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ABSTRACT Infertility is a common problem, affecting approximately one in six adults worldwide. Some
studies have shown that male factors contribute to infertility in up to 50% of couples. Intracytoplasmic sperm
injection (ICSI) is a common treatment for male infertility. This procedure requires a quick and accurate
determination of whether sperm are suitable for ICSI. However, this assessment requires expertise and is
time-consuming. Several computer-based systems for sperm analysis have been proposed to mitigate the
burden on experts. However, there are no systems that can consider both sperm motility and morphology,
or that can directly assess sperm suitability for ICSI. To address this problem, we constructed themulti-expert
rated sperm video dataset for analysis, that includes motion information and developed an end-to-end sperm
grade distribution estimation model using this dataset. Our model predicts a distribution that reflects multiple
expert assessments, and thus helps to easily determine the suitability of a given sperm for ICSI. To develop
this model, we conducted an exhaustive evaluation of various feature extractors and loss functions. Through
this analysis, TimeSformer was identified as the optimal feature extractor from sperm videos, improving on
average by 0.1 × 10−2 in MSE, 1.17% in grade distribution accuracy, and 3.41% in grade mode accuracy
compared to ResNet, an image recognition model. Moreover, we identified earth mover’s distance loss as
the most suitable loss function, particularly in segments with lower scores.

INDEX TERMS Medical assistance, automatic sperm analysis, end-to-end, video processing, earth mover’s
distance.

I. INTRODUCTION
Infertility is a widespread global concern, affecting approx-
imately 17.5% of adults, or about one in six people [1].
To address this issue, affordable and high-quality fertility care
is needed.

Some studies suggest that male factors contribute to
infertility in up to 50% of couples [2], [3], [4]. Therefore,
infertility treatment is important for both males and females.
Intracytoplasmic sperm injection (ICSI) is common treatment
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for male infertility. In ICSI, individual sperm cells are
meticulously selected and injected into eggs by experts.
In this process, it is important to quickly and accurately
classify sperm as either normal or abnormal. This assessment,
however, requires expertise and is time-consuming.

Several computer-based systems for sperm analysis have
been proposed to mitigate the burden on experts. However,
there are no systems that can consider both spermmotility and
morphology, or that can directly assess sperm suitability for
ICSI. Computer-assisted semen analysis (CASA) systems [5]
automated sperm analysis to some extent. This systems
provide sperm concentration, motility analysis, morphology
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FIGURE 1. Overview of our sperm grade estimation system. We collected multiple expert evaluations of sperm videos, curated
the multi-expert rated sperm video (MERSV) dataset for analysis, and developed an end-to-end sperm grade distribution
estimation model trained by this dataset. By referring to the sperm grade distributions predicted by our model, experts can
reduce their workload.

assessment, but they cannot assess sperm considering both
motility and morphology and do not assess sperm suitability
for ICSI. There are also several studies usedmachine learning
[6], [7], [8], [9], [10], [11], [12]. However, they focused
primarily on sperm images and ignored the crucial aspects,
motion information and cannot assess sperm suitability for
ICSI.

To address this problem, we collected multiple expert
evaluations of sperm videos, curated the multi-expert rated
sperm video (MERSV) dataset for analysis, that included
motion information, and developed an end-to-end sperm
grade distribution estimation model trained by this dataset.
Figure1 illustrates this process. Owing to the end-to-end
inference from the video, thismodel can consider bothmotion
and morphology. The predicted distribution reflecting the
evaluations of multiple experts, can easily help determine
the suitability of a particular sperm for ICSI. By referring to
predicted sperm grade distributions, experts can efficiently
select a sperm from multiple candidates without the need
to check all sperm. Furthermore, the collected dataset and
predicted sperm grade distribution can be valuable resources
for professional development. Therefore, our system can
significantly help to reduce the workload for experts.

There are two questions in developing the end-to-end
sperm grade distribution estimation model. First, how to
extract sperm motion and morphological features from video
data. Second, which loss function is appropriate for a model
to estimate the grade distribution. To answer these research
questions, we conducted a thorough comparison of models
based on different feature extractors and loss functions.
We considered three video feature extractors: R(2+1)D,

SlowFast and TimeSformer, and four loss functions: mean
squared error loss (MSE), cross entropy loss (CE), Jensen-
Shannon divergence loss (JSD), and earth mover’s distance
loss (EMD). From the experimental results of the model
comparison, TimeSformer emerged as the most promising
choice among the video recognition models, and outperform
the image-recognition model. This result suggests that
image-based analysis is not sufficient for comprehensive
sperm analysis, which highlights the importance of video-
based analysis. In addition, our experimental results compar-
ing loss functions indicate that EMD performs best, showing
superior performance especially for lower scoring segment
samples.

Our contributions can be summed up in three points:
• We constructed the multi-expert rated sperm video
(MERSV) dataset and proposed an end-to-end sperm
grade distribution estimation system based on videos
that helps to reduce expert’s workload for ICSI.

• We analyzed three feature extractors and found that
TimeSformer was themost effective feature extractor for
video-based sperm analysis, that outperforms ResNet
and highlights the indispensability of video data.

• Earth mover’s distance (EMD) loss was identified as
the most suitable loss function for the estimating grade
distribution and demonstrated its superior performance
in lower-scoring segment samples.

The rest of this paper is organised as follows. In SectionII,
we briefly present previous work that includes machine
learning approaches for sperm assessment, video recognition
models and label distribution learning. SectionIII describes
details of our compiled MERSV dataset. In SectionIV,
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we explains details of our proposed sperm grade distribution
estimation model. SectionsV shows the experimental setup
for comparing of models based on different feature extractors
and loss functions and the results. Finally, SectionVI presents
the conclusions.

II. RELATED WORK
A. DATASETS AND MACHINE LEARNING APPROACHES
FOR SPERM ASSESSMENT
Machine learning have been used on healthcare and
medicine [13], [14], [15], [16], [17]. Severalmachine learning
methods have been proposed for sperm morphology analysis
too. The methods were validated using three datasets:
SMIDS, HuSHeM and SCIAN.

The Sperm Morphology Image (SMIDS) dataset was con-
structed by the Medical Faculty of Istanbul University using
smartphone-based data acquisition [6]. It included 3,000
segmented RGB sperm images labeled as normal(1,021),
abnormal(1,005) and non-sperm(974) by an expert.

The Human Sperm Head Morphology (HuSHeM) dataset
was curated from sperm samples of 15 patients at the
Isfahan Fertility and Infertility Center [7]. This dataset
included 216 RGB images of 131 × 131 pixels, which
were classified by three experts as Normal(54), Tapered(53),
Pyriform(57), and Amorphous(52), with consensus among
the three experts.

The Laboratory for Scientific Image Analysis Gold-
Standard for Morphological Sperm Analysis (SCIAN)
dataset consists of sperm samples from the Medical Fac-
ulty of Chile University [8]. It included 1132 grayscale
images of sperm head images in 35 × 35 pixels formats,
labeled as Normal(100), Tapered(228), Pyriform(76), Amor-
phous(656), and Small(72). These images were labeled by
three experts, and samples were selected for which at least
two out of three experts agreed. Both the HuSHeM dataset
and the SCIAN dataset are annotated based on the sperm
morphological categories provided by the World Health
Organization (WHO) [18].
Numerous studies used image recognition models, par-

ticularly CNN-based models. Riordon et al. [9] fine-tuned
a pre-trained VGG16 from ImageNet. Spencer et al. [10]
combined VGG16, VGG19, ResNet-34 and DenseNet-161
using a multi-class meta-classifier. Yüzkat et al. [11]
proposed six CNN models and conbined their decisions
with soft-voting. Non-CNN methods were also introduced.
Ilhan et al. [12] presented a computational framework using
multi-stage cascade-connected preprocessing techniques,
region-based descriptor features, and non-linear kernel
SVM-based learning.

However, these approaches do not consider sperm move-
ment and, focus exclusively on sperm images. Therefore,
we compiled the MERSV dataset that can be analyzed
including movement information. Using this dataset, an end-
to-end sperm grade distribution estimation model was
developed.

B. VIDEO RECOGNITION MODELS
Deep learning is used for video data analysis such as human
action recognition [19], [20], [21], [22], [23], [24], [25],
surveillance system [26], [27] and visual speech recognition
[28], [29]. Video recognition models, mainly used for
action recognition, have evolved in parallel with image
recognition models such as ResNet [30]. These models can
be broadly classified into two categories: CNN-based and
transformer-based models.

CNN-based video recognition models began with R3D
[19], which extended 2D convolution to 3D. However,
owing to the large number of parameters, R3D’s perfor-
mance is limited. R(2+1)D [20] addressed this problem
by pseudo-representing a 3D convolution by a 2D + 1D
convolution, resulting in a reduction of parameters and
improved performance. SlowFast [21] further improved
performance by extracting features from videos with different
frame rates. It incorporates a slow pathway that focuses on
shape, and a fast pathway, that emphasizes motion.

Transformer-based video recognition models began with
ViViT [22], which was inspired by the transformer-based
image recognition model ViT [31]. TimeSformer [23]
introduced divided space-time attention, which was superior
to various self-attention methods in terms of computational
complexity and accuracy, and achieved improved accuracy.

We focus on commonly used video recognition models
such as R(2+1)D and SlowFast, which are advanced
CNN-based video recognition models, and TimeSformer,
an advanced transformer-based video recognition model.
These models are used as video feature extractors in this
study.

There are alternative methods for extracting features from
a video using video coding techniques that involve motion
estimation. In their work, Kumar et al. [32] proposed the
K-MCSP algorithm for motion estimation, which incorpo-
rates a non-linear function as opposed to MCSP, which
uses a linear function. This modification results in reduced
computational complexity while minimizing PSNR variation
during reconstruction.We didn’t employ this method because
it requires learning the acquisition of features to be extracted
from a video based on a grade distribution that reflects
multiple expert assessments in the training data.

In addition to frame features, there are studies that have
achieved high accuracy by incorporating new task-specific
features. Cao et al. [33] proposed e-TSN, a TSN network
for hand gesture recognition that incorporates hand skeletal
features instead of optical flow. In this study, in addition to
the video frame features of the detected sperm, the speed
calculated from the position information obtained during
detection is added as a feature.

C. LABEL DISTRIBUTION LEARNING
Geng introduced the concept of a label distribution which
includes different degrees of description across multi-
ple labels, and investigated the best algorithm [34].
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FIGURE 2. Six examples from our (MERSV) dataset. It shows 4 out of a 16 video frames (left) and their grade distribution (right) in each sample. Top
samples, good; middle samples, medium; bottom samples show examples of concentrated bad ratings. Samples on the left side are examples of low
variability in ratings, while samples on the right side are examples of high variability in ratings.

FIGURE 3. Statistical analysis of the results of multiple experts ratings (grade distribution). Left (a): Joint histogram of
the mean and standard deviations of grade scores. Right (b): Histograms of the grade mode score. Grade mode score is
the most frequently evaluated grade score. These graphs show that most of the samples had grade distributions
concentrated in B(2) and C(3).

Gao et al. [35] subsequently demonstrated the effectiveness
of end-to-end learning with KL-Divergence for tasks with
label distributions.

In our context, the grade distribution serves as the
estimation target. This distribution is a special case of a
label distribution whose labels have an ordinal relationship.
Consequently, we propose using earth mover’s distance for
estimating the grade distribution, as this metric considers the
distances between labels within the distribution.

III. MULTI-EXPERT RATED SPERM VIDEO (MERSV)
DATASET
A. DATASET CONSTRUCTION
We compiled the multi-experts rated sperm video (MERSV)
dataset for precise sperm assessment. The dataset included
615 videos recorded under a microscope, with each video
having a grade distribution determined by annotations from
approximately 40 experts. The study was approved by Ethics
Committee for Medical and Biological Research Involving
Human Subjects No. 2023-27.

1) SPERM VIDEO RECORDING METHOD
The videos were filmed in the semen of patients who
had undergone ICSI treatment with consent. The number

of patients is 615, which corresponds to the number of
videos. Consent has been obtained from all patients for
the collection and utilization of data. Sperm suspensions
for video recording were prepared using density-gradient
centrifugation followed by the swim-up method to obtain
sperm with good motility. Video recording was conducted
using an Olympus IX73 microscope. Due to variations in the
thickness of the sperm suspension, the focus and light source
were adjusted accordingly for each recording. Other settings
are consistent with those described in [36].

2) DETAILS OF RECORDED SPERM VIDEO
The videos were recorded at a rate of 15 frames per second
(fps). Each frame had a resolution of 1392 × 976 pixels.
Each frame was annotated using a 150 × 150 bounding box
to focus on a single sperm. We performed this bounding
box annotation by tagging the target sperm in the first
frame, and then tracking it throughout the video using
template-matching techniques.

3) SPERM EVALUATION BY MULTIPLE EXPERTS
The experts assessed the sperm using a five-grade grad-
ing system: A(good), B(better), C(middle), D(worse), and
E(bad). We refer to these labels as ‘‘grade class labels.’’ By
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combining the experts ratings, we obtain a distribution, which
we refer to as ‘‘grade distribution.’’

Figure2 shows examples of sperm videos and their grade
distributions. The sufficiency of the video data quantity is
discussed in SectionVI-A. While we cannot publish this
dataset now, we plan to make it public in the future.

B. STATISTICS OF GRADE DISTRIBUTION
The total number of expert ratings collected was 24,533.
For statistical analysis, we represented grade class labels as
categorical variables using assigned numerical grade scores
to them: A,1; B,2; C,3; D,4; and E,5. The means and
standard deviations of the grade distributions are shown in
Figure3(a). We refer to the most frequently evaluated grade
class label/score as the ‘‘grade mode class label/score.’’
Histograms illustrating the grademode class scores are shown
in Figure3(b). These graphs show that most of the samples
had grade distributions concentrated in B(2) and C(3). When
training a model with this dataset, data imbalance may occur.
Therefore, evaluation results for each grade mode class label
should be examined.

C. GRADE DISTRIBUTION ESTIMATION TASK
The grade distribution prediction task is referred to as
the ‘‘grade distribution estimation task.’’ As mentioned in
SectionIII-A, grade distribution consists of grade class labels
that have been annotated by multiple experts. The grade
distribution was normalized by dividing it by the number of
experts, to ensure that the sum of its values was 1. Therefore,
each value in the grade distribution represents the probability
of each grade class (yi represents the probability of the i-th
grade class). Grade distribution can be viewed as a special
version of both single and multi-label annotations. Up to this
point, the grade distribution shares similarities with the label
distribution [34]. However, there are ordering relationships
between the class labels within the grade distribution.

IV. SPERM GRADE DISTRIBUTION ESTIMATION MODEL
A. MODEL STRUCTURE
We propose a sperm grade distribution estimation model for
automated sperm assessment and provide an overview of the
model in Figure4. Thismodel predicts grade distribution from
detected frames and sperm positions.

Our proposed sperm grade estimation model is based
on a video recognition model architecture. More explicitly,
we examined three video recognition model architectures:
R(2+1)D [20], SlowFast [21], and TimeSformer [23]. The
video recognition models were used as feature extractors
(Backbone). The last layer (Head) outputs the grade dis-
tribution based on the extracted features and sperm speed.
To achieve this, we replaced the last layer of the video
recognition model with five neurons, followed by Soft-max
activation. The mathematical representation of the sperm
grade distribution estimation model’s process flow is as

follows.

ŷ = H (B(x), v) (1)

Here, y represents the predicted grade distribution, H stands
for the model head, B denotes the video feature extractor in
the model, x represents the detected sperm video frames, and
v corresponds to the sperm speed.

In addition, we prepared an image-based model as a
baseline for comparison. We believe that video information
is necessary for sperm analysis, as image information alone
is not adequate, and demonstrate this in later experiments.

B. LOSS FUNCTION
There is a lack of research that clarifies the appropriate loss
function for grade distribution estimation tasks. Four loss
functions were prepared to determine the best loss function
for this task: cross entropy loss (CE), mean squared error
loss (MSE), Jensen-Shannon divergence loss (JSD) and earth
mover’s distance loss (EMD).

1) CROSS ENTROPY LOSS (CE)
CE is widely used as a training loss in classification tasks.

LCE (p, q) = −

n∑
i=1

pi log(qi) (2)

The true grade distribution is denoted by p, the ith true
grade class probability is denoted by pi. The predicted grade
distribution is denoted by q, the ith predicted grade class
probability is denoted by qi, and the number of grade classes
is denoted by n.

2) MEAN SQUARED ERROR (MSE)
MSE is widely used as a training loss function for regression
tasks.

LMSE (p, q) =
1
n

n∑
i=1

(pi − qi)2 (3)

3) JENSEN-SHANNON DIVERGENCE (JSD)
JSD measures the difference between two probability dis-
tributions. JSD is based on the Kullback-Leibler divergence
(KLD), but it differs in that it is symmetric and always has a
finite value.

LJS (p, q) =
1
2
LKL

(
p,
p+ q
2

)
+

1
2
LKL

(
q,
p+ q
2

)
(4)

LKL(p, q) =

n∑
i=1

pi log
pi
qi

(5)

These three loss functions lack the inter-class relationships
between score buckets.

4) EARTH MOVER’S DISTANCE (EMD)
EMD is defined as the minimum cost of transporting the mass
from one distribution to another. The EMD is also known
as the Wasserstein distance. It is used as a loss function
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FIGURE 4. Overview of sperm grade distribution estimation model. This model predicts grade distribution from detected frames and sperm positions.
In our model, video recognition model is used as feature extractor (Backbone) and the last layer (Head) outputs the grade distribution based on
extracted features and sperm speed.

in various scenarios, such as order-class classification [37],
[38], [39], adversarial training [40], and modality alignment
learning [41]. In classification tasks where labels have strong
relationships, EMD-based losses yield better results than
other loss functions [37]. EMD can be solved exactly in
closed form if the sums of the distributions are equal and
the class space can be represented by a one-dimensional
embedding. If the sums of the distributions are equal and
the class space can be represented by a one-dimensional
embedding, then an exact closed-form solution can be
obtained [42]. The graded distributions considered in this
study satisfy these conditions. Because the grade classes have
an ordering relation of 1(A) < 2(B) < 3(C) < 4(D) < 5(E),
the ground distance matrix of the grade class labels has a one
dimensional embedding. In Addition, the two distributions,
p and q have equal mass.:

∑n
i=1 pi =

∑n
i=1 qi. Consequently,

EMD can be computed exactly and in closed-form. As in [37],
we use the Euclidean distance between the CDFs, which
allows easier optimization with gradient descent.

LEMD(p, q) =

n∑
i=1

(CDFi(p) − CDFi(q))2 (6)

V. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETTINGS
1) DATASETS
We used the MERSV Dataset described in SectionIII. For
evaluation, a stratified 3-fold cross-validation was performed,
considering the grade mode class as a label. This ensured that
the distribution of the number of grade mode classes in the
training samples remained the same in the validation samples.

In each fold, the number of training data was 492, while for
the test data, it was 123 and there is no confusion between
videos of the same patient in train and test data. As each
video differs in length, only the initial second, equivalent
to 16 frames, is utilized. Additionally, fair sampling was
performed such that the number of each grade mode class
in training samples remained the same as that in validation
samples. To align with the pretrained models, we utilize
upsampled frames/images of size 224 × 224 from 150 ×

150. Data augmentations, such as random rotation and color
jittering, were also applied to improve the robustness of our
model.

2) IMPLEMENTATION DETAILS
The sperm grade distribution estimation models presented in
this study were implemented using PyTorch [43]. We used a
pretrained image/video recognition model as the image/video
feature extractor (Backbone). Specifically, ResNet [30] was
used as the image feature extractor. In this image-based
model, predictions were obtained from all 16 frames and eval-
uated individually. For the video feature extractor, we used
R(2+1)D [20], SlowFast [21] and TimeSformer [23]. In these
video-based model, predictions were generated by analyzing
frames extracted at evenly spaced intervals, specifically
8 out of a total 16 frames. The last fully-connected layer
is randomly initialized. In training, we used the stochastic
gradient descent (SGD) optimizer in all experiments with a
learning rate of 1e-3, momentum of 0.9, and weight decay of
5e-4. The models were trained for 1,000 epochs. The batch
size was different for each model (32:ResNet, 16:SlowFast,
8:R(2+1)D, TimeSformer).
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TABLE 1. Performance of the grade distribution models for different backbone models and loss function settings. For a more detailed analysis,
we compared backbone models (Table2) and loss functions (Table3).

3) EVALUATION METRICS
We employed multiple evaluation metrics to accurately
ascertain the performance among models and loss functions.
To evaluate distribution differences, We used EMD, MSE,
JSD and CE. For a fair evaluation of the loss functions,
the histogram intersection (HI) [44], which is not used as
a loss function, was used as an evaluation metric. The
HI is a similarity measure that quantifies the degree of
overlap between two histograms. We defined HI as ‘‘grade
distribution accuracy’’.

HI (p, q) =

n∑
i=1

min(pi, qi) (7)

The grade distribution estimation task includes the grade
mode classification aspect. To evaluate this aspect under
the label imbalance, we used the macro F1 score (Macro
F1). We also show the (grade mode) accuracy score which
provides a clear understanding of the quality of our models’
predictions, however, accuracy cannot accurately evaluate
performance under the label imbalance. Therefore, we did
not utilize accuracy in our detailed analysis. In Addition,
to evaluate the robustness of grade mode class of the true
distribution in the presence of distributional differences,
a macro histogram intersection (Macro HI) was used.
We define the Macro HI as the mean HI of each grade mode
class.

B. RESULTS
Table1 shows the performance of the grade distribution
estimation models for different backbone models and loss
function settings. Lower values of EMD, MSE, JSD, and
CE indicate higher performance, whereas higher values of
HI(Macro HI) and MacroF1 indicate higher performance.
We analyzed these results by comparing the backbonemodels
and the loss functions.

TABLE 2. Comparison between backbone models in terms of ranking for
each metric and overall average.

TABLE 3. Comparison between loss functions in terms of ranking for
each metric and overall average.

1) COMPARISON BETWEEN BACKBONE MODELS
For the each loss function, we ranked the models and
compared them based on their average rankings across the
different evaluation metrics.

Table2 shows the average rankings of each metrics and
their averages. For all metrics, the average rankings of the
models exhibited similar trends. TimeSformer consistently
outperformed all other models in all metrics, while R(2+1)D
the lowest in almost all metrics. TimeSformer improved on
average by 0.1 × 10−2 in MSE and 1.17% in HI (grade
distribution accuracy) compared to ResNet, an image-based
model. The superior performance of TimeSformer can be
attributed to its effective feature extraction from the video
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FIGURE 5. Learning curves of each loss functions in test data. The number within the parentheses indicates the epoch at which the model performs
best.

TABLE 4. Accuracy in grade mode class. Note that this accuracy is assessed under label imbalance.

TABLE 5. Top 25/50/75% HI results for different backbone models and loss function settings. For a more detailed analysis, we compared backbone
models (Table6) and loss functions (Table7).

data. However, R(2+1)D legs behind ResNet. Video-based
models have the potential to perform better than image-based
models because they can use not only shape but also motion
information. However, if the video-based model fails to
extract features, as is the case in R(2+1)D, its performance is
inferior to that of image-based model.

2) COMPARISON BETWEEN LOSS FUNCTIONS
For each model, we ranked the loss functions and compared
them based on their average rankings across different
evaluation metrics.

Table3 shows the average rankings for each metric and
overall averages. For all loss functions, the average ranking
was the highest when the metric was identical to the loss
function. EMD had the best average ranking, indicating
that it was the most appropriate function for the grade
distribution estimation task. Conversely, CE was the lowest
for almost all metrics, suggesting that it was not suitable

for the grade distribution estimation task. However, in some
cases, CE demonstrated superior performance compared to
other loss functions with respect to MacroF1, indicating its
suitability for classification tasks. JSD outperformed CE,
however, lagged behind EMD or MSE in average rating.

3) OBSERVATIONS DURING TRAINING
Figure5 shows the learning curves of test data for each loss
function. The numbers within parentheses indicate the epochs
inwhich themodel performed best. These graphs confirm that
all models exhibited well-converged learning. Additionally,
it is evident that TimeSformer consistently attained the lowest
value in the earliest epochs for all loss functions, indicating
efficient and rapid convergence during training.

4) ACCURACY IN GRADE MODE CLASS
We also assessed the accuracy of our models in grade mode
(grade mode accuracy), and Table4 shows the results. Note
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FIGURE 6. Distributions of HI for each grade mode class label. For a more detailed analysis, we focused on specific segments of the HI score
distribution (Table5). The blue dotted line shows the average HI score.

that this accuracy is assessed under label imbalance. The
accuracy ranges from 65% to 70%. On average, TimeSformer
shows a 3.41% improvement compared to ResNet and video
recognition models outperform ResNet, an image-based
model, in almost all loss functions. These results reinforce
the need for video-based analysis of sperm.

C. ANALYSIS OF HI DISTRIBUTION IN TEST DATA
Wealso compared theHI distributions in the test data. Figure6
shows the HI distributions for each grade mode class label
and the blue dotted line shows the average HI. To analyze
these distributions, we focused on specific segments of the
HI score distribution, namely, the higher (Top25%), middle
(Top50%), and lower (Top75%) segments. Table5 lists the
Top25/50/75% HI results, which we analyzed by comparing
backbone models and loss functions below.

1) COMPARISON BETWEEN BACKBONE MODELS
For each loss function, we ranked the backbone models and
compared them based on their average rankings from the
results in Table5. Table6 lists the average rankings for each
metric and overall averages.

TABLE 6. Comparison of the Top25/50/75% of HI between backbone
models.

Analyzing Table6, it is found that TimeSformer per-
forms exceptionally well across all segments of the HI
score, indicating its superiority in this dataset, which
is consistent with the findings in SectionV-B. SlowFast
outperformed ResNet in the Top25% segment, however,
it performed worse than ResNet in the Top50% and 75%
of the segments. This discrepancy suggests that SlowFast
has difficulty effectively extracting generic features from
video data. R(2+1)D consistently lagged behind ResNet
in all the segments. This result is consistent with our
observations in SectionV-B, suggesting that R(2+1)D cannot
effectively extract the appropriate features from the video
data.
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2) COMPARISON BETWEEN LOSS FUNCTIONS
For each models, we ranked the loss functions and compared
them based on their average rankings from the results in
Table5.

Table7 lists a summary of the average rankings for each
loss function across the various metrics. Upon analyzing
the overall average, it is found that EMD was the best
among the loss functions. Specifically, EMD outperformed
the other loss functions in the Top50% and Top75% HI score
segments. This can be attributed to ability of EMD to consider
the relationships between grade classes and prevent fatal
mistakes in the grade distribution estimation task. Particularly
in the medical domain, it is important to guarantee the worst
score from the perspective of reliability. Therefore, EMD
is a suitable choice for practical applications. Conversely,
CE performed the worst among all the loss functions.
Similar to the findings presented in SectionV-B, these results
reinforce the unsuitability of CE for the grade distribution
estimation task.

TABLE 7. Comparison of the top25/50/75% of HI between loss functions.

From the analysis so far, that the best Backbone is
TimeSformer, and the best loss function is EMD. We visual-
ized the latent space of our model in this setting and discussed
the sufficiency of the quantity of video data in SectionVI-A.

VI. CONCLUSION
In this study, we curated the MERSV dataset and proposed
a model for end-to-end sperm grade distribution estimation
from videos to contribute to reduce experts workload
in sperm selection for ICSI. Based on our experimental
results, TimeSformer is the most promising of the video
recognition models and outperforms the image recognition
model ResNet. This result indicates that image-based analysis
is insufficient for comprehensive sperm analysis, which
highlights the importance of video-based analysis. We also
identified the EMD as the most suitable loss function for the
grade distribution estimation task, demonstrating its superior
performance in lower-scoring segment samples.

However, our study has three limitations. Firstly, we cannot
evaluate our models on multiple databases because there are
no datasets with sperm videos and multi-expert annotations.
In adddition, our dataset cannot be published now. Therefore,
we will keep collecting new data and prepare to publish
our dataset in the future. Secondly, the video model has a
higher number of parameters than the image model, which
may make it difficult to use in the clinics and reduce the
inference speed (see SectionVI-B). Therefore, we will also
work on model compression or build a new effective model in

the future. Thirdly, although we assessed the performance of
our proposed model in estimating grade distributions, we are
unable to gauge its effectiveness in reducing the workload for
experts. Hense, we aim to introduce this system into clinical
environments and validate its effectiveness.

APPENDIX
A. VIDEO FEATURE DISTRIBUTIONS AND DATASET SIZE
DISCUSSION
We checked the distribution of video features in our dataset
using 768 dimensional features extracted from the TimeS-
former trained by EMD. Figure7 shows that 2-dimensional
video features compressed from 768 dimensions by PCA. The
proportion of the variance for the first principal component
(PC1) was 69%, while for the second principal component
(PC2), it was 4.7%. The color of the points in this plot shows
that the grade mode score of each sample. In this plot, moving
towards the upper right causes the samples to become reddish,
while moving towards the lower left causes the samples to
become bluish. This confirms that TimeSformer can extract
appropriate features from a video.

FIGURE 7. Feature distribution of TimeSformer-EMD compressed by PCA.

Figure8(a) shows the histogram of PC1 with an added bias
to prevent negative values from appearing, while Figure8(b)
presents the logarithmically transformed version of the PC1.
The mean of logarithmically transformed PC1 (µ) was 3.15,
while for the standard deviation (σ ) it was 0.82. The orange
line in this plot represents a normal distribution with a mean
of µ and a standard deviation of σ . If the distribution of PC1
approximates the orange line, the population mean can be
estimated.

The number of samples (n) is 615 and we can get the 95%
confidence interval range (µr ) in the following equation.

µr = 1.96 ×

√
σ 2

n
= 1.96 ×

√
0.822

615
≒ 0.065 (8)

µr is somewhat small relative to µ, which suggests that the
number of samples in our dataset is adequate.
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FIGURE 8. PC1 Distribution. Left(a): The histogram of PC1 with an added
bias to prevent negative values from appearing. Right(b): The histogram
of the logarithmically transformed version of the PC1.

B. MODEL INFERENCE TIME
We measured the inference speed and show the results and
the number of parameters in Table8. The measurement of
inference speed was conducted with a batch size of 8 using
Intel(R) Core(TM) i9-10940X CPU for use in a medical
setting.

TABLE 8. Model inference time with a batch size of 8.
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