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ABSTRACT Concrete architectural structures are widely used in urban construction, making the health
diagnosis and maintenance of these structures increasingly essential and urgent. Crack identification is
crucial for maintaining the structural integrity and safety of buildings. Traditional methods rely on manual
inspection, which is plagued by low accuracy, inefficiency, and safety hazards. This paper proposes a
technique combining an attention-based SqueezeNet network with Gradient-weighted Class Activation
Mapping (Grad-CAM) for automatically recognizing and visually explaining building cracks. By integrating
the Squeeze-and-Excitation (SE) attention mechanism with the lightweight SqueezeNet network, this
method can adaptively adjust the importance of feature channels by learning global information, effectively
improving the network’s accuracy and efficiency. The experimental results show that the Att-SqueezeNet
model achieved a high precision of 0.995, a training time of only 133 seconds, and a model size of 4.9M,
significantly outperformingmodels such as SqueezeNet, RF, CNN,VGG-19, and B-CNN. This demonstrates
its robustness, rapid identification and suitability for practical applications and building crack identification.
Moreover, the utilization of Grad-CAM for visualization not only offers an intuitive explanation of the
model’s decision-making process but also provides a more comprehensible understanding of crack detection
results. This is crucial for advancing building maintenance automation, reducing reliance on manual labor,
and increasing the precision and reliability of detection tasks.

INDEX TERMS Crack identification, SqueezeNet network, SE attention mechanism, Grad-CAM, model
interpretability.

I. INTRODUCTION
With the development of China’s modernization, the con-
struction of residential and commercial buildings plays a
vital role in economic growth. However, these structures are
often compromised by the widespread presence of structural
cracks, which can be attributed to various factors, including
material defects, structural design issues, and environmental
influences [1] Cracks serve as critical indicators for assessing
the safety and stability of structures, playing an essential
role in maintaining the long-term usability of buildings and
ensuring the safety of their occupants [2], [3] Within the
field of structural engineering, cracks not only signify the
natural consequences of material aging and wear but can
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also indicate improper design, construction quality issues,
or the impacts of external environmental factors. As buildings
age, the potential for cracks to expand and compromise the
structure’s overall stability increases, potentially endanger-
ing the safety of residents. Thus, the timely detection and
accurate assessment of the nature of these cracks are crucial
steps in preventing potential structural failures. This proactive
approach towards identifying and evaluating cracks empha-
sizes the importance of regular inspections and the use of
advanced diagnostic tools, ensuring that early signs of deteri-
oration are addressed promptly to safeguard the integrity and
longevity of structural systems [4]
Crack detection and analysis are indispensable parts of

structural safety evaluations, encompassing a variety of
techniques from visual inspections to cutting-edge non-
destructive testing methods [5] These approaches not only
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aid in identifying the existence of cracks but also in under-
standing their progression and potential impacts on the
structure [6] In structural engineering, traditional methods
of crack identification predominantly involve manual inspec-
tions, inherently limited by their dependence on human
observation [7] This methodology is fraught with subjec-
tivity, potentially leading to oversights and inaccuracies in
identifying structural defects. Moreover, the effectiveness
of manual inspections largely hinges on the inspector’s ini-
tiative and diligence. Factors such as hazardous working
conditions and inaccessible inspection environments sig-
nificantly undermine the reliability of crack inspections.
While technologies like ultra-sonic testing and magnetic
particle inspection can provide more accurate results, their
high equipment costs, complex operation, and limitations
in applicability on large-scale or hard-to-reach structures
restrict their efficiency and accuracy in crack monitoring [8]
These limitations highlight the necessity for more advanced,
technology-driven solutions to ensure accurate, safe, and
efficient assessments of structural cracks. The adoption of
such sophisticated methods could mitigate the challenges
posed by traditional techniques, offering a more reliable and
comprehensive approach to structural integrity evaluation.

With the rapid advancement of deep learning technology,
crack identification methods based on deep learning have
demonstrated significant advantages. The application of deep
learning in crack identification marks a substantial shift from
traditional approaches to new technology, eliminating the
need for predefined crack features or extensive image pre-
processing [9] Instead, deep learning techniques learn from
a vast array of samples and automatically extract features,
thus facilitating the recognition and extraction of cracks [10]
Compared to traditional methods, deep learning can not only
process a large volume of data but also enhance identifica-
tion accuracy through learning, especially in detecting cracks
under complex backgrounds or in blurred conditions [11] A
notable advancement in this field is the use of convolutional
neural networks, which effectively address the issue of input
image size limitation inherent in traditional neural networks.
These networks are capable of processing images of varying
dimensions, making them more adaptable to different sce-
narios in structural health monitoring. Moreover, the high
degree of automation in deep learning methods significantly
reduces the workload of manual inspections, offering a more
efficient and reliable solution for crack monitoring. However,
deep learning models with complex architectures typically
comprise numerous parameters, demanding high compu-
tational complexity and storage capacity. The lightweight
approaches of deep learning models aim to reduce model
parameters, lower computational complexity, decrease stor-
age requirements, get rapid identification while maintaining
high performance, and enhance the model’s generalization
ability. These advancements contribute to a more practi-
cal and effective framework for detecting and monitoring
structural cracks, facilitating their adoption in real-world
applications [12]

Moreover, neural networks are often criticized due to their
lack of interpretability. Functioning as a ‘‘black box’’, these
models do not readily provide an understanding of the logic
behind their decisions, making it challenging to assess the
accuracy of the structure and diagnose the reasons for incor-
rect outcomes. Research into the interpretability of neural
networks is crucial for enhancing the trust and reliability of
decision-making. In short, this study introduces a method that
combines the SqueezeNet network with Grad-CAM technol-
ogy for crack identification and interpretation. SqueezeNet
is a lightweight deep learning model with a compact struc-
ture and high efficiency, particularly suited for applications
requiring rapid processing and low resource consumption.
By incorporating an attention mechanism into SqueezeNet,
our method focuses more on the crack regions within images,
improving identification accuracy [13] At the same time,
the use of Grad-CAM technology for visual interpretation
of the identification results not only enhances the model’s
transparency but also provides an intuitive understanding of
crack detection, aiding professionals in further analysis and
decision-making. This approach, which combines efficient
identification and interpretative capabilities, can make an
adaptive network and offer new research directions and prac-
tical application prospects in the field of crack monitoring.

The remainder of the article is as follows: Section II pro-
vides the literature review. Section III describes the detailed
methodology. Section IV conducts the validation of the
approach through a case study. Section V outlines the con-
clusions and directions for future research.

II. LITERATURE REVIEW
A. CNNs FOR CRACK IDENTIFICATION
Convolutional Neural Networks (CNNs) have revolutionized
the field of crack identification and analysis, offering sig-
nificant advantages over traditional methods. By inputting
a crack image into a CNN, the network can learn and
extract crucial feature representations through a series of
convolution and pooling operations. This process enables the
CNN to detect local patterns, edges, and textures within the
crack image, which are essential for accurately classifying
and locating cracks [14] One of the primary strengths of
CNNs lies in their adaptability and generalization capabil-
ity [5] Through multiple layers of convolution and pooling,
CNNs can learn complex characteristics of fractures, allow-
ing them to handle cracks of varying sizes, shapes, and
orientations effectively. The back-propagation algorithm fur-
ther optimizes network parameters during training, enhancing
the model’s ability to generalize and adapt to new samples.
Moreover, CNNs can improve crack identification perfor-
mance through data augmentation and transfer learning. Data
augmentation manipulates crack images by translating, rotat-
ing, scaling, and flipping, creating a more diverse training
dataset that increases the model’s robustness and distur-
bance resistance [15] Transfer learning leverages pre-trained
CNN models on the crack recognition task, extracting and

111742 VOLUME 12, 2024



J.-Y. Luo, Y.-C. Liu: Adaptive and Explainable Deep Learning-Based Rapid Identification

fine-tuning features to speed up model training and enhance
accuracy [16]

Despite the significant advantages of CNNs, such as
their powerful capabilities in image recognition and classi-
fication, they face several challenges in application. These
challenges primarily stem from their dependence on large
volumes of labeled training data and the substantial com-
putational resources required to train complex models. The
larger models and increased training parameters lead to
higher computational complexity and storage needs, poten-
tially limiting the application of CNNs in scenarios with
limited computational capacity [17] In response to these
challenges, SqueezeNet was developed. This innovative CNN
architecture is designed to significantly reduce the model’s
parameters and computational resource demands without
compromising performance [18] It achieves this goal through
unique design strategies, such as employing 1 × 1 convolu-
tion filters to reduce the number of parameters, enhancing
data flow efficiency with densely connected architectures,
and reducing computational burden with delayed activation.
These strategies collectively enable SqueezeNet to drastically
reduce the model size while maintaining or surpassing larger
models’ performance [19]
The success of SqueezeNet not only lies in its performance

but also in paving the way for new directions in research on
efficient neural network architectures. Subsequent research
and development have drawn on the design principles of
SqueezeNet, further exploring how to reduce computational
resource requirements while maintaining or enhancing model
performance [18] These studies are significant for advancing
the application of deep learning technology in resource-
constrained environments, such as mobile devices, embedded
systems, and IoT devices. In summary, SqueezeNet repre-
sents a significant breakthrough in deep learning, offering
valuable design insights and inspiration for future researchers
and developers. It demonstrates the feasibility of achiev-
ing efficient and powerful deep-learning models under strict
resource limitations [20] This achievement further empha-
sizes the importance of considering model efficiency in
designing neural network architectures, pushing towards
more intelligent and sustainable advancements in artificial
intelligence technology.

B. ATTENTION-BASED MECHANISM
To further enhance the ability to identify cracks in images
with noise, increase recognition rates, and improve the accu-
racy and stability of Convolutional Neural Network (CNN)
models, this chapter delves into the innovative integration
of attention mechanisms in the crack detection process.
The introduction of attention mechanisms is based on their
demonstrated potential in artificial intelligence, especially in
image processing, where they significantly boost the model’s
focus on critical areas of the image, thereby improving the
efficiency of recognizing details in complex scenes and subtle
features [21] By integrating attention mechanisms into the
CNN model for crack detection, our goal is to effectively

distinguish between noise and actual cracks in images, over-
coming the limitations of traditional methods in handling
noise interference and enhancing the model’s precision and
robustness in crack detection [22].

The Squeeze-and-Excitation (SE) attention mechanism
innovatively enhances the performance of Convolutional
Neural Networks (CNNs) by meticulously adjusting the sig-
nificance of each channel in the feature maps produced
by convolutional layers [23] This mechanism consists of
two pivotal steps: Squeeze and Excitation. The Squeeze
step aggregates global spatial information for each channel
through global average pooling, thus generating a global
context representation for each channel. Following this, the
Excitation step leverages this global information to learn the
recalibration of channel weights, dynamically adjusting the
response intensity of each channel through a simple fully con-
nected layer network, enabling the model to focus more on
informative feature channels [24] This mechanism effectively
improves the model’s efficiency in utilizing information
across different feature channels, allowing CNN to capture
details and global contextual information in images more
flexibly. By recalibrating features at the channel level, the SE
mechanism enhances the model’s understanding of complex
visual patterns, leading to significant improvements in per-
formance across various computer vision tasks such as image
classification, object detection, and image segmentation [25].
Notably, the design of the SE module allows for its easy

integration into existing CNN architectures without imposing
excessive computational overhead. This modular and effi-
cient approach boosts the model’s accuracy and maintains
computational efficiency. Thus, the Squeeze-and-Excitation
attention mechanism is not merely an effective means to
enhance CNN performance; it represents a significant inno-
vation in improving models’ capability to understand and
process images. Intelligently recalibrating feature channels
offer a powerful tool for deep learning models to achieve
efficient and precise visual recognition across a broader range
of application scenarios.

C. MODEL EXPLAINABILITY
In the application of deep learning, especially in Convo-
lutional Neural Networks (CNNs), model interpretability
has emerged as a critical area of research. These inter-
pretability methods aim to unveil how models learn features
from input data and make decisions, providing researchers
and practitioners with profound insights. Understanding the
decision-making process of models is crucial for validating
their accuracy and uncovering any potential biases. As deep
learning models increasingly grow in complexity and level of
abstraction, ensuring their transparency and interpretability
becomes more important than ever. Moreover, model inter-
pretability not only aids in enhancing models’ scientific and
practical design but also plays a crucial role in boosting user
trust in model predictions. We can identify and correct biases
within models through visualization techniques and interpre-
tative frameworks, optimize performance, and ensure fairness
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and transparency. In many domains, especially in high-stakes
fields like healthcare, finance, and legal, model interpretabil-
ity is an indispensable part of decision support systems,
crucial for promoting societal acceptance and responsible use
of technology [26].

Among interpretability methods for models, Grad-CAM
(Gradient-weighted Class Activation Mapping) is recognized
as a notably effective and popular technique. Grad-CAM,
a visualization tool, utilizes the model’s gradient information
to underscore the image areas most crucial to the model’s
predictions [27] This approach is especially suited for elu-
cidating the workings of Convolutional Neural Networks
(CNNs) in tasks like image recognition and classification,
producing ‘‘heatmaps’’ that delineate the image sections crit-
ical for making certain category decisions. The merits of
Grad-CAM encompass (1) Intuitiveness: The heatmaps gen-
erated enable a visual comprehension of the segments within
an image that significantly impacts the model’s decision-
making process, thus augmenting the decision-making trans-
parency of the model; (2) Versatility: Applicable to any
CNN architecture without necessitating structural alterations
to the model, Grad-CAM showcases exceptional flexibility
and broad applicability; (3) Explanatory Power: Grad-CAM
assists both researchers and practitioners in enhancing their
understanding of the model’s operational mechanisms, fos-
tering trust in the model’s predictive capabilities [27].

Overall, the Grad-CAM approach seamlessly connects
the high-level abstractions characteristic of CNNs with the
demand for practical insights. By offering transparent visu-
alizations of how various features influence the output,
it elucidates the often enigmatic processes within deep neural
networks. The method provides a powerful means to augment
deep learning models, enhancing the model’s transparency
and facilitating a deeper understanding of the decision-
making process. It serves as an effective tool for improving
model interpretability.

D. RESEARCH GAPS
In summary, the literature review primarily focuses on the
current status and development within the field of crack
detection and analysis using deep-learning neural networks.
The main research gaps identified in this study are twofold:
(1) At the level of methodology, although the combination
of SqueezeNet, SE attention mechanism, and Grad-CAM
techniques has shown tremendous potential in improving
the efficiency and accuracy of crack detection, there is still
a lack of a unified framework that can fully leverage the
synergistic benefits of these technologies. (2) At the level of
application, the quality of crack images is severely affected
by environmental factors, such as noise and lighting con-
ditions, posing significant challenges to the performance of
image-based crack detection systems [28] Current methods
still require improvements, especially in recognizing crack
images under low-light conditions. Considering the above-
mentioned research gaps, this paper proposes to develop
an innovative framework that integrates the SqueezeNet

architecture, SE attention mechanism, and Grad-CAM tech-
nique, thereby achieving significant improvements in the
efficiency, accuracy, and interpretability of crack detection.
We believe that through fine-tuning the SqueezeNet model,
efficient learning of crack features can be achieved; mean-
while, the introduction of the SE attention mechanism will
further enhance the model’s focus on crucial crack features,
[29] improving recognition precision; finally, by employing
the Grad-CAM technique, we aim to enhance the inter-
pretability of the model’s decision-making process, providing
a more intuitive explanation of the results to the end-users.

In light of the research gaps, we intend to develop a
novel framework by integrating the SqueezeNet, SE attention
mechanism, and Grad-cam technique, which can potentially
yield significant value in improving the efficiency, accu-
racy, and explainability of crack identification [30] The main
research questions to be solved contain: (1) How to effec-
tively select and optimize the SqueezeNet model to meet
the specific requirements of crack detection; (2) How to
improve and optimize the SE attentionmechanism to enhance
the model’s sensitivity and recognition ability towards key
crack features; (3) How to utilize the Grad-CAM technique
to improve the explainability of the model’s predictions,
ensuring that the decision-making process is transparent and
understandable to end-users. Specifically, it’s crucial to delve
into the specifics of the chosen CNN architecture for image
recognition, providing justification based on its suitability
for crack detection [31] The architecture must be selected
with careful consideration of its ability to recognize and
accurately classify crack features under various conditions.
Additionally, it is essential to elaborate on the selected
attention mechanism, outlining the rationale for its choice.
The selection should be justified by its ability to focus the
model learning on the most relevant features of crack images,
thereby improving detection accuracy. Furthermore, it is cru-
cial to discuss the methods employed for interpreting the
prediction results. This involves highlighting the importance
of ensuring a comprehensive and understandable explana-
tion of the decision-making process. Techniques such as
Grad-CAM provide visual explanations for the predictions
made by CNNs, highlighting the areas of the image that were
most influential in the decision-making process.

This comprehensive approach not only addresses the
identified research gaps but also contributes significantly
to advancing the field of crack identification using deep
learning techniques. By focusing on the optimization and
interpretability of the model, alongside the careful selec-
tion of the CNN architecture and attention mechanism, this
research aims to push the boundaries of what is currently
achievable in crack detection, leading to more reliable, effi-
cient, and explainable deep learning solutions.

III. METHODOLOGY
The proposed framework in this paper comprises three main
components: data collection and processing, Att-SqueezeNet
network for crack identification, and Grad-CAM for visual
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FIGURE 1. The flowchart of the proposed methodology.

explanation of results, as shown in Fig. 1. Initially, crack
image datasets are captured using high-speed cameras and
cropped to specified dimensions, followed by geomet-
ric transformations such as rotation and scaling of the
images. Subsequently, these processed images are fed into
an Attention-based SqueezeNet (Att-SqueezeNet) network
model for model training. Finally, Grad-CAM technology is
utilized to produce heat maps that visually highlight the areas
where the model focuses during crack detection, providing an
intuitive demonstration of the model’s attention areas.

A. DATA AUGMENTATION OF CRACK IMAGE
In the field of crack detection, the collection and enhancement
of data play crucial roles in improving models’ accuracy
and generalization ability by simulating various real-world
scenarios. The data collection process emphasizes the impor-
tance of gathering crack images from diverse angles and light-
ing conditions to ensure the dataset’s variety. This involves
collecting images of cracks with varying widths, lengths,
shapes and those set against different background conditions.
Additionally, the data pre-processing phase involves basic
image processing operations such as resizing images and
normalizing pixel values to standardize the format and quality
of training data.

Advanced data augmentation techniques, including tra-
ditional methods like flipping and rotating, as well as
sophisticated approaches like Cutout and Mixup, further
enhance the model’s adaptability to complex and variable
real-world environments. Cutout simulates the obstruction
of cracks by randomly erasing parts of the image, thus
improving the adaptability to environmental changes. On the
other hand, Mixup creates virtual training samples by lin-
early mixing different images and their labels, enhancing
the generalization ability toward unseen samples by making
the discrete sample space more continuous. The combined

FIGURE 2. Combined application of the common data augmentation
techniques.

application of these augmentation techniques significantly
boosts the performance of crack detection models in complex
settings, forming an essential strategy for achieving high
precision in crack detection. Fig. 2 presents the combined
application of the common data augmentation techniques.

B. ATTENTION-BASED SQUEEZENET (ATT-SQUEEZENET)
MODEL
To enhance the accuracy of crack detection, we employ
the attention-based SqueezeNet (Att-SqueezeNet), a refined
and efficient convolutional neural network modeled after the
AlexNet algorithm. This network works by incorporating
a deep compression technique to minimize the number of
parameters, thus streamlining the model without compromis-
ing its accuracy significantly. Att-SqueezeNet’s architecture
cleverly incorporates several Fire modules alongside tradi-
tional convolutional network elements: convolutional, down-
sampling, and fully connected layers. As illustrated in Fig. 3,
the Att-SqueezeNet structure includes pooling layers, Fire
modules, an SE (Squeeze-and-Excitation) block layer, and a
SoftMax layer. The maximum pooling layer is designed to
reduce the computational demands of the model. Addition-
ally, the Dropout layer selectively deactivates neurons to avert
overfitting. The SoftMax classifier is then employed to deter-
mine the model’s final output by selecting the class with the
utmost probability. By integrating these key components, Att-
SqueezeNet not only streamlines the crack detection process
but also significantly optimizes the utilization of compu-
tational resources with its distinctive architectural design.
Consequently, Att-SqueezeNet offers a precise and efficient
methodology for crack detection.

The essence of SqueezeNet lies in its Fire module, a dis-
tinctive combination of Squeeze and Expand structures.
Typically defined as Fire (M, N, E1, E2), where M and N
represent the number of input and output channels for the
Squeeze layer, respectively, and E1 and E2 denote the count
of 1 × 1 and 3 × 3 convolutional kernels in the Expand
layer. The Squeeze structure employs 1 × 1 convolutions
to process the feature map output from the preceding layer,
effectively reducing feature dimensions. This step is followed
by activation using the ReLU function. Subsequently, the
Expand structure, comprising both 1 × 1 and 3 × 3 convolu-
tional kernels, sequentially enlarges the convolutional results.
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After the convolution process, the ReLU activation function
is applied, as illustrated in Fig 4. The calculation formula
of the Squeeze layer is expressed as Eq. (1). Subsequently,
the Expand layer extends the features using both 1 × 1 and
3 × 3 convolution kernels, as depicted in Eq. (2).

S(x) = f (Ws ∗ x + bs) (1)

E(x) = f (We1 ∗ x + be1) + f (We2 ∗ x + be2) (2)

where x is the input feature map;Ws represents the weight of
the 1 × 1 convolution kernel; bs is the bias term; ∗ denotes
the convolution operation; f is the ReLU activation function.

In SqueezeNet, we choose to insert the SE (Squeeze-and-
Excitation) module after Fire 8, which belongs to the output
of the Fire module because the Fire module’s output contains
rich high-level semantic information. Calibrating it with an
attention mechanism can effectively enhance the quality of
feature representation. Furthermore, placing the SE module
in the mid-to-late stages of the model allows leveraging
higher-level information for more precise feature recalibra-
tion, thereby improving the final classification performance.

Specific reduction ratios and activation functions are cho-
senwithin the SEmodule to optimize performance. Typically,
reduction ratios of 4 or 8 are used to reduce the parameter and
computational overhead during the Excitation phase while
maintaining adequate expressive capability. For activation
functions, ReLU introduces non-linearity, and the final Sig-
moid function confines weights to [0, 1], ensuring stability
and interpretability in weight adjustments. These parameter
choices balance the lightweight requirements of the model
with the effectiveness of attention mechanisms.

Incorporating the Squeeze-and-Excitation (SE) attention
mechanism into the model significantly enhances its capa-
bility to process complex image features. This mechanism
operates by compressing the feature channels (Squeeze) to
capture global information, followed by utilizing an excita-
tion function (Excitation) to learn the importance of each
channel, thus enabling adaptive recalibration of features. This
advancement bolsters SqueezeNet’s ability to handle intricate
image characteristics, enhancing the model’s precision and
speed. The SE module compresses feature channels through
global average pooling and then uses the weights of fully
connected layers to learn the importance of each channel,
as described in Eqs. (3)-(4). The original feature map is
then element-wise multiplied by the importance weights for
feature recalibration, as shown in Eq. (5). Through the unique
structural design, Att-SqueezeNet not only simplifies the
traditional crack detection process but also optimizes the
use of computational resources through fine-grained fea-
ture adjustment, providing an accurate and efficient solution
for crack detection. This network, which combines compact
convolutional kernel design with an attention mechanism,
is particularly suitable for high-performance crack detection
tasks in resource-constrained environments.

zc =
1

H ×W

∑H

i=1

∑W

j=1
xc(i, j) (3)

FIGURE 3. The architecture of the proposed Att-SqueezeNet model.

FIGURE 4. The structure of the fire module with SE attention mechanism.

s = σ (W2δ(Wz1)) (4)

x̃c = sc · xc (5)

where zc is the output of global average pooling; xc (i, j)
represents the feature value at location (i, j)H and W are
the height and width of the feature map; W1 and W2 are the
weights of the fully connected layers; δ is the ReLU function;
σ is the sigmoid function; s represents the importanceweights
of each channel.

Introducing the SE (Squeeze-and-Excitation) attention
mechanism significantly enhances the performance of the
SqueezeNet model, primarily through feature recalibration,
improved information flow, and lightweight advantages. The
SE module reweights the feature maps of each channel based
on global contextual information, effectively enhancing the
representation of key features and significantly improving the
model’s ability to capture inter-layer information flow. Fur-
thermore, the SE module has a small parameter count, which
does not significantly increase the computational burden yet
substantially enhances the model’s representative capacity
and classification performance dramatically. These improve-
ments enable the model to achieve better classification results
without increasing computational complexity.

C. GRAD-CAM FOR MODEL EXPLAINABILITY
Grad-CAM (Gradient-weighted Class Activation Mapping)
is a visualization technique used to interpret decisions made
by convolutional neural networks. It highlights crucial areas
in an image that significantly influence the model’s specific
classification decision by generating heatmaps. Grad-CAM is
a visualization technique that generates heat maps to reveal
key regions for convolutional neural network (CNN) deci-
sions. This method begins by extracting feature maps from
a selected convolutional layer of the Att-SqueezeNet, cap-
turing spatial information learned from the input image. The
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gradient of the network’s prediction for a particular category
relative to the feature maps is calculated. These gradients
are then globally averaged to assign weights to each feature
map, indicating their contribution to the final classification
decision. Bymultiplying these weights with their correspond-
ing feature maps and summing them up, a heatmap can be
superimposed on the original image to highlight areas of the
model’s focus visually.

We conducted multiple case studies to show the Grad-
CAM technique’s practical contribution. The heatmap clearly
demonstrates the model’s focus on crack edges and critical
regions for clear images. In images under low light condi-
tions, the Grad-CAM technique shows the model’s ability
to identify cracks accurately even when the light is low.
In images containing distractors, the heatmap proves that
the model is able to ignore background interference and
focus on the crack itself. However, in images with obstacles,
Grad-CAM reveals the focus of the model when dealing
with partially occluded cracks. Through these case studies,
the Grad-CAM technique significantly enhances the inter-
pretability of the model and enables users to gain insight into
the model’s decision-making process. This enhanced inter-
pretability is crucial for practical engineering applications,
helping users understand and trust the model’s predictions.

In the computational process of Grad-CAM, let Y c rep-
resent the network’s predicted score for category c (before
Softmax activation), and Ak denotes the k − th feature map
of a convolutional layer. The method first computes the gra-
dient of Y c with respect to Ak , represented as ∂Y c/∂Ak . This
gradient is then subjected to global average pooling to deter-
mine the weight αck of each feature map. The final heatmap
LcGard-CAM is obtained using Eq. (6). The specific structure
is shown in Fig. 5 below. This approach of Grad-CAM
provides an intuitive means to understand and elucidate the
decision-making process of models, especially highlighting
areas focused on by the model in image classification tasks.

LcGard-CAM = ReLU(
∑

k
αckA

k ) (6)

where the ReLU function is employed to isolate features
contributing positively to category c.
To effectively integrate Grad-CAM technology into the

Att-SqueezeNet network proposed in this study, a compre-
hensive set of steps has been developed: (1) the trained
Att-SqueezeNet model and a diverse database of crack
images are loaded to ensure the model’s adaptability to var-
ied real-world scenarios; (2) the network undergoes forward
propagation to yield predictive outcomes for the input images,
a crucial step that demonstrates the network’s capability in
crack feature recognition; (3) backpropagation is employed
to accurately determine the gradient of the target class con-
cerning the last convolutional layer of the model, a pivotal
calculation for understanding the focal points of the model;
(4) the Class ActivationMap (CAM) is computed andmerged
with the original image, offering a visual representation that
delineates the areas of primary focus in the crack identifi-
cation task. This method of incorporating Grad-CAM not

FIGURE 5. The flowchart of the Grad-CAM method for feature extraction.

only enhances the accuracy of crack detection by the model
but also significantly boosts its interpretability. Through
visualization, it becomes evident how the model identifies
cracks, providing deep insights into the underlying decision-
making process. This enhancement in the model’s credibility
and explanatory power is vital for broader application and
acceptance.

IV. CASE STUDY
A. DATA ACQUISITION AND PREPROCESSING
The proposed framework is applied to actual engineer-
ing projects to identify crack-related diseases, verifying
the model effectiveness in recognition tasks. This study
employed a Canon camera (model: Canon DIGITAL
IXUS 100 IS) as the image acquisition device. A total of 1,000
original images were collected, including a self-collected
dataset of residential building cracks, including clear images,
images with low lighting, images with distractions, and
images with obstructions. Images from the Crack For-
est Dataset (CFD) contain 118 images of urban concrete
road cracks at approximately 480 × 320 pixels resolution.
As shown in Fig. 6, the upper part shows images captured
on-site, while the lower part depicts images from CFD.
‘‘Negative’’ denotes no cracks, and ‘‘Positive’’ denotes the
presence of cracks. The dataset in this study is a fusion of
actual field-collected data and existing databases, encom-
passing various types of cracks such as linear, grid-like, and
patch-like cracks, observed in different environmental condi-
tions. This effectively reflects the real crack environments in
diverse building locations andmake themodel more adaptive.
To reduce computational costs, original images were cropped
to a resolution of 227 pixels by 227 pixels and standardized
in size.

B. MODEL TRAINING AND ANALYSIS
The dataset comprises two folders: images with cracks and
without. The folder containing cracked images encompasses
various types and degrees of cracked images and diverse
background noise possibilities. Such a dataset aids the model
in better adapting to real-world scenarios and enhances its
robustness. To ensure a sufficient sample size and prevent
overfitting, image augmentation techniques such as mirror-
ing, rotation, and Gaussian blur were applied, expanding the
dataset by five times to a total of 5,000 images. The dataset
was divided into training, validation, and test sets with a
ratio of 70%:20%:10%, respectively. This information can
be presented in TABLE 1. This comprehensive data col-
lection and augmentation approach underlines the rigorous
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TABLE 1. Experimental dataset information.

FIGURE 6. Partial training set images.

methodology employed to validate the effectiveness of the
proposed algorithm in recognizing crack-related diseases in
building structures.

All experiments in this study were conducted using
MATLAB software. The Adam optimizer was utilized for
parameter updates, with an initial learning rate set at 2e-
4. The network employs a cross-entropy loss function for
training, as shown in Eq. (7). Model recognition accuracy was
assessed by calculating the accuracy metric.

L = −
1
N

∑
i

M∑
c=1

yic log(pic) (7)

where the ReLU function is employed to isolate features that
contribute positively to category c.

In our study, to further enhance the recognition rate of the
SqueezeNet model in crack detection tasks with noisy points,
we introduced an attention mechanism by incorporating it
into the fire8 layer of the SqueezeNet model. This attention
module was inspired by the design of Squeeze-and-Excitation
(SE) Blocks, where the weights learned through training are
used to weight the feature maps. This allows the model to
identify crack areas and extract crack features accurately.

Fig. 7 shows the loss and accuracy curves for both the train-
ing and validation processes throughout the model’s training
period. It is evident from the graph that the training loss expe-
riences a rapid decline during the initial ten iterations, while
the training accuracy sees a significant increase within the
same timeframe. Following this initial period, both metrics
reach a state of stable convergence, indicating the model’s

FIGURE 7. The variation of loss and accuracy in the training and
validation process.

practical learning and capacity to generalize the training data
well. The model achieves a final loss of 0.064 and an accu-
racy of 0.995, underscoring its high efficiency in recognizing
crack images. This performance level indicates the model’s
robustness and potential applicability in real-world scenarios,
where high precision in crack detection is paramount for
ensuring structural safety. The convergence of the loss and
accuracy to such optimal values reinforces the chosen archi-
tecture’s effectiveness and the training regime’s adequacy,
including the optimization strategy and data augmentation
techniques employed. Furthermore, the validation loss and
accuracy curves closely mirror those of the training, with
minimal deviation, suggesting that the model is not overfit-
ting and maintains a good generalization on unseen data. The
slight fluctuations in the validation curves towards the later
iterations emphasize the importance of continuous monitor-
ing and possibly implementing early stopping mechanisms to
preserve the model performance.

Fig. 8 utilizes the Grad-CAM-based visualization tech-
nique to depict the color map of crack identification,
providing a clear visual representation of the areas focused
on by the model during crack detection. In-depth analysis and
visualization of the features from the intermediate layers of
the model reveal a significant enhancement in the model’s
sensitivity and focus on crack regions upon integrating the
attention mechanism. This shift in focus not only improves
the accuracy of crack detection but also enhances the model’s
robustness in complex environments, maintaining high detec-
tion performance even under challenging conditions such as
high noise levels or suboptimal lighting. The heatmaps gen-
erated by Grad-CAM serve as a powerful tool for validation,
offering a direct visual insight into the primary areas consid-
ered by the model when making decisions. The highlighted
regions in these heatmaps confirm that the model’s decision-
making logic is in line with expectations and demonstrate
how the attention mechanism enables the model to focus
more on the crucial crack features, thus enhancing the overall
performance of crack detection.

In summary, these observations underscore the pivotal role
of the attention mechanism in improving crack detection
models, particularly in terms of enhancing the recognition of
key features and the precision of decision-making. By com-
bining advanced visualization techniques with cutting-edge
attention mechanisms, we can deepen our understanding of
howmodels operate and further refinemodel designs to tackle
a variety of complex crack detection challenges.
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FIGURE 8. The visualization colormap of crack identification based on the
Grad-CAM method. (Note: Positive=Crack; Negative=No crack.)

TABLE 2. Training configuration.

C. COMPARISON EXPERIMENTS
In our study, we conducted a comprehensive compari-
son between our proposed model and other state-of-the-art
models, encompassing both traditional machine learning
approaches like the Random Forest (RF) algorithm and
advanced deep learning architectures, including Convolu-
tional Neural Networks (CNN), Region-based Convolutional
Neural Networks (R-CNN), VGG-19, and the compact
SqueezeNet model. The specific parameters of each model
are given in the following Table 2.

These models were evaluated on their ability to detect
cracks, showcasing a spectrum of performance levels and
computational complexities. To assess the efficacy of each
model in crack detection, we utilized critical evaluation met-
rics, namely Precision (P), Recall (R), and F1-score (F1). The
Equations are as follows:

P =
TP

TP+ FP
(8)

R =
TP

TP+ FN
(9)

F1 =
2PR
P+ R

(10)

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and FN
is the number of false negatives.

Table 3 depicts the comparison results with other state-of-
the-art models. Fig. 9 presents the corresponding histograms
of performance comparison of different models. In the
comparative analysis of models for crack detection, the

FIGURE 9. The histograms of performance comparison of different
models.

TABLE 3. The comparison results with other state-of-the-art models.

performance metrics indicate varied capabilities across the
spectrum of traditional machine learning and advanced deep
learning models. The Random Forest (RF) model, rep-
resenting traditional algorithms, demonstrates respectable
performance with balanced Precision and Recall. It indicates
its competency in identifying relevant crack instances while
maintaining moderate false positives. On the deep learning
front, models like CNN and VGG-19 exhibit strong feature
extraction capabilities, as reflected in their high Recall val-
ues, ensuring minimal misses in crack detection. Particularly
noteworthy is the B-CNNmodel, which achieves near-perfect
Precision and Recall, underscoring its exceptional accuracy
in crack identification.

The proposed Att-SqueezeNet method integrates an atten-
tionmechanismwith the efficient architecture of SqueezeNet,
achieving unparalleled Precision and Recall among the eval-
uated models. This enhancement allows the model to focus
more precisely on crucial features for crack detection, signif-
icantly reducing false positives and ensuring comprehensive
coverage of true positives. The resulting F1-Score of 0.991 for
Att-SqueezeNet confirms its balanced performance and high-
lights its superiority in accurately detecting cracks. This
makes Att-SqueezeNet particularly advantageous for appli-
cations where accuracy, efficiency, and reliability are critical,
establishing it as a leading method in the field of crack
detection.

Moreover, the training time presented in the table fur-
ther highlights the advantage of Att-SqueezeNet in quickly
identifying cracks. Att-SqueezeNet’s training time is only
133 seconds, much faster than many other complex deep
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learning models such as VGG-19 (306 seconds) and B-CNN
(402 seconds). This indicates that Att-SqueezeNet not only
surpasses other models in terms of accuracy but also excels
in training efficiency and has rapid identification. Further-
more, Att-Squeezenet has a size of only 5.00M, close to
RF’s 4.05M (the smallest size among the model candidates).
Moreover, Att-Squeezenet has 1.25M parameters, which is
relatively small among all candidate models, indicating its
small footprint, ease of embedding, high efficiency, and fast
computation and communication speeds. Att-SqueezeNet
offers a fast and reliable solution for large-scale crack detec-
tion applications requiring rapid deployment and efficient
processing. This makes it particularly advantageous for appli-
cations where accuracy, efficiency, and reliability are critical,
establishing its leading position in the field of crack detection.

V. CONCLUSION
This study proposes a novel framework that integrates the
SE attention mechanism with the SqueezeNet network and
employs Grad-CAM technology specifically designed for the
task of crack identification in buildings. In short, the research
mainly contributes to two aspects: (a) From the state of
knowledge, this study advances the theoretical understanding
of integrating attention mechanisms with the SqueezeNet
model for visual tasks. The SE attention mechanism dynam-
ically captures channel feature responses, enhancing the
model’s focus on critical crack features. The Grad-CAM
technology further contributes by offering a novel approach
to visualizing and interpreting the model’s internal workings.
(b) From the state of practice, this framework demonstrates
effective practical benefits for building maintenance. The
enhanced Att-SqueezeNet significantly improves detection
accuracy and efficiency by focusingmore effectively on crack
features. Grad-CAM visualization offers intuitive explana-
tions of the model’s decision-making process, facilitating
a clearer understanding of detection results. This advance-
ment not only automates building maintenance by reducing
reliance on manual labor but also increases the precision and
reliability of detection tasks, ultimately ensuring the struc-
tural safety of buildings through more effective and reliable
crack identification. The main results and conclusions of this
work are summarized as follows:

(1) The integration of the SE attention mechanism enables
the Att-SqueezeNet network to achieve higher accuracywhile
effectively avoiding the problem of low crack recognition
caused by complex backgrounds and uneven sunlight expo-
sure around the cracks. This enhancement improves the
model’s recognition accuracy in complex environmental con-
ditions, making it more adept at handling various challenging
scenarios in real-world construction crack detection tasks and
improving its adaptability.

(2) Through comprehensive experiments across the col-
lected dataset, Att-SqueezeNet was benchmarked against a
range of models, including RF, CNN, B-CNN, VGG-19,
and the original SqueezeNet. Evaluation metrics such as
precision, recall, and F1-score were employed for this com-

parison. Att-SqueezeNet outperformed the other models with
an impressive accuracy of 0.995 and an F1-score of 0.991,
the highest among the compared models, indicating a highly
effective tool for crack identification.

(3) The combination of Att-SqueezeNet and Grad-CAM
significantly bolsters the model’s interpretability, facilitating
the accurate detection of cracks and providing a transparent
understanding of the decision-making process. Such clarity
is instrumental in enabling stakeholders to take informed
actions based on the finding results. Their combination
can act as a pivotal advancement in construction engineer-
ing crack detection, offering high accuracy and actionable
insights.

(4) Att-SqueezeNet’s faster training speed compared to
other complex deep learning models provides a significant
advantage in its application to crack detection. The rapid
training speed not only shortens the model development and
optimization time but also reduces deployment and mainte-
nance costs, allowingmore practical engineering applications
to benefit from efficient crack detection technology. This
high-efficiency training capability enables Att-SqueezeNet
to quickly adapt to and handle diverse types of cracks in
complex building structures. As technology advances and
application scenarios expand, the model’s fast training speed
provides crucial support for real-time or near-real-time crack
detection, further driving the development and application
prospects in this field.

Some limitations need to be further improved. For exam-
ple, when compared to SqueezeNet, integrating an attention
mechanism in Att-SqueezeNet results in increased parame-
ters, potentially leading to decreased operational efficiency.
The image dataset may also be limited, failing to encompass
all unique scenarios. Future research could focus on refining
the network structure and attention mechanism to accommo-
date better the diverse challenges presented by complex crack
detection contexts.

A series of improvements can be carried out to overcome
the existingmethod limitations. Firstly, in terms of optimizing
the network structure and attention mechanism, parame-
ter pruning and quantization techniques are considered to
reduce the number of parameters of the model to improve
the computational efficiency while maintaining the model’s
accuracy as much as possible. Furthermore, exploring more
efficient attention mechanisms, such as lightweight SE mod-
ules or other variants, can reduce computational overhead and
maintain high performance. At the same time, using more
advanced network architecture design, such as EfficientNet,
can improve computational efficiencywhile maintaining high
performance.

Secondly, expanding and diversifying the dataset is the key
to improving the model’s generalization ability. Using data
augmentation techniques such as rotation, scaling, cropping,
and color transformation can increase the data diversity and
enhance themodel adaptability under different environmental
conditions. At the same time, generating synthetic data to
simulate various environmental conditions and fracture types
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helps to enrich the dataset. Data sets from other fields are
combined to further improve the model adaptability.

Future research should focus on the following aspects.
On the one hand, the network structure and attention
mechanism are optimized to further reduce the number of
parameters and computational complexity and improve the
model operation efficiency. Through more efficient network
design and attention mechanism, the consumption of com-
putational resources is reduced while maintaining or even
improving the model performance. On the other hand, the
dataset was expanded and diversified, and more crack images
under different environmental conditions were collected and
introduced to enhance the generalization ability and adapt-
ability of the model. The rich data set will help the model
maintain efficient crack recognition performance in a broader
range of practical application scenarios.
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