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ABSTRACT As the penetration of global new energy into power systems increases, the impact of carbon
trading on energy systems continues to grow. Therefore, it is crucial to study the effects of carbon trading
mechanisms on the operational characteristics of power systems that include new energy sources. This
paper focuses on China, the world’s largest energy-consuming economy, and proposes a multi-time-scale
optimization scheduling method for a Combined Cooling, Heating, and Power (CCHP) system that considers
a reward-penalty tiered carbon trading mechanism. This method effectively enhances the economic, envi-
ronmental, and stability performance of the CCHP system. Firstly, the relationship between different carbon
trading mechanisms and carbon trading volumes is analyzed to identify the carbon trading mechanism with
the highest correlation to economic efficiency. Based on this analysis, a carbon trading model is introduced
into the system’s economic dispatch strategy, constructing an economic model for the CCHP system under
the influence of the carbon trading mechanism. While considering economic efficiency, this study also
aims to improve system stability by proposing a multi-time multi-layer rolling optimization scheduling
method. This method adjusts equipment output to respond to random fluctuations caused by uncertainties
in energy sources and loads. The optimization results of the case study show that the introduction of the
reward-penalty tiered carbon trading mechanism can reduce the carbon emissions of the park and improve
economic performance. Additionally, the multi-time multi-layer rolling optimization scheduling effectively
mitigates random fluctuations in supply and demand, ensuring stable system operation.

INDEX TERMS Combined cooling, heating, and power (CCHP) system, carbon trading mechanism, carbon
emissions, reward-penalty tiered carbon trading, multi-timescale optimization scheduling.

I. INTRODUCTION
The increasing global carbon emissions and resulting climate
change pose significant threats to economic and social devel-
opment, human health, and even survival. According to data
analysis from the National Aeronautics and Space Adminis-
tration (NASA), global temperatures and Arctic sea ice extent
brokemultiple records in the first half of 2016. Global climate
change is projected to cause incalculable losses and impose
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substantial costs on humanity. The urgent need to control
carbon emissions has been widely accepted worldwide.

Carbon trading is a crucial climate policy adopted by
many countries and regions to regulate carbon emissions.
The European Union Emissions Trading System (EU ETS),
established on January 1, 2005, aims to achieve CO2 emission
reduction targets set by the Kyoto Protocol. Its purpose is to
internalize environmental costs by transforming the environ-
ment into a compensated production factor through market
mechanisms. By establishing the European Union Allowance
(EUA) trading market, it effectively allocates environmental
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resources, promotes the development of energy-saving
and emission-reducing technologies, and minimizes opera-
tional costs for enterprises under climate protection efforts.
Additionally, carbon trading markets in countries such as
Australia, South Korea, and Japan are steadily developing.
It is evident that carbon trading, as a significant climate policy
for greenhouse gas emission control, has gained widespread
recognition among major countries worldwide.

In 2020, the Chinese government presented the ‘Dual
Carbon’ policy at the 75th United Nations General Assem-
bly, with the objective of reaching the peak of carbon
dioxide emissions by 2030 and attaining carbon neutrality
by 2060 [1]. The power industry, which is a major source
of carbon emissions [2], has a crucial influence on the
development of China’s future strategies for reducing carbon
emissions through its energy utilization and adjustments.

The endeavor to improve the energy efficiency and reduce
carbon emissions in power systems has motivated many
researchers to investigate various methods and mechanisms
for carbon reduction. Carbon dioxide (CO2) emissions are
considered as a dispatchable resource [3]. A preliminary
model for low-carbon power dispatch deci-sion-making has
been developed to integrate ‘electric balance’ and ‘carbon
balance’ in power dispatch, taking into account various fac-
tors such as low-carbon power technologies, carbon costs,
and constraints. Additionally, many studies discuss method-
ologies related to policy mechanisms like carbon taxes and
carbon trading [4], [5]. Xuan et al. [4] demonstrates that the
incorporation of carbon taxes in economic dispatch mod-
els affects the generation output of all units, leading to a
reduction in carbon emissions. This is evident through a
comparison of economic dispatch scenarios with and without
carbon taxes. Yao et al. [5] presents a commercial model for
carbon capture, utilization, and storage within the context
of carbon markets and policies. The model integrates carbon
penalties and revenues into the objective function to repre-
sent the uncertainty associated with carbon taxes and prices.
Wu et al. [6] undertakes an analysis and comparison of
benchmark carbon pricing models and tiered carbon pricing
models, aiming to establish the relationship between carbon
trading costs and carbon trading volumes. Yang et al. [7]
delineates the framework of carbon trading markets and
formulates a model for estimating carbon trading expenses
through an examination of carbon emissions and emission
quotas.

The carbon trading mechanism is effective in reducing
carbon emissions within systems. As research advances, the
conventional single carbon pricing mechanism has trans-
formed into a tiered carbon trading system. It has been
widely applied in the scheduling of low-carbon economies
within energy systems [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19]. Zhu et al. [8] presents an opti-
mization scheduling model that takes into account demand
response and participation in power-to-gas (P2G) within
the carbon trading market. The traditional carbon trading

mechanism demonstrates that a rational carbon pricing strat-
egy can effectively promote low-carbon economic activities
within systems. Wang et al. [9] presents a tiered carbon
trading mechanism and develops a low-carbon economic
scheduling model for a microgrid, with the goal of mini-
mizing both operational expenses and carbon trading costs.
This accomplishes the twin goals of decreasing operational
expenses and carbon emissions. Zhou et al. [10] introduces
a low-carbon economic operational strategy for a multi-agent
integrated energy system. The strategy is based on a two-stage
tiered carbon trading model with quota sharing mechanisms,
aimed at ensuring the system’s low carbon footprint, eco-
nomic efficiency, and effectiveness. Furthermore, the carbon
trading mechanism introduced in Wang et al. [11] is tiered.
A low-carbon optimization scheduling model is developed
with the objective of minimizing the total costs associated
with energy purchases, carbon emission trading, equipment
maintenance, and demand response. This model improves
the dependability, cost-effectiveness, and environmentally
friendly characteristics of integrated energy systems. How-
ever, although these studies present carbon trading models,
they offer limited analysis of the correlation mechanisms
between emissions and carbon trading market prices. They
also fail to consider the influence of carbon trading mech-
anisms on the impact of renewable energy usage in energy
systems. These systems may encounter diminished stability
as a result of the extensive incorporation of renewable energy,
leading to heightened volatility within the system under the
impact of carbon trading mechanisms.

Numerous studies focused on examining the uncertainty
in source-load dynamics within energy systems that incor-
porate renewable energy sources, in order to effec-tively
improve the stability of energy systems in the con-
text of carbon trading mechanisms [20], [21], [22], [23].
Wang et al. [20] presents a three-stage mixed time-scale
rolling optimization approach that effectively addresses vari-
ations in both loads and renewable energy output. Addi-
tionally, a multi-timescale optimization operational method
is pro-posed [21], which involves ‘day-ahead - intra-day-
real-time adjustment’. This approach not only improves the
operational efficiency of combined cooling, heating, and
power (CCHP) systems but also mitigates equipment power
fluctuations and operational losses. In a similar manner,
Zhou et al. [22] seeks to minimize overall operational costs
and introduces a multi-timescale regional comprehensive
energy system scheduling model. This model accomplishes
both the economic and stable operation of regional compre-
hensive energy systems. The multi-time scale optimization
method has been shown to effectively enhance system sta-
bility. Some studies have integrated this approach with
carbon trading mechanisms, achieving low-carbon economic
efficiency in energy systems while also ensuring system
reliability [24], [25], [26], [27].

The existing body of research predominantly concentrates
on the integration of carbon trading mechanisms into diverse
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energy systems with the aim of mitigating carbon emissions.
However, there is a deficiency in comprehensive analysis of
the operational interplay between carbon tradingmechanisms
and energy systems. Furthermore, there is a limited number
of studies that have integrated carbon trading mechanisms
into multi-timescale optimization scheduling models aimed
at achieving a balance between decreased carbon emissions
and operational costs, while also ensuring system stability.

While carbon trading policies vary among countries, their
essence lies in buying or selling carbon allowances to incen-
tive reductions in carbon emissions. China, as a major con-
sumer of energy with a prominent position in non-renewable
energy consumption globally and the largest installed capac-
ity of renewable energy, plays a crucial role in global energy
systems. Therefore, studying the impact of China’s carbon
trading mechanisms on energy systems is highly relevant for
global energy transitions. Consequently, this paper focuses
on studying the energy system of a specific industrial park in
China, systematically analyzing the correlation mechanisms
between park emissions and transaction prices in the carbon
trading market. The text presents a mathematical model for
energy systems in industrial parks, taking into account the
impact of a reward-penalty tiered carbon trading mechanism.
Based on the analysis conducted, a scheduling algorithm
for multi-layer, multi-timescale optimization is proposed.
This algorithm not only aims to maximize the utilization
of renewable energy sources, but also takes into account
the uncertainty associated with both renewable energy and
load demand. By maintaining a balance between supply and
demand and reducing the unpredictable fluctuations in supply
and demand, this approach effectively improves the stability
of the energy system in the industrial park, while also preserv-
ing economic efficiency and minimizing carbon emissions.

II. CORRELATION BETWEEN INDUSTRIAL PARK
EMISSIONS AND CARBON TRADING MARKET
TRANSACTION PRICES
The fundamental purpose of the carbon trading mechanism
within the industrial park is to create a market for carbon trad-
ing, enabling participation from carbon-emitting enterprises
and users. The park’s carbon emissions are controlled through
the trading of carbon emission rights in the market, employ-
ing economic mechanisms. The operational process of the
carbon trading mechanism specifically entails the establish-
ment of legitimate carbon emission rights. It allows producers
to participate in the trading of carbon emission rights in
the market in order to accomplish emission control goals.
At the outset, government authorities assign carbon emission
quotas to each source of emissions. Producers subsequently
adjust their production and emissions to conform to their
assigned quotas. If the actual carbon emissions are lower than
the allocated quotas, excess quotas can be exchanged in the
carbon tradingmarket. Conversely, in the event that emissions
surpass the allocated quotas, it becomes necessary to procure
extra carbon emission allowances Fig. 1 illustrates the model
of the carbon trading system.

FIGURE 1. Carbon trading system model.

A. CARBON EMISSIONS
The carbon emissions of CCHP system in the park primarily
stem from three sources: electricity, gas, and heat. The ther-
mal load in the system is supplied by electricity and natural
gas, and the actual carbon emissions QtC at time t can be
calculated using the following equation:

QtC = QtE + QtG (1)

where QtE denotes the carbon emissions generated from pur-
chasing electricity from the grid; and QtG denotes the carbon
emissions of equipment using natural gas as the primary
energy source.

QtE = δE ·

k∑
t=1

PtE (2)

QtG = δG ·

k∑
t=1

M t
G (3)

where δE denotes the carbon emission factor per unit of
electricity from the regional grid in which the system is
located; δG denotes the carbon emission factor for natural gas;
PtE denotes the power exchange between the system and the
grid at time t; andM t

G denotes the amount of natural gas input
into the system at time t .

B. CARBON TRADING QUOTA
Two prevalent methods of carbon quota allocation in the
current market are free allocation and paid allocation. The
process of paid allocation primarily involves an objective
reality through auctioning, which requires systems to pay cor-
responding fees for their carbon emissions. ‘‘Free allocation’’
pertains to the advance allocation of com-plimentary carbon
emission quotas to entities, with the objective of bolstering
their incentive to participate.

When determining carbon emission quotas, two predomi-
nant approaches are commonly used: one based on historical
emissions and the other on bench-marking. Obtaining his-
torical emission data from companies can be challenging.
This paper adopts the bench-marking method as the pri-
mary approach for determining quotas in the power industry,
specifically focusing on establishing carbon emission quotas.
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In China, the carbon trading mechanism is presently in an
exploratory phase, and the allocation of complimentary quo-
tas varies among different power plants. The carbon emission
allowances for the electricity generation of gas turbines can
be transformed by considering the quantity of heat provided.
This process entails the conversion of electricity generation
into heat units, which are then combined with the original
heat supply to calculate the total heat. Subsequently, this total
heat is utilized for quota allocation. With regard to GB, their
allocation of quotas is determined exclusively by their heat
output, as demonstrated in Equation (4).

Di =

{
λr · (PRi + βPEi) the gas unit i is a gas turbine
λr · PRi the gas unit i is a gas boiler

(4)

where Di denotes the carbon emission quota for the i-th gas
turbine unit (including gas turbines and GBs); λr denotes the
quota coefficient for gas turbine units; PRi denotes the heat
output of the i-th gas turbine unit; PEi denotes the electricity
output of the i-th gas turbine unit; and β is the conversion
factor for electricity.

C. CARBON TRADING MECHANISMS
In China, the carbon trading mechanism primarily manifests
in two forms: traditional carbon trading and tiered carbon
trading.

1) TRADITIONAL CARBON TRADING MECHANISM
The traditional carbon trading mechanism is a system in
which, during a specified time period, a system entity can
earn trading credits and sell them for profit if their car-
bon dioxide emissions do not exceed the emission quota.
Otherwise, they are required to acquire additional emissions
allowances.

Once the carbon emission rights quota and actual carbon
emissions of the system have been established, it is possible
to calculate the volume of actual carbon emission trading that
occurs in the carbon trading market.

GIES,t = GIES,a + G (5)

where GIES,t denotes the actual carbon emission trading vol-
ume engaged in the carbon trading market; G denotes the
system’s carbon emission rights quota; andGIES,a denotes the
actual total carbon emissions of the system.

The representation of carbon trading cost is determined as
follows:

FC = λ · GIES,t (6)

where FC denotes the required payment for carbon trading
expenses; and λ denotes the unit carbon emission trading
price.

2) TIERED CARBON TRADING MECHANISM
The tiered carbon trading mechanism entails the segmen-
tation of carbon dioxide emissions into multiple tiers or

intervals. The higher the tier of carbon emissions, the higher
the unit price for carbon emission trading, resulting in
increased costs for the system. The expression for carbon
trading cost is shown as follows:

FC =



λ · GIES,t 0 ≤ GIES,t < l
λ · (1+µ) ·

(
GIES,t−l

)
+λ · l
l ≤ GIES,t < 2l

λ · (1+2µ) ·
(
GIES,t−2l

)
+λ · (2+µ) · l
2l ≤ GIES,t < 3l

λ · (1+3µ) ·
(
GIES,t−3l

)
+λ · (3+3µ) · l
3l ≤ GIES,t < 4l

λ · (1+4µ) ·
(
GIES,t−4l

)
+λ · (4+6µ) · l
GIES,t ≥ 4l

(7)

where FC denotes the tiered carbon trading cost; λ stands for
the base price of carbon trading; l denotes the length of the
carbon emissions tier; and µ represents the increment in the
price of tiered carbon trading.

3) REWARD-PENALTY TIERED CARBON TRADING
MECHANISM
Reward-penalty tiered carbon trading mechanism incor-
porates reward-penalty coefficients into the tiered carbon
trading system, which compares actual emissions with des-
ignated emissions in order to provide incentives or penalties.
The unit price for purchasing carbon quotas increases as
an entity surpasses its allocated quota, leading to additional
punitive costs as a result of the tiered carbon pricing. Con-
versely, if the actual emissions do not surpass the allocated
quota, any surplus carbon quotas can be traded in the carbon
market, resulting in additional benefits.

Compared to the traditional carbon trading pricing mech-
anism, which is designed to further reduce carbon emis-
sions, the reward-penalty tiered pricing mechanism di-vides
multiple purchasing intervals. It introduces reward-penalty
coefficients in addition to carbon trading, which aims to
incentive energy-efficient initiatives by energy supply enter-
prises. These coefficients provide incentives or sanctions
depending on the discrepancy between the actual and spec-
ified emission levels.

When a power company’s carbon emissions decrease
below the allocated carbon quotas, government departments
provide specific technical subsidies as incentives. In this
scenario, the cost of carbon trading for this portion can be
expressed as follows:

FC =



−λ · (1 + 2β) ·
(
GIES,t + 2l

)
− λ · (2 + β) · l

GIES,t ≤ −2l
−λ · (1 + β) ·

(
GIES,t + l

)
− λ · l

−2l < GIES,t ≤ −l
−λ · GIES,t

−l ≤ GIES,t < 0

(8)
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If a power company’s actual carbon emissions surpass the
allocated carbon quotas, the company is required to procure
additional carbon quotas from the carbon trading market. The
cost of carbon trading for this segment can be represented as
follows:

FC =



λ · GIES,t 0 ≤ GIES,t < l
λ · (1 + α) ·

(
GIES,t−l

)
+ λ · l

l ≤ GIES,t < 2l
λ · (1 + 2α) ·

(
GIES,t − 2l

)
+ λ · (2 + α) · l

2l ≤ GIES,t < 3l
λ · (1 + 3α) ·

(
GIES,t − 3l

)
+ λ · (3 + 3α) · l

3l ≤ GIES,t < 4l
λ · (1 + 4α) ·

(
GIES,t − 4l

)
+ λ · (4 + 6α) · l

GIES,t ≥ 4l

(9)

whereFC denotes the cost of the reward-penalty tiered carbon
trading; λ denotes the base price of carbon trading; l denotes
the length of the carbon emissions tier; and α and β denote the
reward and penalty coefficients in the reward-penalty tiered
carbon trading, respectively.

4) EXPLANATION AND JUSTIFICATION OF KEY
ASSUMPTIONS
Based on the previous introduction of various carbon trading
mechanisms, this paper presents the relationships between
carbon trading cost and carbon trading volume for the tradi-
tional carbon trading model, the tiered carbon trading model,
and the reward-penalty tiered carbon trading model, as shown
in Fig. 2.

FIGURE 2. Relationship between carbon trading costs and trading volume.

From Fig. 2, it can be concluded that the tiered carbon
trading mechanism performs better than the traditional car-
bon trading mechanism when the carbon trading volume
is positive (system carbon emissions exceed the allocated
carbon quota). The more the system emits carbon, the more
carbon quotas need to be purchased, leading to higher carbon

quota prices and increased economic costs for the system,
while excessive carbon emissions are harmful to the environ-
ment. In this stage, the reward-penalty tiered carbon trading
mechanism performs similarly to the tiered carbon trading
mechanism.

The reward-penalty tiered carbon trading mechanism per-
forms better than the traditional carbon trading mechanism
when the carbon trading volume is negative (system carbon
emissions are less than the allocated carbon quota). The less
the system emits carbon, the more carbon quotas can be sold
to the carbon market, resulting in higher selling prices for
carbon quotas and increased revenue for the system, thereby
reducing economic pressure. This tiered purchase price drives
the energy system towards reducing carbon emissions.

Comparing the three carbon trading mechanisms, the
reward-penalty tiered carbon tradingmechanism outperforms
both when the carbon trading volume is positive and negative.
Therefore, this paper selects the reward-penalty tiered carbon
trading mechanism as part of the objective function to be
integrated into the CCHP system to reduce carbon emissions
and enhance low-carbon economic performance.

III. ENERGY SYSTEM MODELING UNDER CARBON
TRADING MECHANISM
The paper considers the varied energy requirements within
the park and designs a CCHP system that integrates four
energy sources: cooling, heating, electricity, and gas. The
system incorporates a centralized power bus for the exchange
of electrical power with the grid, as depicted in Fig. 3.

FIGURE 3. CCHP model.

The park’s energy system is comprised of three primary
components: energy input, energy conversion, and energy
output. The energy input side primarily comprises pho-
tovoltaic (PV), wind turbine (WT), the power grid, and
natural gas networks. The energy conversion side includes
a variety of equipment such as fuel cell (FC), micro-gas

113478 VOLUME 12, 2024



T. Ma et al.: Optimizing Multi-Timescale Scheduling of CCHP Systems

turbine (MT), gas boiler (GB), waste heat boiler (WHB),
electric boiler (EB), ice-storage air-conditioning (ISAC),
absorption refrigerator (AR), and heat exchanger (HE).
Energy storage (ES) systems on the conversion side mainly
consist of ES devices, cold energy storage (CS), and heat
energy storage (HS). The energy output side addresses the
necessary cooling, heating, and electrical demands.

The fuel consumption of MT can be estimated using a
linear function [28]:

FTMT = αFi · PTMT + βFi · UT
MT (10)

where PTMT denotes the output electrical power of MT during
the T-th interval; UT

MT denotes the on-off status indicator
for MT; 0 and 1 denote the status of off and on, respectively;
αFi and βFi denote the fuel coefficients for MT.

During the operation of MT system, the high-temperature
waste flue gas is captured and utilized for heating and cooling
purposes through WHB, HE, and AR. This paper does not
take into account the effects of environmental factors and
combustion efficiency on MT. The characteristic model of
MT is obtained as follows:

GTMT =
PTMT · (1 − ηMT − ηL)

ηMT
HT
MT = GTMT · COP,hηh

QTMT = GTMT · COP,cηc

(11)

where GTMT denotes the waste heat from MT during the T-th
interval; ηMT denotes the power generation efficiency of MT;
ηL denotes the heat dissipation coefficient; HT

MT and QTMT
denote the heat and cooling output of HE and AR during the
T-th interval, respectively; COP,h and ηh denote the heating
coefficient and flue gas recovery rate of HE, respectively;
COP,c and ηc denote the cooling coefficient and flue gas
recovery rate of AR, respectively.

The responsibility of electricity scheduling during daily
operations will be assumed by FC. Consequently, this paper
does not address the utilization of its waste heat. Its fuel
consumption is given as follows [29]:

FTFC = αc · PTFC + βc · UT
FC (12)

where PTFC denotes the output electrical power of FC dur-
ing the T-th interval; UT

FC denote the on-off status indicator
for FC; 0 and 1 denote the status of off and on, respectively;
αc and βc denote the fuel coefficients for FC.

ISAC system consists of chillers, cold storage tanks, and
auxiliary equipment. This paper utilizes a parallel ISAC sys-
tem [30], where ice storage is limited to off-peak elec-tricity
pricing periods, and the chillers can provide cooling and
store ice simultaneously. The power consumption formulas
for each device can be available in Bao et al. [31]. The specific

constraints are determined as follows:
UT
a · Qmina ≤ QTa ≤ UT

a · Qmaxa

0 ≤ QTc ≤ UT
c · Qmaxa UT

c = 0,T ̸= �valley

Qmina ≤ QTc + QTa ≤ Qmaxa

0 ≤ QTd ≤ UT
d · Qmaxd UT

d = 0,T ̸= �valley

(13)

where QTa and QTc denote the output cooling power and ice
storage power of the chillers respectively; QTd denotes the
melting power of the cold storage tank; UT

a and UT
c denote

the cooling and ice storage status flags of the chillers, respec-
tively; UT

d denotes the status flag of the cold storage tank;
0 and 1 denote the status of off and on, respectively; and
�valley denotes the set of all time periods during off-peak
electricity pricing.

To capitalize on the low-carbon attributes of CCHP system,
a reward-penalty tiered carbon trading mechanism has been
implemented to constrain the system’s carbon emissions.
Given that the system exclusively procures electricity from
thermal power sources from the external grid, the carbon
emissions within CCHP system are primarily derived from
three sources: purchased electricity from the upper-level grid,
GB, and CHP. Both GB and CHP produce carbon dioxide
as a byproduct of natural gas combustion. The quota method
utilized in this paper involves the gratuitous allocation. Con-
sequently, the distribution of complimentary carbon emission
allowances for carbon trading is outlined as follows:

G = GGrid + GCHP + GGB

GGrid = εe ·

T∑
t=1

Pbuyg,t · 1t

GCHP = εh ·

(
T∑
t=1

ϕe−h · PMT ,t + PWHB,t

)
· 1t

GGB = εh ·

T∑
t=1

PGB,t · 1t

(14)

where denote GGrid , GCHP, and GGB free carbon quotas for
purchased electricity from the external grid (IES), CHP, and
GB, respectively; G denotes the total carbon quota of IES;
Pbuyg,t denotes the purchased electricity amount from IES; εe
and εh denote the free carbon quota coefficients per unit of
electricity and per unit of the heat, respectively; ϕe−h denotes
the conversion factor for transforming power generation into
heat sup-ply, which is 6 MJ/(kWh) [32]; PMT ,t denotes the
output power of MT in the electric power; PWHB,t and PGB,t
denote the heat output power of WHB and GB, respectively.

IV. MULTI-TIME-SCALE LAYERED OPTIMIZATION FOR
CARBON EMISSION SCHEDULING
To mitigate the potential effects of uncertainties in renewable
energy and load forecasting on the scheduling of CCHP
systems, this study develops a multi-time scale optimization
schedulingmodel that covers daily and intraday periods. Day-
ahead scheduling achieves low-carbon economic benefits by

VOLUME 12, 2024 113479



T. Ma et al.: Optimizing Multi-Timescale Scheduling of CCHP Systems

optimizing the system structure from a spatial dimension.
The multi-time scale optimization scheduling strategy, on the
other hand, leverages the advantage of increased prediction
accuracy as the scheduling time scale decreases, reducing
the impact of renewable energy and load uncertainties and
equipment output fluctuations on the scheduling results. The
multi-time scale optimization scheduling block diagram pro-
posed in this paper is shown in Fig. 4.

FIGURE 4. Multi-Time scale optimization scheduling block diagram.

(1) The daily scheduling phase operates on a 1-hour time
scale with the objective of minimizing the combined costs of
procurement, operational, and reward-penalty tiered carbon
trading. It produces a 24-hour operational plan in advance
for each device. The intraday rolling optimization scheduling
follows the previous schedule and adjusts the forecast infor-
mation within the subsequent control time domain, taking
into account the variations in different energy sources at the
scheduling time scale.

(2) Intraday rolling optimization scheduling shortens the
prediction period based on day-ahead forecasting. Due to
the different characteristics of various energies over different
time scales, a dual-time scale scheduling strategy is used
to balance power fluctuations of different energies, dividing
the intraday rolling optimization scheduling into an upper
and lower layer structure. The upper stratum is designed
to mitigate extended fluctuations in thermal energy output
and functions within a control time frame of 1 hour, with
a scheduling window of 2 hours. The lower layer deals
with shorter-term variations in electrical power, functioning
within a control time domain of 5 minutes, with a scheduling
window of 1 hour. Rolling optimization involves saving the
optimization results from the previous control time domain.
The second optimization starts from the next control domain
using new forecast data, repeating the above optimization
process in a rolling update fashion. Rolling optimization
further enhances the system’s low-carbon economic benefits
and enhances its capacity to integrate new energy sources.
Intraday rolling optimization aims to adjust the output of sys-
tem energy devices to ensure smooth operation, progressively
refining time scales to reduce the impact of generation and
load power fluctuations on system optimization.

A. ADVANCED DAY-AHEAD SCHEDULING MODEL
CONSIDERING A TIERED CARBON TRADING
MECHANISM
1) TRADITIONAL CARBON TRADING MECHANISM
The scheduling model has recently been developed as a
mixed-integer linear programming problem, aiming to mini-
mize the total costs associated with procurement, operational
maintenance, and stepwise carbon trading.

F = min
(
CNG + Cbt + Cgrid + FC

)
(15)

where F denotes the total cost of IES; CNG, Cbt , Cgrid ,
and FC denote the procurement cost for gas, battery
charge-discharge aging cost, electricity procurement cost,
and stepwise carbon trading cost, respectively. The expres-
sion for ’ FC ’ is expressed in Equation (8) and Equation (9),
while the remaining three components are represented as
follows:

Cbt =

24∑
T=1

RTbt ·

(
UT
bt,dis + UT

bt,chr

)
· 1T

CNG =

24∑
T=1

RTNG ·


n∑
i=1

FTMT ,i + FTGB + FTFC

HNG

 · 1T

Cgrid =

24∑
T=1

RTgrid · PTgrid · 1T

(16)

where 1T denotes the time interval; RTbt denotes the unit
battery aging cost; UT

bt,chr and UT
bt,dis denote the charging

and discharging status flags of the battery, respectively; 0 and
1 denote the status of off and on, respectively; RTNG denotes
the purchase price of natural gas for the system in the T-th
period; FTMT , F

T
GB, and F

T
FC denote the fuel consumption of

MT, GB, and FC in the T-th period, respectively;HNG denotes
the lower heating value of natural gas; RTgrid and P

T
grid denote

the unit purchase price and the purchased power of electricity
in the T-th period, respectively.

2) CONSTRAINTS
Taking into account the physical characteristics of the sys-
tem’s various devices and energy balance, the constraints that
this paper needs to satisfy are as follows:

(1) Equipment operation constraints
The operational constraints for each device must comply

with the minimum and maximum output levels as well as the
maximum and minimum ramp rates. Specifically designed
for MT as follows:

UT
MT · PminMT ≤ PTMT ≤ UT

MT · PmaxMT (17)

PdownMT ≤ PTMT − PT−1
MT ≤ PupMT (18)

where PminMT and PmaxMT denote the minimum and maximum
output power of MT, respectively; PTMT denotes the output
electrical power of MT in the T-th time interval;UT

MT denotes
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the start-stop status flag of MT; 0 and 1 denote the status of
off and on, respectively; PupMT and PdownMT denote the upper and
lower ramp rate limits of MT, respectively.

To prevent negative impacts on battery lifespan caused by
low power and low state of charge (SOC) during charge and
discharge, it is essential for battery operation to comply with
the limitations of charging, discharging, and SOC, which can
be expressed as follows:{

UT
bt,chr · Pminbt,chr ≤ PTbt,chr ≤ UT

bt,chr · Pmaxbt,chr

UT
bt,dis · Pminbt,dis ≤ PTbt,dis ≤ UT

bt,dis · Pmaxbt,dis
(19) STSOC = ST−1

SOC +

(
ηbt,chr · PTbt,chr −

PTbt,dis
ηbt,dis

)
· 1T

SminSOC ≤ STSOC ≤ SmaxSOC

(20)

where STSOC denotes SOC value of the battery; PTbt,chr and
PTbt,dis denote the charging and discharging power of the
battery, respectively; ηbt,chr and ηbt,dis denote the charging
and discharging efficiency of the battery, respectively; 1T
denotes the time interval in the scheduling plan; UT

bt,chr
and UT

bt,dis satisfy the mutually exclusive constraint and
the charge-discharge frequency constraint (Equations (21)
and (22)), respectively.

UT
bt,chr + UT

bt,dis ≤ 1 (21)
24∑
T=1

UT
bt,chr + UT

bt,dis ≤ T (22)

During practical operation, the battery must comply with
the charge-discharge ramp rate constraint as illustrated in
Equation (23) as follows:Pdownbt,chr ≤ PTbt,chr − PT−1

bt,chr ≤ Pupbt,chr

Pdownbt,dis ≤ PTbt,dis − PT−1
bt,dis ≤ Pupbt,dis

(23)

where Pupbt,chr , P
down
bt,chr , P

up
bt,dis and P

down
bt,dis denote the upper and

lower ramp rate limits for the charging and discharging states
of the battery.

When HE, HS, and EB are unable to attain thermal power
balance status within the system, GB compensates for the
shortfall. Therefore, it is necessary for GB to comply with
the constraints illustrated in Equations (24) and (25).

HT
GB = FTGB · ηGB (24)

Hmin
GB ≤ HT

GB ≤ Hmax
GB (25)

where FTGB denotes the natural gas consumption of GB in the
T-th period; HT

GB denotes the output thermal power of GB
in the T-th period; and ηGB denotes the efficiency coefficient
of GB.

EB utilizes surplus electricity during low-demand periods
for heating, adhering to specified operational limits.

HT
EB = PTEB · ηEB (26)

0 ≤ PTEB ≤ PmaxEB (27)

wherePTEB andH
T
EB denote the power consumption and output

thermal power of EB in the T-th period, respectively; PmaxEB
denotes the rated capacity of EB; and ηEB denotes the effi-
ciency coefficient of EB.

The thermal storage tank has the capacity to store sur-
plus heat energy when it is abundant and to release heat
energy when there is an inadequate supply or when the cost
of heat generation is high. This improves the operational
flexibility and cost-effectiveness of the system, provided that
the capacity constraints and charge-discharge thermal power
constraints outlined in Equations (28) and (29) are met.W T

tst = W T−1
tst · (1 − γh) +

(
ηtst,chr · HT

tst,chr −
HT
tst,dis

ηtst,dis

)
Wmin
tst ≤ W T

tst ≤ Wmax
tst

(28)UT
tst,chr · Hmin

bt,chr ≤ HT
tst,chr ≤ UT

tst,chr · Hmax
tst,chr

UT
tst,dis · Hmin

tst,dis ≤ HT
tst,dis ≤ UT

tst,dis · Hmax
tstt,dis

(29)

where W T
tst denotes the stored thermal energy in the ther-

mal storage tank; HT
tst,chr and HT

tst,dis denote the charging
and discharging thermal power of the thermal storage tank,
respectively; γh denotes the self-discharge rate of energy
in the thermal storage tank; ηTtst,chr and ηTtst,dis denote the
charging and discharging efficiencies of the thermal storage
tank, respectively;UT

tst,chr andU
T
tst,dis denote the charging and

discharging status flags of the thermal storage tank, which
is subject to the mutually exclusive constraint illustrated in
Equation (30), respectively; and 0 and 1 denote the status of
off and on, respectively.

UT
tst,chr + UT

tst,dis ≤ 1 (30)

Similar to the operation mode of the battery, the thermal
storage tank must adhere to the ramp rate constraints as
indicated in Equation (31).Hdown

tst,chr ≤ HT
tst,chr − HT−1

tst,chr ≤ Hup
tst,chr

Hdown
tst,dis ≤ HT

tst,dis − HT−1
tst,dis ≤ Hup

tst,dis

(31)

whereHup
bt,chr ,H

down
bt,chr ,H

up
bt,dis andH

down
bt,dis denote the upper and

lower ramp rate limits for the charging and discharging states
of the thermal storage tank.

The chilled water tank is a crucial component of ISAC
system. The model considers loss coefficients, refrigeration
efficiency, and large storage capacity, while ensuring adher-
ence to operational constraints depicted in Equations (32)
and (33).

STice = ST−1
ice ·

(
1 − γQ

)
+

(
ηice,chr · QTc −

Qd
ηice,dis

)
(32)

Sdownice ≤ STice − ST−1
ice ≤ Supice (33)

where STice denotes the cooling capacity stored in the
chilled water tank for the T-th time interval; γQ denotes
the self-discharge coefficient; ηice,chr and ηice,dis denote the
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coeffi-cients for ice storage and ice melting, respectively; Supice
and Sdownice denote the upper and lower ramp rate limits for the
chilled water tank, respectively.

(2) System constraints
In addition to the operational limitations of the equipment,

the system must also adhere to constraints related to electri-
cal, cooling, and heating power balance, as well as exchange
power.



PTWT + PTPV +

n∑
i=1

PTMT ,i + PTFC + PTgrid − PTbr,chr

+PTbr,dis = PTload + PTISAC + PTEB
n∑
i=1

QTMT ,i + QTa + QTd = QTload

n∑
i=1

HT
MT ,i + HT

EB + HT
GB − HT

tst,chr + HT
tst,dis = HT

load

(34)

where PTWT , P
T
PV , and P

T
FC denote the output power of WT,

PV, and FC, respectively; PTgrid denotes the purchased power;
PTISAC denotes the electricity consumption of ISAC in the
T-th time interval; QTMT denotes the cooling capacity of
AR in the T-th time interval; QTa and QTd denote the cool-
ing output power of ISAC’s refrigeration unit and the ice
melting power of ISAC’s chilled water tank, respectively.
HT
MT denotes the cooling capacity of HE in the T-th time

interval.

B. INTRADAY ROLLING OPTIMIZATION SCHEDULING
MODEL
1) UPPER-LEVEL ROLLING OPTIMIZATION SCHEDULING
MODEL
In the upper-level optimization problem, the adjustment of
each micro-source’s output is determined by the variation
of thermal and cold loads at time t , in order to mitigate
fluctuations in thermal and cold energy power, while adhering
to the operational state of MT in advance and the thermal
and cold scheduling strategy. The upper-level rolling opti-
mization scheduling is designed to minimize the total of
procurement costs, equipment adjustment penalty costs, and
stepwise carbon trading costs, which are expressed as the
objective function in Equation (35):

F1 = min
k+M∑
t=k

C t
ISAC + C t

NG + C t
EB + FC1 (35)

whereM denotes the control time domain of the thermal and
cold scheduling; and C t

ISAC ,C t
NG, C

t
EB, and FC1 denote the

procurement cost of, gas, EB adjustment cost, and intraday
stepwise carbon trading cost, respectively. The expression for
’FC1’ is expressed in Equation (8) and Equation (9), while the

remaining three components are represented as follows:

C t
ISAC = µISAC ·

(
1PtISAC

)2
· 1t

C t
NG =

RtNG ·

(
FTMT+1F tMT+FTGB+1F tGB

HNG

)
+µMT ·

(
1PtMT

)2
+ µGB ·

(
1H t

GB

)2
 · 1t

C t
EB = µEB ·

(
1PtEB

)2
· 1t

(36)

where 1t denotes the time interval in the intraday schedul-
ing; RtNG denotes the purchase price of natural gas for the
system in the t-th interval; 1F tMT and 1F tGB denote the fuel
consumption adjustment quantities for MT and GB in the t-th
interval, respectively; 1PtMT and 1H t

GB denote the adjust-
ment power for MT and GB in the t-th interval, respectively;
µMT and µGB denote the unit penalty costs for adjustment
of MT and GB, respectively; µEB denotes the unit penalty
cost for EB adjustment quantity; 1PtEB denotes the adjust-
ment power of EB in the t-th interval; µISAC denotes the
unit penalty cost for ISAC adjustment quantity; and 1PtISAC
denotes the adjustment power of ISAC in the t-th interval.
The intraday thermal and cold energy scheduling must also

adhere to power constraints for cold, hot, and MT, which can
be expressed as follows:

n∑
i=1

QtMT ,i + Qta + Qtd = Qtload

n∑
i=1

H t
MT ,i + H t

EB + H t
GB − H t

tst,chr + H t
tst,dis = H t

load

−0.05PmaxMT ≤ 1PtMT ≤ 0.05PmaxMT

(37)

2) LOWER-LEVEL ROLLING OPTIMIZATION SCHEDULING
MODEL
In the lower-level optimization problem, the charge-discharge
state of ES is taken into account in advance, and modifi-
cations are made to the previous schedule in response to
fluctuations in renewable energy, electrical loads, and vari-
ations in the power of upper-level devices. The lower-level
rolling optimization scheduling is designed to minimize both
the procurement cost and the penalty cost associated with
equipment adjustment, as depicted in Equation (38):

F2 = min
k+N∑
t=k

C t
grid + C t

FC + C t
bt + β ·

(
STSOC − S tSOC

)2
(38)

where N denotes the control time domain of the electrical
energy scheduling; C t

grid , C
t
FC , and C

t
bt denote the procure-

ment cost of electricity, FC adjustment cost, and the cost
associated with changes in the charging and discharging
power of the battery, respectively; and β denotes the penalty
factor for ES SOC. The remaining three components are
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represented as follows:

C t
grid =

[
Rtgrid ·

(
PTgrid+1Ptgrid

)
+µgrid ·

(
1Ptgrid

)2]
·1t

C t
FC =

[
CNG ·

FTFC + 1F tFC
HNG

+ µFC ·
(
1PtFC

)2]
· 1t

C t
bt = µp ·

[(
1Ptbt,dis

)2
+

]
·
(
1Ptbt,chr

)2
1t

(39)

where Rtgrid denotes the electricity purchase price f or the
system in the t-th interval; µgrid denotes the unit penalty
cost for exchange power adjustment quantity; 1Ptgrid de-
notes the exchange power adjustment rate in the t-th interval;
µFC denotes the unit penalty cost for FC adjustment quantity;
1PtFC denotes the adjustment power of FC in the t-th inter-
val; µp denotes the unit penalty cost for battery adjustment
quantity; 1Ptbt,chr and 1Ptbt,dis denote the adjustment power
for charging and discharging of the battery in the t-th interval,
respectively.

The intraday electrical energy scheduling must adhere
to constraints related to power balance, intraday SOC,
and exchange power with the grid, which are shown as
follows:

PtWT + PtPV +

n∑
i=1

PTMT ,i + PtFC + Ptgrid − Ptbr,chr

+Ptbr,dis = Ptload + PtISAC + PtEB

C t
FC = −0.05STSOC ≤ 1S tSOC ≤ 0.05STSOC

−0.05PTgrid ≤ 1Ptgrid ≤ 0.05Pmaxgrid

(40)

V. CASE STUDY
A. FUNDAMENTAL DATA
This paper conducts simulation experiments utilizing the park
system depicted in Figure 3 as a case study. The simula-
tion parameters are delineated in Table 1. The an-ticipated
patterns for electricity, heat, and cooling demands, as well
as wind power and PV power, are illustrated in Fig. 5.
Time-of-use electricity rates are detailed in Table 2. The
operational mode of ISAC includes daytime cooling oper-
ations and simultaneous ice storage and cooling during
the night. The process of ice melting from the ice stor-
age tank is limited to peak electricity pricing periods. This
approach enables the micro-grid system to attain advan-
tageous economic scheduling outcomes. Gurobi solver is
utilized for both the day-ahead and intraday stages in this
study.

B. DAY-AHEAD SCHEDULING RESULTS
The day-ahead scheduling provides a 24-hour operating plan
for each device, allowing CCHP system to achieve optimal
low-carbon and cost-effective operation based on this plan.

TABLE 1. Model parameters.

FIGURE 5. Predictive data for electrical, thermal, and cooling loads,
alongside wind and PV energy.

TABLE 2. Schedule of electricity prices based on time-of-use.

1) ANALYSIS OF LOW-CARBON PERFORMANCE AND
ECONOMIC VIABILITY UNDER CARBON TRADING
MECHANISM
The carbon trading price is established at 120 CNY per
ton, with penalty and re-ward coefficients for tiered carbon
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pricing set at 0.2 and 0.25, and a carbon trading volume
interval of 1000 tons, leading to the resolution of the model.

To demonstrate the benefits of optimizing the schedul-
ing of CCHP system and integrating the newly introduced
reward-penalty tiered carbon trading mechanism to enhance
economic and environmental efficiency, this study examines
three scenarios:

Scenario 1 represents the baseline model where CCHP
system’s optimization does not account for carbon trading-
associated costs.

Scenario 2 involves the incorporation of a traditional car-
bon trading mechanism into the optimization model of CCHP
system.

Scenario 3 (the proposed scenario) incorporates the inte-
gration of a reward-penalty tiered carbon trading mechanism
into the optimization model of CCHP system.

Scenario 4 Optimization Scheduling Model of CCHP Sys-
tems Considering Reward-Penalty Tiered Carbon Trading
Mechanism, Utilizing Particle Swarm Algorithm for Optimal
Operation.

The scheduling results under these four scenarios are com-
pared and presented in Table 3.

TABLE 3. Comparison of day-ahead scheduling results under different
operational scenarios.

Table 3 illustrates that in comparison to Scenario 1, Sce-
nario 2, which incorporates the traditional carbon trading
mechanism, decreased carbon trading expenses by 36.90%
and total costs by 6.40%. The decrease in emissions is
ascribed to the incorporation of carbon trading expenses in
the goal function, leading to stricter regulation of emissions
and modifications in unit production, thereby reducing total
expenses.

The results presented in Table 3 provide additional evi-
dence that Scenario 3, in comparison to Scenario 2, resulted
in a further reduction of 11.68% in carbon trading costs and
a 1.29% decrease in total costs. The enhancement can be
attributed to the implementation of a reward-penalty tiered
carbon trading mechanism in Scenario 3, which has facil-
itated a more efficient control of emissions through the
imposition of higher carbon trading prices. This mechanism
enabled the optimization of unit power output, leading to a
reduction in carbon trading costs and subsequently lowering
the overall system costs.

Comparing Scenario 3 and Scenario 4 reveals that under
unchanged system conditions, the optimal results obtained
using Gurobi solver and Particle Swarm Algorithm are simi-
lar. However, Gurobi solver demonstrates distinct advantages

in terms of solution speed, stability, guarantee of global opti-
mality, debugging, maintenance, and scalability.

In summary, the proposed optimization scheduling method
for CCHP systems considering reward-penalty tiered carbon
trading mechanism not only enhances energy efficiency and
achieves economic and low-carbon performance of CCHP
systems but also offers advantages in solution speed, accu-
racy, and operational feasibility.

2) ANALYSIS RESULTS OF SOURCE-LOAD SCHEDULING
BALANCE STATUS
The analysis in Section V-B1 demonstrates that the tiered car-
bon trading mechanism, which incorporates reward-penalty
aspects, more effectively improves the park’s energy uti-
lization with higher efficiency. Therefore, this section is
dedicated to analyzing the results of the day-ahead opti-
mization for Scenario Three. The scheduling out-comes are
depicted in Fig. 6 to 8.

Based on the electricity load balance status depicted in
Fig. 6, the electricity load remains consistently low during the
off-peak period from 22:00 to 06:00. The out-put of renew-
able energy gradually increases over this period, with the
primary load being supported by point of common coupling
(PCC). During the peak period from 06:00 to 11:00, there is a
steady increase in electricity load. The output from both MT
and FC demonstrates a continuous increase, eventually reach-
ing a state of full load operation for a certain period. During
this period, ES and the low power-consuming chilled water
tank initiate the release of energy to decrease the system’s
reliance on the external power grid.

During the standard pricing period from 11:00 to 17:00,
there is a gradual decrease in electricity demand. MT gradu-
ally reduces its output, resulting in a decrease in thermal and
cooling energy supply.

FIGURE 6. Analysis results of electricity load balance status.
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FIGURE 7. Analysis results of hot load balance status analysis results.

FIGURE 8. Analysis results of cooling load balance status.

The second peak period in electricity pricing occurs
between 17:00 and 22:00. The operational status of the sys-
tem reflects that of the 06:00 to 11:00 period. However, due to
the reduced output of wind energy at this time, the frequency
of discharging ES system is higher compared to the first peak
pricing period.

The thermal load balance status, as illustrated in Fig. 7,
indicates that during the off-peak period from 22:00 to 06:00,
the thermal load is predominantly sustained by GB and EB.
During the peak period from 06:00 to 11:00, there is a
strategy in place to decrease the system’s reliance on the
external power grid by storing excess thermal energy using
the HS equipment, which in turn reduces the conversion
power of EB.

During the standard pricing period from 11:00 to 17:00,
when the supply of thermal energy from MT decreases,
HS equipment initiates the release of thermal energy.

During the time frame of 17:00 to 22:00, which signifies
the second peak period for electricity pricing, the operational
status of the system closely mirrors that of the 06:00 to
11:00 period.

With respect to the cooling load balance status (Fig. 8), the
cooling load remains at a low level during the off-peak period
from 22:00 to 06:00, primarily supported by ISAC.

During the standard pricing period from 11:00 to 17:00, the
cooling capacity of AR increases as a result of the reduced
thermal energy supplied by MT.

During the time frame of 17:00 to 22:00, which signifies
the second peak period for electricity pricing, the operational
status of the system is essentially comparable to that of the
06:00 to 11:00 period.

C. ANALYSIS RESULTS OF INTRADAY SCHEDULING
MODEL
1) ANALYSIS OF THE EFFECTIVENESS OF MULTI-TIME SCALE
MODELS
Using the optimization scheduling algorithm proposed in
this study, combined with the conditions of Scenario Three,
the multi-time scale optimization scheduling results are pre-
sented in Table 4.

TABLE 4. Multi-time scale optimization scheduling results.

To verify the enhancement of renewable energy integration
capacity through multi-time scale optimization, calculations
were conducted to determine the integration capacities of
wind and photovoltaic (PV) power as shown in Table 4.
As indicated in Table 4, under multi-time scale scheduling,
both wind and PV integration capacities have significantly
improved. The integration rate of wind power reached
98.61%, which is 2.01% higher than that achieved with previ-
ous day scheduling. Similarly, the PV integration rate reached
99.38%, an improvement of 1.88% compared to previous day
scheduling. These results demonstrate that multi-time scale
scheduling effectively enhances the integration capacity of
renewable energy sources.

2) COMPARISON AND ANALYSIS OF OUTPUT ADJUSTMENT
FOR VARIOUS EQUIPMENT BETWEEN B. DAY-AHEAD AND
INTRADAY PERIODS
The implementation of carbon tradingmechanisms incentives
the adoption of renewable energy sources within the system.
However, the day-ahead scheduling plans rely on hourly
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time scales, resulting in substantial fluctuations in system
power. Consequently, this study aims to rectify the inaccura-
cies stemming from day-ahead predictions by implementing
intraday forecasting adjustments. Concurrently, it regulates
the output of equipment to minimize the negative impact of
fluctuations in renewable energy power on the park’s energy
system. The optimization scheduling algorithm presented in
this paper is employed in combination with the conditions
specified in Scenario Three to illustrate the intraday opti-
mized scheduling results in Fig. 9 to 14.

With respect to the scheduling of upper-level thermal
energy, Fig. 9 demonstrates that EB follows the day-ahead
operational plan, while also making slight modifications in
response to real-time heat demand. During periods of low
electricity prices, the system boosts its output to accumulate
excess heat load for utilization during peak electricity pricing.
Fig. 10 demonstrates that GB conforms to the day-ahead
operational plan, with minor modifications made in response
to real-time heat demand in order to promptly fulfill user heat
load requirements. Fig. 11 illustrates that ISAC adheres to the
day-ahead operational plan, with slightmodificationsmade in

FIGURE 9. EB output power.

FIGURE 10. GB output power.

FIGURE 11. ISAC(Qa) output power.

response to real-time cooling demand. During periods of low
electricity prices, the system in-creases its output and stores
excess cooling load for use during peak electricity pricing.

For lower-level electricity scheduling, Fig. 12 illustrates
that MT adheres to the day-ahead operational plan and imple-
ments real-time adjustments in response to the system load
in order to promptly fulfill the system’s electricity demand.
Fig. 13 presents the scheduling outcomes for grid interaction
power, demonstrating a decrease in the system’s electricity
procurement curve during periods of peak pricing. The curves
representing flat and low pricing periods aremodified accord-
ing to real-time demand. During periods of peak pricing,
the reduction of purchased electricity through the use of
stored loads can result in a decrease in the daily operating
costs of the system. During the intraday scheduling stage,
the management of system power fluctuations is primarily
handled by FC, as illustrated in Fig. 14, in order to take into
account the service life of ES and the stable operation of the
external power grid. The implementation of a multi-timescale

FIGURE 12. MT output power.
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FIGURE 13. Grid power exchange.

FIGURE 14. FC output power.

operational strategy serves to promptly mitigate user load
fluctuations and minimize significant fluctuations in equip-
ment output, thereby ensuring both economical and stable
equipment operation.

D. ANALYSIS OF KEY PARAMETERS IN CARBON TRADING
MECHANISM
The analysis conducted in the initial section of this paper
demonstrates the interdependence between carbon trading
prices and total costs. Consequently, this study manipulates
the carbon trading price in Scenario Three to assess its influ-
ence on carbon trading expenses, overall costs, and other
related factors. The findings are illustrated in Fig. 15. The
figure illustrates that the optimization algorithm proposed in
this paper results in a pattern where, as the carbon trading
price gradually increases, both carbon trading costs and total
costs initially experience an upward trend followed by a sub-
sequent decline. The fluctuation in carbon trading expenses
has an impact on the overall costs, reaching its peak when the
carbon price reaches approximately 120 CNY per ton.

The analysis presented in Fig. 15 illustrates that a continu-
ous rise in carbon trading prices ideally results in a reduction
in both carbon trading costs and total costs. However, in cases

FIGURE 15. Cost mechanism analysis relative to carbon price fluctuations.

where the costs of carbon trading exhibit excessively high
negative values, signifying an excessive dependence on the
sale of carbon emissions for significant financial gains, this
approach loses its effectiveness in controlling carbon emis-
sions. Therefore, the pursuit of high profits through the
exclusive sale of carbon emission rights is not in line with real
market dynamics. Therefore, it would be suitable to establish
a ceiling for the carbon trading price at 200 CNY per ton.

In energy systems that integrate the incentive-driven car-
bon trading mechanism, the incentive coefficient plays a
critical role in influencing the system’s ability to operate with
low carbon emissions. Thus, this paper establishes the critical
carbon price CC0 as the price at which emissions equal
the quota, leading to zero carbon trading when emissions
and quotas are in balance. Taking into account the influence
of the incentive coefficient and a carbon emission interval
length l of 1000 tons, diverse dis-patch models are resolved
using different incentive coefficients, resulting in the findings
depicted in Fig. 16.

The data presented in Figure 16 indicates that an ele-
vated incentive coefficient is associated with a more rapid
decline in carbon emissions as carbon prices rise, leading
to a reduction in the critical carbon price as the incentive
coefficient increases. For ex-ample, when the incentive coef-
ficient is set to 0, the critical carbon price is estimated to be
around 120 CNY per ton. However, when the incentive coef-
ficient is 0.1, the critical carbon price decreases to 100 CNY
per ton, and further reduces to 85CNYper ton as the incentive
coefficient reaches 0.2.

The carbon trading system operates on the principle of
‘total control and trade’, where quotas represent the tar-
geted total emissions for a specific period in a given area.
The critical carbon price is the minimum price required
to achieve emission targets. As a result, this paper estab-
lishes the critical carbon price as the baseline reasonable
carbon price. The analysis presented in Fig. 16 suggests
that the critical carbon price gradually decreases as the
incentive coefficient increases. Consequently, in energy
systems that utilize penalty-based carbon trading
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FIGURE 16. Comparative analysis of carbon emissions relative to carbon
price and incentive coefficients.

mechanisms, appropriately increasing the incentive coeffi-
cient can lead to a more convergent carbon price range,
thereby facilitating the achievement of emission reduction
targets within a lower baseline carbon price range.

VI. CONCLUSION
This paper examines the influence of carbon trading mech-
anisms on a district energy system, using a system that
encompasses cooling, heating, electricity, and gas as a case
study. Given the low-carbon economic attributes and the
diverse time scales associated with various energy sources
in district energy systems, it is suggested a multi-time scale
optimization and scheduling approach for district energy sys-
tems within the framework of a reward-penalty tiered carbon
trading mechanism. The conclusions derived from simulation
experiments are as follows:

1) The multi-time-scale rolling optimization scheduling
method for the CCHP park, which considers carbon trading
costs, can reduce carbon emissions while controlling the
total cost increase during the day-ahead stage. During
the intraday stage, it adjusts the output of each unit to
mitigate the impact of source-load fluctuations on the system.
Compared to conventional scheduling models, the proposed
model better meets the requirements for environmental ben-
efits, economic efficiency, and stability, providing valuable
insights for the future application of low-carbon scheduling
in power systems.

2) By incorporating the reward-penalty tiered carbon
trading mechanism into the multi-time-scale optimization
model, this paper compares the impact of no carbon trading
mechanism, traditional carbon trading mechanism, and the
reward-penalty tiered carbon trading mechanism on the sys-
tem’s economic and environmental performance. The results
validate the superiority of the reward-penalty tiered carbon
trading mechanism in reducing system costs and carbon
emissions.

3) This paper analyzes the impact of two key parameters—
carbon trading price and reward-penalty coefficient—on

the carbon trading model of the CCHP system. It concludes
that carbon trading price affects the system’s carbon emis-
sions, carbon trading costs, and total costs, and should be
set within a reasonable range. Increasing the reward-penalty
coefficient appropriately can make the system’s response to
carbon price changes more sensitive, further narrowing the
reasonable range of carbon prices and achieving the desired
emission reduction targets at a lower base carbon price.

In conclusion, the proposed optimization scheduling
method effectively reduces the system’s carbon emissions,
maximizes economic benefits, and improves the stability
and reliability of system operation. However, the reliability
of the scheduling results may be affected by data inaccu-
racies, such as renewable energy generation forecasts and
load demands. Additionally, the multi-time-scale optimiza-
tion model increases computational complexity, potentially
requiring significant computational power to avoid delays in
computation time in practical applications. Future research
could explore the introduction of more intelligent algorithms,
such as deep learning and reinforcement learning, to enhance
the accuracy and efficiency of optimization scheduling.
Further studies could also investigate the collaborative opti-
mization of the CCHP system with other energy systems,
such as electric vehicle charging networks and energy storage
systems, to comprehensively improve the overall efficiency
and stability of the energy system.
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