receiver to the transmitter.

For all the experiments, to determine the best number
of principal components to use and the number of features
(the threshold in Algorithm 1) to build the feature vector
for classification, several components/features combinations
were tested. All principal components between two and ten
were tested. For each set of components, we varied the
number of features. We started by selecting the top ten
features and kept on increasing the number of features until
we reached 500 features with increments of ten features.
In other words, for each set of components, we tested the
accuracy of the model with {10, 20, 30, . . . , 500} features.
An illustration of the experiment where all walking data was
taken into consideration is provided in Fig. 4.

It is worth mentioning that for each of the experiments, a
10-fold cross-validation technique was performed. In each of
the folds, the model was trained on 90% of the data and tested
with the remaining 10%. When we move to the next fold,

FIGURE 4. PCA and feature selection for when the whole 16 seconds
walking activity is used to train and test the model.

another 10% of the data is selected for testing purposes and
the remaining 90% is used for training the model.

1) DATA FROM THE WHOLE EXPERIMENT
In this experiment, we fed themodel with all the data acquired
when the subject is walking between the transmitter and the
receiver.

The results of the model’s performance show that using
only two components with only 50 features or 8.85% of the
features results in an average accuracy of 99% across all
folds.

2) WALKING DATA WITHOUT TURNING
In this experiment, we removed the turning activity that
occurs when changing the walking direction. In other words,
we only used walking activity between the Wi-Fi transmitter
and the Wi-Fi receiver that occurs within 0-4 seconds and 8-
12 seconds of the experiment as shown in Fig. 2.
The results show that using only two components with

380 features or 67.25% of the features will return the best
identification accuracy of 97.75%.

3) WALKING FROM THE TRANSMITTER TO THE RECEIVER
In this experiment, we were only interested in the data
capturing the subject walking from the Wi-Fi transmitter to
the Wi-Fi receiver. Basically, from the timing diagram shown
in Fig. 2, we extracted the data captured within the first four
seconds of the experiment. As before, we tested multiple
number of principal components, and for each number of
components we tested a different number of features based
on the features’ score provided by the mRMR algorithm. The
highest achieved accuracy was when 4 components were used
with the top 280 features and it was equal to 98%.

4) WALKING FROM THE RECEIVER TO THE TRANSMITTER
Similar to the previous experiment, only the data from when
the subject was moving from the Wi-Fi receiver to the Wi-Fi
transmitter was used to build the classification models. From
the timing diagram shown in Fig. 2, we only used the data
between the 8th to the 12th seconds of the experiment.
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The results of the experiment show that an accuracy of
94.5% was achieved when 7 components were used with
180 features.

C. RESULTS OBTAINED FOR THE SITTING DOWN AND
STANDING UP FROM A CHAIR ACTIVITY
The second experiment we performedwas to identify subjects
based on the way they sat on a chair and stood from said
chair. Similar to the walking activity, a timing sequence
for this activity was developed and explained to the subject
prior to the experiment. This timing diagram is provided in
Fig. 2b. As illustrated in Fig. 2b, each experiment trial ran for
16-seconds. The subject started in a stationary position,
then they stood from the chair, after that, they remained
standing for 5 seconds and finally, they sat down on the chair,
concluding the experiment trial. Each subject performed
20 trials of this activity.

To determine the best usage of the acquired data, we trained
and tested the classification models using four different
configurations. For the first configuration, we used the data
collected for each trial without any alteration or reduction.
For the second configuration, we removed the portion of
the data in which the subject remained stationary. For the
third configuration, only data associated with the sitting
activity was used. As for the fourth configuration, only data
associated with the standing activity was used. It should be
mentioned that similarly to the walking experiment, a 10-fold
cross-validation approach is used to determine the accuracy
of the developed models. In each of the folds, we select
10% of the data to test the model and the remaining 90%
to test the model. Across the folds, the selected data for
testing the model will not be repeated. In other words,
a data instance will be tested in only one fold. Additionally,
in order to ascertain the optimal feature/PCA component
pairing, akin to the approach taken for evaluating walking
activity, we experimented with numerous combinations. For
each combination, we recorded the identification accuracy.
An illustration of this experiment is provided in Fig. 5

FIGURE 5. PCA and feature selection for when the entirety of the
stand-sit experiment is included in the model for training and testing.

1) DATA FROM THE WHOLE EXPERIMENT
In this test, we did not manipulate or divide the data in any
way. The entirety of the data for each of the trials including

the portion in which the subject was not moving and the
portions where the subject was moving, were used to build
and test the identification models. The length of each data
instance used for model testing and training is equal to
16.4 seconds.

The results show that the highest achieved accuracy was
equal to 99.5% when we are using the first 5 principal
components with the 70 highest features according to the
mRMR feature selection algorithm.

2) STAND-SIT DATA WITHOUT THE NO MOVEMENT ACTIVITY
In this experiment, we removed the portion of the acquired
data that represents a stationary subject. In other words,
we are only considering the sections of the data in which the
subject is sitting down on a chair or standing up from a chair.

The results show that an accuracy of 100% occurs when
we are using 3 components with the highest 40 features
according to the mRMR feature selection algorithm.

3) DATA FROM ONLY THE SITTING ACTIVITY
In this experiment, only the sitting activity data was used to
train the classification model. The results of this experiment
show that using 8 principal components with the highest
100 features according to the mRMR algorithm will achieve
a 100% identification accuracy.

4) DATA FROM ONLY THE STANDING ACTIVITY
In this experiment, only the standing activity data was used to
train the classification model. The results of this experiment
show that using 8 principal components with the highest
60 features according to the mRMR algorithm will achieve
a 99.5% identification accuracy.

D. RESULTS OBTAINED FOR THE PICKING A PEN FROM
THE GROUND ACTIVITY
In this experiment, we instructed the subject to pick a pen
from the ground. The timing diagram for this experiment
is provided in Fig. 2c which shows that each experiment
trial lasted for 4.5 seconds in which the subjects started
from a standing position, went down to pick a pen from the
ground, and then they return to a standing position. Unlike
the previous experiments where we divided the time frame
intomovement and nomovement portions, in this experiment,
we did not instruct the subject when to stop or when to move.
The only limitation we imposed on the subjects was the time
limitation to finish the experiment. Thus, only one configura-
tionwas used compared to the four configurations used for the
previous two experiments. Similar to the other two activities,
we tested many features/PCA component combinations. For
each combination, the identification accuracy was logged.
An illustration of this experiment is provided in Fig. 6
The results of this experiment showed that the highest

accuracy of 64.5% was achieved when 8 principal compo-
nents were used and each principal component was described
using 100 features.
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TABLE 3. Results summary.

TABLE 4. Comparison with other existing approaches.

FIGURE 6. PCA and feature selection for when picking a pen from the
ground activity is performed.

E. DISCUSSION
Unlike other human identification systems that populate the
literature, instead of relying on walking activity to determine
the identity of a subject, in this work, we investigated other
activities including standing from a chair, sitting on a chair,
and picking a pen from the ground. From the evaluation of the
performed experiments, several observations can be derived:
First, using all available data does not necessarily result in
the best performance. Using the developed system, we were
able to achieve a 100% identification accuracy using only
3 principal components with only 40 features which is only
7% of the extracted features. Second, walking is not the only
activity that can be used to determine the identity of the
subject with high accuracy. In this work, we were able to
achieve high identification accuracy by observing the way a
subject stands and sits on a chair. In fact, the identification
accuracy yielded from observing the way a subject walks
was less than the accuracy yielded from observing the way
a subject sits and stands from a chair. Third, the duration
of actions directly influences subject identification accuracy,
as demonstrated in our study. For instance, when subjects

performed the task of picking up a pen from the ground,
it took them approximately 4.5 seconds. In contrast, the
action of sitting on a chair and then standing up took around
16 seconds. This short period affected the identification
accuracy which was only 64.5%.

A summary of the results obtained by the performed
experiments is provided in Table 3.

F. PERFORMANCE COMPARISON
Our proposed system for subject identification outperforms
other existing systems in terms of accuracy, as demonstrated
in Table 4. This table compares our systemwith other systems
based on the number of subjects, the number of environments,
and the number of activities involved. It can be seen that our
system achieved higher accuracy than the other systems.

VI. CONCLUSION
Determining the identity of a person with high accuracy
is the goal all authentication systems strive for. In this
work, we propose a new methodology to determine a
person’s identity by extracting representative features from
the recorded Wi-Fi signals influenced by the movements of
said person. Several activities were investigated, including
walking, standing and sitting on a chair, and picking a pen
from the ground to determine which of them yields the
highest identifying accuracy. The performed experiments
reveal that walking, standing from a chair, and sitting on a
chair activities result in high accuracy with slightly better
performance for standing and sitting on a chair. A 100%
accuracy was achieved when the standing and sitting on a
chair activity was performed compared to 99% when the
walking activity was performed, and 64.5% accuracy when
picking a pen from the ground activity was performed.
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In the future, we intend to extend the work presented in
this manuscript by considering Non-Line-of-Sight (NLoS)
scenarios for human identification, which can extend the
range of the system and at the same time provide a more
reliable identification system. Another aspect we plan on
investigating is the effect the location of the subject has on
the overall reliability of the system. Specifically, we intend
to address the question: How does the proximity of the
subject to the transmitter or the receiver affect the overall
identification accuracy of the system? In addition to the
previous question, we also plan to determine if it is possible
to extract velocity and acceleration information from the
collected dataset. If velocity and acceleration information
were successfully collected, can they be used to build viable
human identification models? Investigating the viability of
other techniques is of importance to us. Thus, we plan
on investigating several other techniques, specifically, deep
learning techniques, such as DNN and LSTMon the available
dataset(s) to determine if they perform better than classical
classification techniques.
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