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ABSTRACT To improve mobility and rehabilitation, precise and adaptive control mechanisms have been
developed for lower limb exoskeletons. Brain-computer interface (BCI) provides advanced and intuitive
control of assistive and rehabilitation exoskeletons to aid the user. Functional near-infrared spectroscopy
(fNIRS) is a non-invasive, and portable brain imaging modality, gained momentum in rehabilitation studies
in the last decade. This study provides a novel approach to control a lower limb exoskeleton with enhanced
classification accuracy using fNIRS-based BCI, the k-nearest neighbors (kNN) classifier, and optimal
feature combination. The brain signals were acquired using fNIRS for walking vs rest for twenty healthy
participants, having ten trials for each participant. The statistical measures: mean, peak, variance, skewness,
kurtosis, and slope are extracted as features. Optimal feature combination was analyzed and selected for
enhanced classification accuracy. kNN was analyzed and selected as an optimal classifier with optimal ‘k’
(number of nearest neighboring data points that the kNN considers while classifying a new data point)
using elbow method to improve classification performance. The proposed method achieves an average
classification accuracy of 88.19 ± 2.55 %, in offline configuration. In order to control exoskeleton in
online settings, simulated online classification was performed using one unknown trial, fed as real-time
signal. Sliding window of 2.5 sec is used and achieved average classification accuracy of 97.5%. This
research represents a major advancement in user-centric assistive technologies and advances the field of
neuro-powered exoskeletons. It also lays the groundwork for future advancements in the integration of
neuroimaging, machine learning, and rehabilitation.

INDEX TERMS Brain–computer interface, functional near-infrared spectroscopy, gait cycle, lower limb
exoskeleton, rehabilitation.

I. INTRODUCTION
Human gait is a fundamental human activity that involves
coordination among various parts of the brain, muscles, and
limbs. Signals from the brain’s sensory and motor areas
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trigger the activation of premotor and supplementary motor
areas of the cerebral cortex [1]. Globally, walking disabilities
continue to be a major cause resulting in improper gait
patterns. Gait impairment is the leading cause of reduced
independence in daily activities for patients. Moreover,
gait rehabilitation often faces challenges in achieving a
fully restored gait pattern [2], [3]. A significant amount of
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scientific work has been done in the recent decade into
creating technologies that can assist physiotherapists in their
work; some of these devices support a patient’s body weight,
and patients are asked to practice walking on a treadmill or
other specially designed platforms [4]. While such methods
cannot fully restore a physiological gait pattern, but it can
enhance the independence of stroke patients, particularly
those with limited motor function. Most patients only show
signs of walking ability recovery in 50% to 60% of cases
[5], [6]. Even though some patients are able to walk on their
own, their abnormal gait makes it difficult for them to carry
out daily tasks and increases their risk of injury [7], [8].

Top-down approaches involving brain-computer interfaces
(BCIs) that control external devices through metabolic brain
activity could be a viable way to influence motor behavior
and brain reorganization in patients [9]. BCI is a neurotech-
nology that shows great promise in improving the daily
lives of individuals with neuromuscular conditions caused by
stroke, spinal cord injuries and amyotrophic lateral sclerosis
(ALS) [8], [10]. The essential elements of a BCI robotic
system include brain activation patterns specific to tasks,
brain data collection, machine learning tools for decoding
brain signals and the use of control/feedback devices [11].
Successful motor rehabilitation is often linked to restoring
activity in the brain regions surrounding the lesion (perile-
sional areas) and promoting stimulation in these areas [12].
BCI training, which reinforces activity in these perilesional
areas, has shown positive results in motor rehabilitation.
Electroencephalographic signals were used by the majority
of BCIs designed for motor rehabilitation to power prosthet-
ics that facilitate upper limb movement [13]. Nevertheless,
only a small number of BCI systems were developed to
control lower limb exoskeletons. Functional near-infrared
spectroscopy (fNIRS) is a non-invasive optical imaging
method that can be used to acquire signals from brain for
the rehabilitation of lower limb movement [14], [15]. fNIRS
is a promising method in BCI research that offers mul-
tiple advantages over other neuroimaging techniques like
enhanced safety and portability [16], [17].
Conventional methods of controlling exoskeletons involve

acquiring signals using electromyography (EMG). However,
these methods often lack the adaptability required for seam-
less integration into a variety of settings. Conventional control
paradigms are challenged by real-time adaptations to user’s
intent, terrain changes, or variations in walking speed [18].
This novel combination of neuroimaging and robotics has
the potential to transform mobility assistance and rehabilita-
tion techniques while also improving the natural interaction
between users and their exoskeletons. A paradigm shift has
occurred with the integration of fNIRS into the exoskeleton
control architecture. fNIRS is employed to measure changes
in the blood oxygenation levels as indicators of brain activ-
ity, facilitating the development of BCI [19]. Compared to
other non-invasive BCI modalities such as functional mag-
netic resonance imaging (fMRI) and electroencephalography
(EEG), fNIRS is used due to its affordability, portability,

and safety in optical brain imaging [20]. These advantages
make fNIRS a valuable tool for BCI systems, enabling
control and operation of external devices through brain
signals [21]. A more sophisticated comprehension of user
intent and cognitive engagement during locomotion is made
possible by fNIRS, which decodes brain signals associated
with changes in the lower limb [22]. There are several
advantages to real-time control of exoskeletons using fNIRS
[23], [24]. This approach, which relies on the user’s neural
activity for control, facilitates a more intuitive and natu-
ral interaction between the user and the exoskeleton. This
improved synchronization between the user’s intentions and
the exoskeleton’s actions can reduce cognitive load [10], [11].
Furthermore, fNIRS-based exoskeleton control could be used
to enhance a healthy person’s physical capabilities for activ-
ities requiring more strength or endurance [20], [22].
This paper presents an approach for enhancing classifi-

cation accuracy for gait rehabilitation by selecting optimal
feature combinations. kNN was selected as an optimal clas-
sifier and value of ‘k’ was determined using elbow method
to enhance the classification accuracy without overfitting.
In order to control exoskeleton in online settings, simulated
online classification was performed in MATLAB® and con-
trol commands were generated. This approach provides a
robust framework for refining gait rehabilitation techniques
and advancing the efficacy of exoskeleton control in practical
applications. Fig. 1 represents a schematic flowchart of the
research.

FIGURE 1. Schematic flowchart of research.

II. MATERIALS AND METHODS
A. SUBJECTS
Twenty young and healthy participants with an average age of
22.5 years were included in the study. It was made sure that
none of the participants had any major medical illness like
cardiovascular, neurological or visual disorder [26] because
cardiovascular diseases alter brain blood flow regulation,
while neurological disorders may affect neural activation
patterns during tasks [27]. The experiment was approved by
the Ethical Committee, Air University under approval num-
ber AU/EA/2021/03/002. The experiment was performed
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according to principles mentioned in the Declaration of
Helsinki to emphasize on privacy protection and well-being
of the participant [28]. Before data acquisition, each par-
ticipant provided written consent after receiving a detailed
explanation about the research.

B. DATA ACQUISITION
Optodes are components that emit and detect near-infrared
light to measure changes in hemoglobin concentrations in
the brain. Source optodes (high-powered dual 32mW LEDs)
are responsible for emitting near-infrared light into the scalp
while detector optodes are used to detect the light that
has traveled through the brain tissue and has been scat-
tered back to the surface. The precise positioning of the
optodes is important in fNIRS studies as it affects the
quality of the acquired signal [29]. A network of 20 chan-
nels using 8 sources and 8 detector pairs was established.
A fixed distance of 3 cm was kept between both sources and
detectors to minimize variability and ensure accurate mea-
surement of hemodynamic responses within specific areas
of the brain [26], [30]. Data was recorded using continuous-
wave NIRSport2 fNIRS system and Aurora Software made
by NIRx Medical Technologies, Germany. Accurate event
markers were generated using PsychoPy software which
were synchronized with the experimental paradigm to cor-
relate neural responses with specific experimental triggers.
Improper attachment of optodes to the head and optical
interference caused by dense hair can affect the fNIRS sig-
nals [31], [32]. Therefore, it is recommended to wash the
hair before the experiment to avoid interference due to oil
and dandruff. Position of optodes were aligned according
to the EEG 10-20 system [16], [33]. The motor montage
was designed in view of the previous literature [34]. The
red circles represent the location of source while blue circles
represent the detectors. To gain a visual understanding of
where the optodes were placed in the motor cortex area of
the brain, please refer to Fig. 2.

C. EXPERIMENTAL PARADIGM
The trial began with participant standing on a treadmill posi-
tioned in front of a computer screen 2 meters away. Before
starting, detailed instructions on the entire process were pro-
vided. Participants were asked to relax and get ready for the
upcoming tasks. The experiment was performed in a dark
room to avoid light interference. A 30-second rest was given
initially to establish accurate baselinemeasurements allowing
their body’s hemodynamic response to stabilize to establish a
stable baseline of hemodynamic activity before any stimuli
were introduced [35]. This baseline serves as a reference
against which changes in blood flow can be measured during
stimuli. During this time, participants were encouraged to
stay still without making any deliberate movements. After the
initial rest period, a 20-second walking task was performed
where participants were instructed to focus on maintaining
a proper gait cycle on the treadmill. This was followed by a

FIGURE 2. Optodes placement on the motor cortex region of the brain.
20 channels were used to record brain signals with a setup of 8 emitters
and 8 detectors positioned 3 cm from each other.

20-second rest period provided for participants to recover and
prepare for the next activity. This cycle of physical activity
and rest was repeated ten times in total. Finally, there was a
concluding 30-second rest period given to allow participants
to return to their normal state. Fig. 3 provides an illustration
of the experimental paradigm and Fig. 4 gives a view of the
experimental setup. To ensure accurate and consistent data
among all participants, explicit instructions were given not to
make unnecessary physical movements or gestures that could
introduce noise or artifacts into the collected data.

FIGURE 3. Schematic representation of the experimental paradigm.

D. DATA PREPROCESSING
The data preprocessing for the study involved using the
Satori 2.0 software developed by NIRx Medical Technolo-
gies, Germany. Initially, the raw data was imported, and
the necessary procedures and computations were performed
to process and analyze it. In fNIRS studies, data collected
from different channels often contains noise and artifacts
caused by factors like subject movement, respiration (around
0.3 Hz), heartbeat (around 1.0 Hz), and mayer waves [36].
Butterworth filter was applied with a range of 0.01 Hz to
0.3 Hz to remove physiological noises [37], [38]. Butterworth
filter is preferred because it can ensure a consistent frequency

117946 VOLUME 12, 2024



H. S. Minhas et al.: Enhancing Classification Accuracy of fNIRS-BCI for Gait Rehabilitation

FIGURE 4. (a) Montage of 8 × 8 with optodes placed on motor cortex
region of the brain; (b) Experimental setup with participant walking on
treadmill.

response within the desired range while effectively reducing
frequencies outside that range [39].

Following the filtration process, the modified Beer-
Lambert Law was applied to figure out how much
oxyhemoglobin (1HbO) and deoxyhemoglobin (1HbR)
changed [40], [41]. Using equation (1), the changes in1HbO
and 1HbR concentrations can be measured precisely, pro-
viding insight about the biochemical makeup of the of brain
tissues under consideration.

[
1[HbO]t
1[HbR]t

]
=

[
σHbO(ϕ1) σHbR(ϕ1)
σHbO(ϕ2) σHbR(ϕ2)

]−1 [
1OD(t,ϕ1)
1OD(t,ϕ2)

]
Lxd

(1)

where, σHbO(ϕ) and σHbR(ϕ) are the extinction coefficients
of 1HbO and 1HbR in the units of µM−1cm−1 respectively,
d is the differential path length factor, 1OD(t, ϕj) is the
optical density change of light, and L is the emitter-detector
distance measured in mm.

E. ACTIVATION MAPS
The brain activation maps were generated using Satori 2.0
software to visualize cognitive activity in different regions
of the brain. Brain activation refers to changes in 1HbO
levels detected by sensors observed from the beginning to
the end of a trial. Fig. 5 displays views of brain activation
regions for a single participant observed during activities
associated with the gait cycle for a single subject. These
activation regions hold importance as they reveal the spe-
cific areas of the brain that are engaged and more active
when the subject walks. By comprehending these activated
regions, brain regions responsible for controlling and coor-
dinating movement throughout the walking process can be
identified. During a gait cycle, primary sensorimotor cortex,
thalamus, and basal ganglia appeared to be more activated
which are in accordance with previous literature [42], [43].

FIGURE 5. Brain activation maps for gait activity with respect to rest
generated using Satori 2.0. a) Left View, b) Right View, c) Top View,
d) 3D View.

This information provides insights into how our brains
function and coordinate movements, which is benefi-
cial for research on motor control, rehabilitation, and
understanding neurological conditions that impact walking
abilities [44], [45].

F. FEATURE EXTRACTION
The data analysis involved extracting statistical features like
mean, peak, skewness, variance, slope, and kurtosis using
1HbO. A comparison was conducted with varying feature
combinations as three-, four-, five-, and six-feature com-
binations to achieve the optimal accuracy. The classifiers
used were K nearest neighbors (kNN), Linear Discriminant
Analysis (LDA), and Tree classifier. Calculations for all six
features were done as follows:

Mean =
1
N

∑N

j=1
Sj (2)

where N is the total number of observations and Sj shows
the 1HbO value across each observation. Variance was cal-
culated as:

Variance =
1

N − 1

∑N−1

k=1
(Sk − µ) (3)

where Sk is the input signal, N is the number of samples, and
µ is the computed mean value. Skewness is the measure of
asymmetry in the distribution, while kurtosis focuses on the
shape of the distribution’s tails, whether they are more peaked
or spread out. Skewness and kurtosis can be computed as:

Skewness(S) = Ex

(
S − δ

σ

)3

(4)

Kurtosis(S) = Ex

(
S − δ

σ

)4

(5)
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whereEx is the expected value of S and σ is the standard devi-
ation of S. The slope was calculated using the polyfit function
in MATLAB®. This function fits a line to the provided data
points. To find the maximum signal value (peak), the max
function in MATLAB® was employed.

G. OPTIMAL VALUE OF K
kNN is a machine learning algorithm that can be applied
to tasks involving classification. The value of ‘k’ repre-
sents the number of nearest neighbors considered in the
analysis. For classification of a new data point, the kNN
algorithm determines the nearest neighbors based on a dis-
tance measured [46]. The selection of the optimal value
of ‘k’ is important in determining the performance of the
kNN algorithm [47]. Selecting an appropriate value of ‘k’
in the kNN classifier is crucial for classification accuracy
and control command generation. Smaller value of ‘k-nearest
neighbors’ can make the algorithm too sensitive to noise [48],
causing inconsistent commands. On the other hand, a large
‘k-nearest neighbors ’ can smooth out important details, lead-
ing to less responsive control. Therefore, choosing an appro-
priate value of ‘k’ ensured that the exoskeleton responded
promptly to the user’s movements. To identify the optimal ‘k’
value, the elbow method is employed. This method plots the
performance metrics of the data against different ‘k’ values
and determining the point where precision increases [49].
Value of ‘k’ can be given as:

k =

√
N
2

(6)

where ‘N’ stands for the number of samples in the training
dataset. For training and testing the dataset through ten trials,
a 10-fold cross-validation technique was applied. It means
that for each trial, one of the 10 folds were used as validation
dataset while the remaining nine folds were used for training.

III. RESULTS
A. FEATURE COMBINATION
All possible feature combinations of three, four, five,
and six features were extracted using 1HbO for twenty
participants. An analysis was performed on all possi-
ble feature combinations to identify the one that yielded
the highest classification accuracy. Six-feature combination
(mean-peak-variance-skewness-kurtosis-slope) provided sig-
nificantly better classification accuracies as compared to the
other feature combinations which was verified by Student’s
t-test (p < 0.0141). Table 1 presents the accuracy of each
classifier for all feature combinations on the dataset. Fig. 6
illustrates the graphical comparison, highlighting the best-
performing classifier, which is kNNwith an average accuracy
of 88.19 ± 2.55%. A student’s t-test (p-value) was performed
to determine the significant difference between the mean
values of results of classification accuracies [50]. kNN per-
formed significantly better than other classifiers, therefore,
a student’s t-test was performed to indicate statistical signif-
icance by comparing the results of kNN with LDA and Tree

TABLE 1. Average classification accuracies of 20 subjects across multiple
feature combinations.

classifier. The values of both student’s t-tests were less than
0.05 i.e., p < 0.0141 for Tree and p < 1.6 × 10−38 for LDA
which shows that results are unlikely to have occurred under
the assumption.

The confusion matrix plays a vital role in evaluating the
performance of a classification model, especially when it
comes to distinguishing between walking and rest activi-
ties. It helps us understand how well the model correctly
categorizes instances into their respective classes. The real
importance lies in comprehending the values of true positives,
true negatives, false positives, and false negatives within the
specific application context [51]. For example, false positives
could result in the exoskeleton being activated during rest
periods, which might be inconvenient or uncomfortable for
the user. On the other hand, false negatives could mean
that the exoskeleton fails to provide assistance when needed
during walking activities. Having a higher number of true
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FIGURE 6. Average classification accuracies using different machine
learning algorithms.

positives and true negatives in the confusion matrix is very
important because it shows that the model is performing
well in accurately identifying both classes. Fig. 7 provides a
confusionmatrix for two different subjects. It can be observed
that for both subjects there are significantly higher numbers
of true positive and true negative. In terms of controlling the
lower limb exoskeleton, this means that the model is reliable
in activating the exoskeleton while walking and not activating
it during rest periods. This positive outcome ensures that
the exoskeleton responds appropriately duringmovement and
remains inactive when it’s not needed. This can contribute to
user comfort, safety, and effective support during walking.

FIGURE 7. (a) Confusion Matrix of Subject 2; (b) Confusion Matrix of
Subject 18.

For further analysis of themost optimal classifier, F1 score,
recall, and precision were examined for each subject. Among
all three measures, kNN demonstrated superior performance
with values of 0.926, 0.933, and 0.920 respectively. In the
context of this study, the importance of precision, recall,
and F1 score relies on the specific priorities of the applica-
tion [52]. If it is crucial to prevent unnecessary activation of
the exoskeleton while at rest, then precision becomes more
significant. On the other hand, if ensuring that the exoskeleton
activates when needed during walking is a priority, then recall
might hold greater importance. The F1 score offers a balanced
assessment when both precision and recall are equally impor-
tant considerations. In this case, precision is more important
because it is imperative to avoid activating the lower limb
exoskeleton when the user is in the rest position. Table 2
displays the F1 score, recall, and precision for each classifier

TABLE 2. Subject-wise evaluation matrices.
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TABLE 2. (Continued.) Subject-wise evaluation matrices.

across different subjects followed by a visual representation
in Fig. 8.

FIGURE 8. Average of evaluation matrices.

B. SIMULATED ONLINE
The simulated online configuration resembles real-time con-
figuration and was used to test proposed methodology in
likewise real-time settings. The commands for control of
an exoskeleton were generated in a simulated online con-
figuration. In this configuration, pre-recorded and unseen
trials were fed to the classifier in a real-time manner. The
simulated-online approach was applied solely to generate
control commands using proposed BCI methodology to stop
and trigger movement in exoskeleton.

The performance parameters of an exoskeleton leg can
be evaluated based on how closely it imitates the move-
ments of a natural leg. To do this, we can compare the
walking patterns of humans with those of robotic legs. The
effectiveness of rehabilitation for an individual with gait
impairment can be evaluated by assessing their ability to
replicate the movements of a healthy individual [53]. Gait
analysis provides us with the kinematic parameters needed
for modeling purposes. Fig. 9 represents the visual represen-
tation of BCI. In the field of BCI, the objective is to utilize
signals from the brain to generate control commands. These
signals undergo a four-stage process, involving preprocessing
to eliminate any experimental noise, psychological noise or
motion artifacts [54], extracting relevant data through feature
extraction, classifying the data using different techniques
and ultimately generating commands based on a trained

model [7]. We have preprocessed the data, extracted suitable
features, and obtained the optimal classification accuracies.
Now we need to generate control commands for the lower
limb exoskeleton. The commands for control of an exoskele-
tonwere generated in a simulated online configuration. In this
configuration, pre-recorded and unseen trials were fed to the
classifier in a real-time manner.

FIGURE 9. General illustration of BCI.

Attaining a seamless interface between the user and the
rehabilitation device is a challenge [55], [56] which can be
solved by windowing approach, it allows the exoskeleton
to adapt seamlessly to the user’s movements [24]. Sliding
windowing technique [57] was implemented to extract the
selected window as one sample, following the complete BCI
pipeline to generate control command. fNIRS signal was
sampled at 2.5 sec time window with 0.5 sec overlapping
time. By utilizing a five-featured combination—mean, vari-
ance, skewness, kurtosis, and slope—extracted from each
window, the fNIRS data was converted into binary control
commands. Two control commands were used: ‘Rest’ to
stop movement and ‘Active’ to trigger movement. The kNN
classifier, carefully tuned to an optimal k-value [58], emerged
as the preferred choice due to its significant accuracy in
simulated-online BCI application as shown in Table 3. This
study takes a step further in generation exoskeleton control
commands in a simulated online configuration by implement-
ing sliding windowing on fNIRS signal and utilizing a kNN
classifier.

IV. DISCUSSION
The integration of BCI with robotic exoskeletons repre-
sents a significant advancement in the field of mobility
assistance and rehabilitation. The findings of this study
focused on the selection of appropriate features and clas-
sification algorithms for optimal control of exoskeletons.
Through a comprehensive analysis, it was determined
that a six-feature combination i.e. mean-variance-skewness-
kurtosis-peak-slope yielded significantly better classification
accuracies, with the kNN algorithm outperforming other clas-
sifiers. This highlights the critical role of feature selection and
algorithm choice in achieving robust and accurate control of
exoskeletons.
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TABLE 3. Accuracies of 20 subjects for real-time bci using knn classifier.

Previously, a study conducted by García-Cossio et al. com-
puted the classification accuracy of 83.4 ± 7.4% between
passive and active walking during robotic-assisted treadmill
walking using EEG modality [59]. Another study conducted
on a lower-limb exoskeleton controlled by EEG signals
for gait training showed an average accuracy of 80.16 ±

5.44% [60]. The classification accuracy using the LDA
algorithm was 71.68% for controlling an exoskeleton reha-
bilitation robot based on motor imagery (MI) using EEG
signals [61]. Research conducted by Khan et al. presented a
novel fNIRS-BCI interface for controlling a prosthesis leg for
gait rehabilitation and results showed an average accuracy of
75% using SVM for 9 subjects [39]. Another study presented
the classification performance of fNIRS-BCI system for gait
rehabilitation and achieved classification accuracy of 73.91%
and 88.50% using kNN and convolutional neural networks
(CNNs), respectively [62]. The kNN classifier achieved high-
est accuracy of 88.19 ± 2.55% which is significantly better
than previous studies (i.e. 86.30%) conducted on BCI based
lower extremity prosthesis and exoskeletons [63]. The con-
fusion matrix revealed a high number of true positives and
true negatives, indicating the model’s effectiveness in activat-
ing the exoskeleton during walking and remaining inactive
during rest periods. This ensures user comfort, safety, and
targeted support. The high F1 score, precision, and recall fur-
ther emphasize the model’s ability to accurately distinguish
between walking and rest states, prioritizing the prevention
of unnecessary exoskeleton activation during rest.

Brain activation maps provided us with detailed insights
into the specific regions of the brain that are active when
gait activity is performed. Satori 2.0 software was utilized to
visualize the changes in levels of oxygenated haemoglobin
(1HbO). Brain images provide information about most acti-
vated regions of brain involved in coordinating movements
during walking [64]. Sliding windowing was implemented

for real-time analysis of fNIRS data. By dividing the fNIRS
dataset into time windows and utilizing a kNN classifier,
the study achieved seamless adaptation of the exoskeleton to
the user’s movements [65]. Selecting the suitable number of
neighbors is important in the kNN algorithm’s performance.
The elbow method was employed to determine the optimal
‘k’ value. This was done by plotting the model’s perfor-
mance metrics, such as accuracy, across various ‘k-nearest
neighbors’ values and identifying where the performance
peaks. This optimal six feature combination allows the kNN
algorithm to extract the most relevant information from the
fNIRS data, leading to a more accurate distinction between
walking and rest. Moreover, selection of optimal value of
‘k’ resulted in better classification accuracies of two-class
data than previous studies. The sliding window approach
allowed the system to analyze brain activity throughout the
experiment allowing the real-time adaptation to change in gait
patterns more effectively than previous methods.

The experimental paradigm is limited to only two classes
i.e. rest and walking. A paradigm with different walking
speeds or terrains might reveal more about brain activity
during gait. Furthermore, conducting an analysis across var-
ious gait cycles could further enhance understanding of the
neural activity in different brain regions. Implementation of
the real-time control of exoskeleton can be done to evaluate
its effectiveness in a real-world environment. Future research
could involve individuals with varying degrees of mobility
impairments that might affect gait patterns. This would pro-
vide detailed insight into the effectiveness of the fNIRS-BCI
system for controlling exoskeletons. Future research could
explore incorporating user feedback mechanisms to further
personalize and optimize control strategies. It would be ben-
eficial to investigate the potential of hybrid BCI modalities,
such as EEG which might offer higher temporal resolution or
different insights into brain activity during walking.

V. CONCLUSION
In this study, optimal feature combination, optimal classifier,
and optimal k-nearest neighbors were analyzed and selected
to improve the classification performance of fNIRS-BCI for
gait rehabilitation. Six-feature combination of mean-peak-
variance-skewness-kurtosis-slope was selected as optimal
feature combination for classification. Similarly, kNN classi-
fication algorithm performed better as compared to LDA and
Tree algorithms, with k-nearest neighbors estimated using
elbowmethod. The proposedmethodology attained enhanced
performance of fNIRS-BCI system as compared to conven-
tional methods and showed significantly (p < 0.005) better
performance with achieved average classification accuracy of
88.19 ± 2.55 %. The simulated-online approach was applied
to test proposed method in resemble to real-time settings.
Windowing of 2.5 sec was used and achieved average classifi-
cation accuracy of 97.54%. This provides improved intuitive
control of exoskeleton for assistive and gait rehabilitation
purposes.
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