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ABSTRACT In the realm of sustainable energy distribution, peer-to-peer (P2P) tradingwithinmicrogrids has
emerged as a promising solution, fostering decentralization and efficiency.While previous studies focused on
optimizing P2P trading, they often relied on impractical assumptions regarding private information sharing
among prosumers. To overcome this limitation, we aim to optimize P2P energy trading within the microgrid
based on a realistic assumption (not sharing information), using our proposed model-based multi-agent deep
reinforcement learning model. Firstly, our framework integrates long short-term memory (LSTM) for the
policy model. Secondly, our model-based framework is based on temporal fusion transformers (TFT) for
24h-ahead net load consumption. Thirdly, the global horizontal index (GHI) is added to the model. Finally,
a clustering technique helps to segment a large number of households into small household groups. The
experiment was conducted on the Ausgrid dataset, consisting of 300 households in Sydney, Australia. Results
demonstrate that our model achieved 4.20% and 3.95% lower microgrid electricity costs thanMADDPG and
A3C3, the sharing-info-based models. Moreover, it shows 12.48% lower costs than directly trading energy
with the utility grid.

INDEX TERMS Model-based deep reinforcement learning, multi-agent deep reinforcement learning, peer-
to-peer energy trading, non-sharing information.

I. INTRODUCTION
Emissions from agricultural and industrial sectors have
caused global warming [1], [2] requiring society to shift to
renewable energy sources such as solar, wind, and biogas.
In particular, recent advancements in the energy sector
such as solar have notably shifted from centralized systems
towards a decentralized paradigm, primarily influenced by
the rising penetration of distributed energy resources (DERs)
[3]. This transition is facilitating the development of peer-
to-peer (P2P) energy trading platforms, where individuals
and communities actively engage in direct trading of excess
renewable energy, diminishing reliance on traditional power
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grids and fostering economic benefits by potentially lowering
energy costs and enhancing price transparency [4], [5].
Privacy-centric approaches are crucial for building user

trust and encouraging the adoption of renewable energy,
as they use secure, anonymous transactions that optimize
energy distribution and maintain grid stability [6]. By pro-
tecting the integrity of energy transactions and empowering
prosumers, privacy-preservingmechanisms promote efficient
resource allocation and foster trust among stakeholders [7].
This collaborative environment not only reduces dependency
on centralized grids but also facilitates the development
of innovative, community-centric solutions tailored to local
energy needs.

Figure 1 shows the P2P energy trading scenario whereby
customers can trade energy among themselves and the
utility grid directly. Trading of energy can be inferred as
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an optimization problem [8]. Herein, deep reinforcement
learning (DRL), a subfield of machine learning, is utilized to
optimize the effectiveness of energy management [9], [10],
[11]. P2P energy trading can be formulated as a multi-agent
reinforcement learning (MARL) problem [12]. An agent in an
environment has a policy that contains a learning algorithm
and a neural network (NN) that can take action to maximize
the goal of reducing the cost of electricity in a double auction
(DA) market energy trading environment [13].

In Figure 2, the MARL cycle paradigm is demonstrated.
Each agent receives observations and takes actions based
on their policies in the same environment. Then, the
environment provides the next observations and rewards for
each agent. The training schemes in MARL are divided
into three categories [14]: (i) centralized training centralized
execution (CTCE)—all agents have the same policy, (ii)
distributed training decentralized execution (DTDE)—all
agents have their own policy, and (iii) centralized training
decentralized execution (CTDE)—agents have their own
policies. However, some of the information can be shared
and seen by agents, including public information, such as
grid buying and selling energy prices. As for energy trading,
decentralized or independent policy algorithms are better
suited [12], [15] due to restrictions on observing specific
parameters for each agent [16]. Centralized policy algorithms
share observation and action parameters, enabling agents
to access the private data of other agents despite sharing
information.

Most prior works in P2P energy trading have relied on
information sharing among prosumers to optimize trading
policies [17], [18], [19]. These sharing-based approaches
often compromise privacy and security. In contrast, there are
few studies that focus on non-sharing scenarios. One notable
example is based on the Proximal policy optimization (PPO)
algorithm but lacks any enhancements to the policy [20]. This
approach has two main limitations: using basic techniques
and being tested on a limited data setting. By focusing on
the non-sharing aspect, our study addresses these limitations,
providing a more robust and privacy-preserving solution for
P2P energy trading.

We prioritize customer privacy by ensuring that private
data, like energy usage and bid prices, is not shared. Our
DTDE model enables customers to trade energy based on
their own information only, both during training and testing.
We use a policy algorithm, which includes an actor network
to choose the best actions and a critic network to evaluate
them. Policy algorithms can be policy-based (using only the
actor network), value-based (using only the critic network),
or actor-critic (using both networks).

There are two main types of policy algorithms: ‘on-policy’
and ‘off-policy’. On-policy algorithms, like PPO [21], learn
faster but might not always find the best solution. Off-
policy algorithms, such as soft actor-critic (SAC) [22] and
Twin-Delayed Deep Deterministic Policy Gradient (TD3)
[23], can learn from past experiences and find better
solutions, but they are more complicated to set up [24].

We chose PPO because it is simpler to use, more stable,
faster to train, and can be easily customized [13], [25]. PPO is
also used in tasks like improving ChatGPT by learning from
human feedback [26], [27].

Ourwork is based on theAusgrid dataset containing energy
usage data from 300 households in the Sydney metropolitan
area with installed solar cells [28]. Training 300 agents
involved applying computational resources and memory.
Using clustering techniques to group energy usage behavior
helped reduce the number of agents needed for training
while maintaining good results. This approach allowed
training on regular computers [17]. Augmenting observations
with forecasting weather parameters is seen to improve the
efficiency of the results. However, the challenge lies in the
accuracy of the weather forecast. Inaccuracies in forecasting
when compared to actual data can significantly reduce the
model’s effectiveness, instead of enhancing it [12], [13], [14],
[15], [16].

In this paper, we separate our work into three modules:
(i) clustering, (ii) forecasting, and (iii) deep reinforcement
learning (DRL). To categorize energy consumption, gener-
ation behavior and to solve the horizontal scaling problem,
we apply a clustering technique [17]. Next, we employ a
forecasting model to forecast 24h-ahead of net load energy by
comparing long short-term memory (LSTM), DeepAR, and
temporal fusion transformers (TFT) such that energy trading
performance can be enhanced. Finally, we use DRL to train
policy using the PPO algorithm in a decentralized training
decentralized execution (DTDE) paradigm for P2P energy
trading. This approach ensures that private information is
not shared among agents during training and testing. The
augmented global horizontal index (GHI) was added as
additional public information to the observation parameters,
enhancing the DRL performance. Additionally, we cus-
tomized the policy network and compared the performance
of various network architectures, including MLP, LSTM, and
attention mechanisms, demonstrating significant improve-
ments. This work is new and authentic in its application of
DRL to P2P energy trading. The following is a summary of
this paper’s contributions:

• Implementation of a non-sharing information policy
algorithm for enhancing P2P energy trading perfor-
mance while maintaining the privacy of customers

• Enhancement of model-based performance to increase
the accuracy of the 24h-ahead forecasting net load
energy

• Improving the model by applying LSTM and attention
to the policy network

• Integrating clustering techniques to optimize computa-
tion and memory usage solving the horizontal scaling
problem

In this paper, Section II discusses the related work.
Section III explains the framework, and methodology of this
research. Section IV is the experimental setup of each module
including the dataset. Section V shows the experimental
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FIGURE 1. P2P energy trading allows customers within the same
microgrid to trade with each other and the utility grid directly.

results for each task. Section VI provides an in-depth
discussion of the results. Section VII discusses the conclusion
and future work.

II. RELATED WORKS
In this section, wewill discuss the development of P2P energy
trading with MARL research. We start with the introduction
of the double-side auction (DA) market environment for
MARL. We follow by the application of the clustering
technique to aggregate groups of energy consumption and
generation behavior of customers and the net load forecasting
model in order to enhance energy trading performance.
Finally, the concern of private information is discussed.

A. INTRODUCTION OF DOUBLE-SIDE AUCTION (DA)
MARKET ENVIRONMENT
Qiu et al. [18] introduced the double-side auction (DA)
market multi-agent deep reinforcement learning (MARL)
environment for P2P energy trading. Moreover, in their work,
they used a modified multi-agent deep deterministic policy
gradient (MADDPG) algorithm called DA-MADDPG. The
purpose of DA-MADDPG was to solve the privacy concerns
of prosumers and consumers due to a CTDE scheme of the
MADDPG algorithm. As such, the centralized critic approx-
imator collects all the observations and actions of agents, and
aggregates the public information from the DA market as
input for the centralized critic approximator instead. Thus,
we adopted the P2P energy trading environment algorithm
based on this research. However, since their experiment was
conducted having only three prosumers and three consumers,
we extended our dataset to include 300 customers.

FIGURE 2. The multi-agent reinforcement learning (MARL) cycle
paradigm.

B. INTRODUCTION OF MULTI-CLUSTER MB-MARL
Qiu et al. [19] also implementedMADDPGusing a parameter
sharing (PS) called PS-MADDPG to solve large-scale
P2P energy trading between microgrid clusters. The PS
framework allows all agents to share actor and critic network
parameters, which lead to faster training performance, more
stability, and better convergence speed. However, the PS
framework is seen to have a security problem such that
information regards observations and actions is shared among
agents. It is noted that Sanayha and Vateekul [17] scaled
the experiment by extending the Ausgrid dataset to 300 cus-
tomers. Hence, a time-series clustering technique was applied
by grouping the customer’s energy consumption behavior
patterns to reduce computational costs. This research also
involved a model-based multi-agent reinforcement learning
(MB-MARL) approach by applying a forecasting model
to optimize energy-saving performance. However, the main
algorithms applied in this research are MADDPG and actor
centralized-critic with communication (A3C3), which have
centralized critic networks that share all the observations
and actions of all agents. While CTDE may perform
better than DTDE, an information-sensitive environment
like the DA market cannot be overlooked. MADDPG and
A3C3 were chosen as benchmarks due to their established
effectiveness in P2P energy trading used in prior works
as sharing information policy models. Comparing them
with our proposed non-sharing policy model highlights our
approach’s advantages in cost reduction, scalability, and
privacy preservation.

C. PRIVACY AND SECURITY
Cao et al. [7] carried out a multi-agent energy trading using
blockchain technology to protect the privacy and security
of prosumers in microgrids. In essence, they introduced a
reputable mechanism to evaluate prosumer’s trustworthiness
based on their past transactions. Their objective was to
promote honest transactions between prosumers and energy
trading numbers among each other.Wang et al. [6] applied the
DTDE approach in P2P energy trading. They used deep deter-
ministic policy gradient (DDPG) as a base algorithm instead
of MADDPG due to the exposure of private information to
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the public. They demonstrated a method using the encrypted
action-observation memory of other agents provided by a
cloud service provider. Besides, they also included weather
parameters i.e. indoor and outdoor temperature, in the
agents’ observations. In our work, we also adopted the
DTDE approach and additional weather parameters from
the afore-mentioned research. Our work concentrated on the
improvement of P2P energy trading without sharing private
information. However, we did not focus on the application of
the encryption technique.

May and Huang [20] applied P2P energy trading using a
dynamic price signal mechanism in the MARL framework
with the PPO algorithm. Their framework consisted of two
layers: outer and inner RL. Inner RL is a P2P energy trading
market where the agents trade energy with each other using
a fixed price for an auction period. Outer RL is used for
determining the price signal for trading in the next auction
period. Their work applied PPO for P2P energy trading and
respected data privacy, meaning no private data is shared
among prosumers. The difference between their work and
ours is the rule of trading price. Their work used a fixed
trading price for all agents, while our work allowed agents
to submit their trading price between time-of-use (ToU) and
feed-in-tariff (FiT) prices.

In our research, we adopt multiple cluster model-based
multi-agent deep reinforcement learning for P2P energy
trading [17]. We also focus on the aspect of the non-sharing
information scenario. Herein, the policy algorithm used for
training conforms to the DTDE paradigm, or independent
policy. Thus, each policy in a multi-agent environment will
not share private information with each other. Moreover,
we improve the model by applying state-of-the-art deep
neural network (DNN) forecasting models: DeepAR and
TFT. Further, we customized the policy network of the PPO
learning algorithm in MARL with LSTM and attention,
along with the additional weather parameter (GHI). We will
compare our improvement with zero intelligence (ZI) [29];
results will be calculated via the test dataset, which assumes
trading with the grid as the baseline.

III. METHODOLOGY
This section explains our overall framework. Herein, our aim
is to optimize P2P energy trading with no information sharing
between agents during training and testing.

A. OVERALL FRAMEWORK
Herein, the overall framework consists of three modules:
(i) clustering, (ii) forecasting, and (iii) deep reinforcement
learning (DRL). In a mixed-cooperation scenario, sharing
information can result in better performance. Sharing infor-
mation, however, can violate privacy and security. In order to
improve the performance of the DTDE paradigm, we set out
to improve the version of DRL for P2P energy trading with
respect to private information.

In Figure 3, the overall framework of this research is
illustrated. In Module 1, the training dataset is used in

the clustering task to find the best number of clusters,
categorizing the behavior of each cluster. The clustering
outputs are the clustered training dataset, aggregating the
training dataset by the number of clusters. Customers in the
testing dataset are mapped to match the cluster based on
the argmax method for the time-series of each customer.
Next, in Module 2, the clustered training dataset from the
clustering task and the clustered testing dataset are trained
in the forecasting model to forecast the net load energy time-
series 24h-ahead.

In Module 3, the clustered model-based training dataset,
and the clustered model-based testing dataset are further
augmented with the weather parameter. In this module,
the DA energy trading market environment is used to
train and evaluate the agents regards the policy algorithm.
The result is the average net daily electricity cost for the
300 customers.

B. MODULE 1: CLUSTERING
We apply clustering to time-series data in order to categorize
energy consumption and generation behavior into specific
groups. The objective of this module is to reduce the number
of trainable agents from hundreds of millions of customers
to only a few clusters. This will help with horizontal
scaling while training agents on a single computer. The
K-means algorithm using dynamic time warping (DTW)
is used to cluster time-series. Both elbow method and
silhouette scores are used in selecting the best number of
clusters.

1) K-MEANS
K-means is an unsupervisedmachine learning algorithm [30].
K-means clusters data by attempting to divide samples into
distinct groups based on their similarity. The goal of this
algorithm is to minimize the within-cluster sum of squares
(WCSS) between each datapoint within a cluster and the
centroid of that cluster. Smaller WCSS values indicate tighter
and more compact clusters.

2) EUCLIDEAN DISTANCE AND DYNAMIC TIME WARPING
(DTW)
Euclidean distance is the amount of space in Euclidean
space that separates two locations in a straight line. It is
the length of the shortest path in a Cartesian coordinate
system between two points. DTW is a method for comparing
two temporal sequences that may have different speeds.
DTW is beneficial when comparing data points in sequences
with various lengths or temporal abnormalities. The goal
of DTW is to warp the time axis non-linearly to find the
best alignment between the points of the two sequences.
This enables point-to-point comparisons by aligning every
point in one sequence with a point in other sequences,
regardless of how long or how quickly the sequences change
over time. We adopted DTW as our metric due to [17]
revealing that DTW has a better performance than Euclidean
distance.
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FIGURE 3. The overall framework of the research consists of three modules: starting with (i) clustering time-series data to aggregate
energy consumption and generation behavior, (ii) forecasting to predict 24h-ahead net load, and (iii) deep reinforcement learning to
optimize P2P energy trading, resulting in a lower average daily net energy cost.

3) ELBOW METHOD
The elbow method is a technique used in cluster analysis to
determine the optimal number of clusters. In this method, the
average distance is plotted on the y-axis and the number of
clusters on the x-axis. As the number of clusters increases,
the average distance tends to decrease because the points
are closer to their respective centroids. However, at some
point, the decrease in the average distance will slow down
significantly, creating an ‘‘elbow’’ in the graph. The number
of clusters at which this change occurs is considered the
optimal number for clustering. The approach is based on
computing the within-cluster-sum of squared errors (WCSS)
for various cluster densities (k).

4) SILHOUETTE SCORE
A silhouette score is a measure used in clustering analysis to
determine the degree of separation between clusters. It ranges
from −1 to 1 where a high value indicates that the object
is well matched to its own cluster and poorly matched to
neighboring clusters. If the average silhouette score of all
points in a cluster is close to +1, the cluster is dense and
well-separated from other clusters. A value around 0 indicates
overlapping clusters, and a value close to −1 means that
points have been assigned to the wrong cluster.

C. MODULE 2: FORECASTING
Time-series forecasting is a method for predicting future
values based on past observations of a time-dependent
sequence of data points. Time-series data frequently show
seasonal fluctuations, patterns, and trends that can be
observed and used for forecasting. Recurrent neural networks
(RNNs) from deep learning have been used to forecast time-
series, and they beat statistical techniques like ARIMA (auto-
regressive integrated moving average) [31].

1) LSTM
Long short-term memory (LSTM) [32] is a recurrent
neural network (RNN). LSTM was created to solve the
vanishing gradient problem and effectively capture long-term
dependencies in sequential data. Both gates and a cell state are

two essential parts of the LSTM network that aid learning,
and manage information over lengthy sequences.

2) DEEPAR
DeepAR is an autoregressive recurrent neural network (RNN)
based on LSTM cells by Amazon [33]. DeepAR excels
in datasets with multiple interrelated time-series, offering
not just point forecasts but also probabilistic predictions to
gauge uncertainty effectively. This model is in stark contrast
to traditional time-series models that typically focus on
single series in isolation. Furthermore, DeepAR supports the
incorporation of additional covariates and categorical vari-
ables, allowing the model to account for external influences
and time-dependent features, such as holidays, promotions,
or price changes, thereby contextualizing forecasts. DeepAR
uses RNN to create a likelihood model where the network
predicts the mean and standard deviation that are best suited
for the probability distribution of the target data for the next
time step.

3) TEMPORAL FUSION TRANSFORMERS (TFT)
The temporal fusion transformers (TFT) [34] is a
transformer-based deep learning model designed specifically
for multi-horizon forecasting time-series data. TFT is
expert at capturing complex temporal relationships and
accommodating diverse data types. TFT excels in handling
multivariate inputs, distinguishing between static (time-
invariant) and dynamic (time-variant) features, selectively
leveraging relevant information through its attention mech-
anism. Thus, TFT enables highly accurate and interpretable
forecasts. The model has the ability to discern and utilize
temporal patterns. Combined with its interpretability features
like variable selection, TFT is particularly valuable for
applications across various domains requiring robust and
insightful time-series analysis.

In Figure 4, the architecture of TFT is shown. Key com-
ponents of the transformer architecture within TFT include
multi-head self-attention mechanism, positional encodings,
layer normalization, and feed-forward networks. The multi-
head self-attention mechanism allows the model to focus
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FIGURE 4. TFT architecture [34]. The model incorporates static metadata, time-varying inputs, and future time-varying inputs that are known
beforehand. Variable Selection is deployed for choosing the most important features from the inputs. Gated Residual Network blocks facilitate
effective flow of information through skip connections and gating layers. TFT combines LSTMs, which handle local temporal processing, with
multi-head attention mechanisms that allow the model to consider information from any time points.

on different time steps and different features, understanding
the underlying patterns and how they interact with each
other over time. Positional encodings are added to the input
embeddings to provide the model with information about
the position of data points in the time-series. Both layer
normalization and feed-forward networks help in stabilizing
the learning process and allow for each layer to learn the
function of the residuals of the previous layers. Hence, the
model is able to learn more complex functions. In the TFT
paper, it was compared with many algorithms, e.g., ARIMA
and DeepAR. The results showed that TFT significantly
surpassed ARIMA and slightly outperformed DeepAR in
terms of forecasting accuracy. Therefore, apart from LSTM,
we decided to include TFT and DeepAR, but did not use
ARIMA in our experiment.

D. MODULE 3: DEEP REINFORCEMENT LEARNING (DRL)
This research uses the DRL approach for P2P energy trading,
focusing on a non-sharing information multi-agent scheme.
First, we describe the importance of non-sharing information
for P2P energy trading. Then, we explain the advantages
and concept of the state-of-the-art algorithm (PPO), which
is used as the learning algorithm for agents. The last section
explains the functions of the model-based P2P energy trading
environment, including observation, action, and reward. The
algorithm of the whole framework of this research, called the
clustered model-based P2P energy trading algorithm, is also
explained.

1) NON-SHARING INFORMATION MULTI-AGENTS
In Figure 5, the difference between non-sharing and sharing
informationMARL is demonstrated. In a non-sharing or inde-
pendentMARL approach, each agent operates independently.
In essence, each agent makes decisions based on their own
observations and rewards without coordinating with other
agents. When privacy is a concern in P2P energy trading,
agents (consumers or prosumers) might not want to share
proprietary information about their consumption, generation,
or trading strategies: non-sharing MARL is more suitable.
Non-sharing MARL has more scalability and simplicity than

sharing MARL. Agents can operate independently without
the need for extensive communication or coordination with
others. Therefore, there will be no communication overheads.
Non-sharing MARL is also modeled and trained indepen-
dently, meaning that the complexities involved in multi-agent
coordination, negotiation, or communication protocols are
inherently absent, simplifying the design and implementation
and making it more useful in a real-world application. The
only downside of non-sharing MARL is that the result might
be suboptimal due to the lack of communication compared to
sharing MARL. However, this problem can be solved since
non-sharing MARL is easier to implement for optimization,
leading to the performance better than sharing MARL.

2) PROXIMAL POLICY OPTIMIZATION (PPO)
PPO [21] is a popular ‘on’-policy reinforcement learning
algorithm used in DRL for training agents to make decisions
in an environment. The highlight of PPO is a balance between
sample efficiency, stability, and ease of implementation. PPO
belongs to the class of policy gradient algorithms, which aim
to optimize the policy directly. The main concept of PPO is to
make small updates to the policy while ensuring that the new
policy does not deviate significantly from the old one. This
helps in stabilizing the learning process and prevents drastic
policy changes that might lead to instability. The proximal
part in PPO refers to the use of a clipped objective function
that constrains the policy update to a certain range. By placing
a limit on how much the updated policy can differ from the
old one, PPO prevents large policy changes that could be
detrimental to learning. The algorithm generally works by
collecting data from interactions with the environment, then it
uses this data to compute advantages (how good or bad certain
actions are in comparison to the expected outcome) and
update the policy accordingly. The objective is to maximize
the expected reward.

3) MODEL-BASED P2P DOUBLE AUCTION ENERGY
TRADING ENVIRONMENT
The agents that are trading in the P2P DA market energy
trading environment [18] as shown in Figure 6 with the
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FIGURE 5. Comparison between non-sharing (left) and sharing (right) information MARL for one cycle.
Non-sharing or independent agents operate independently based on their own observations and rewards.
No private information is shared in this scenario, which is more suitable for privacy-related tasks like P2P
energy trading. Sharing information MARL has a benefit from communication between agents. Private
information of other agents, including observation (consumption, generation, and energy storage), action
(trading price and quantity), or even reward (energy cost), can be seen by every agent, compromising privacy
and security.

observation on,t at time t can be expressed as:

on,t =
(
Ln,t , Ln,t+1, En,t , λst , λbt , Wt

)
(1)

where Ln,t is the net load energy at time t , Ln,t+1 is the
predicted net load energy at time t + 1 from the forecasting
model, Et is the energy storage at time t , λst is the grid selling
price (FiT) at time t , λbt is the grid buying price (ToU) at time
t , and Wt is the weather parameter at time t .

In Figure 7, after agents receive their observations, the
policy mapping function maps out policies to match the
agent’s clusters based on their energy consumption and
generation behavior. Then, the agents pursue their actions
based on their policy π (at |ot ). The action an,t of each agent
can be expressed as:

an,t =
(
Pn,t ,Qn,t

)
(2)

where Pn,t is the trading price magnitude submitted to the DA
market ranges (from 0 to 1): 0 means keeping the energy and
1means selling energy at themaximumwith the cap of 2 kWh
per auction period. Qn,t is the quantity of energy magnitude
submitted to the DA market, which ranges from −1 to 1: a
negative value means discharging or selling, and a positive
value means charging or buying.

After all agents submit their actions, the DA market
starts the auction with the clearing algorithm and publishes
the public order book outcome, including trading prices
and quantities. The cleared orders count as internal trading

between agents, and the remaining orders are traded with the
grid. The reward rn,t is the negative of the electricity cost and
can be calculated as follows:

rn,t = −

(
k∑
i=0

λin,tq
i
n,t + λbt q

b
n,t − λstq

s
n,t

)
(3)

where
∑k

i=0 λin,tq
i
n,t represents the sum of internal trading

from cleared order i to k where λin,t and q
i
n,t denote the trading

price and trading quantity of order i. Additionally, λstq
s
n,t

and λbt q
b
n,t signify the external trading cost where qsn,t is the

quantity sold to the grid, and qbn,t is the quantity bought from
the grid.

In Algorithm 1, we explained the whole process of this
research. Starting with clustering time-series training data,
aggregated k clusters use the argmax method to simplify the
model to assign a cluster number for each customer. As such,
there is no significant difference in performance between
argmax and predicted clusters from forecasting time-series
for this dataset, making the framework simpler and more
straightforward. Then, we trained two separate forecasting
models for the aggregated time-series and individual time-
series for training and testing, respectively, to forecast
24h-ahead net load energy. For training in the P2P DA
energy trading environment, clustered agents trade their
energy for 24h consecutively per episode by random starting
datetime index with 1h increments; policies are updated
until episodes = Tmax . For testing, each customer trades
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FIGURE 6. P2P Double Auction Energy Trading Environment. Observation parameter, Ln,t+1 (red), is the predicted net
load from the forecasting model.

FIGURE 7. During the training phase, all customers are aggregated into 4 clusters (agents 1-4) based on
their energy consumption and generation behavior. During the testing phase, customers decide their
actions based on their mapped policies.

their energy according to the assigned cluster number, which
indicates the policy to be used for submitting trading energy
quantity and price. During this phase, all policies have
stopped updating. The environment is simulated as real-world
energy trading. All customers trade continuously for the
whole testing dataset timesteps.

IV. EXPERIMENTAL SETUP
In this section, we explain themain dataset and the augmented
dataset used in our research, as well as the implementation
details of each module from the previous section. All of the
important hyperparameters are displayed in Appendix B.

A. DATASET
The main dataset used in this research is the dataset from
Ausgrid [28], sourced from 300 customers in Ausgrid’s
electricity network. The period is one year, from July 2012 to
June 2013, with a 70:30 train-test ratio. The data contains
electrical energy consumed and generated every half an
hour (aggregated to 1h). The dataset also contains generator
capacity and postcodes. In Figure 8, the visualization of the
Ausgrid dataset is observed. The yellow dome in the middle
(6:00 to 18:00) displays energy generation. The light blue line
indicates the energy consumption, which shows the shoulder
between 6:00 and 16:00 and the peak between 17:00 and

FIGURE 8. The visualization of the Ausgrid dataset during July 2012 to
June 2013 showing the characteristics of energy consumption (GC),
control load consumption (CL), and energy generation (GG).

22:00. The blue area displays the control load, which refers
to the usage of high-load appliances, such as heaters and hot
water systems. The peak of the control load occurs from 21:00
to 3:00.

The global horizontal irradiance (GHI) is a term used in
the fields of solar energy and meteorology to describe the
total amount of solar radiation received at the Earth’s surface
on a horizontal plane. It represents the total solar energy
that reaches a specific location over a specific time period,
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Algorithm 1 Clustered Model-Based P2P Energy Trading
Algorithm
1: Time-series clustering on training dataset with DTW

method from n customers to k clusters
2: Aggregate training time-series dataset to k clusters
3: Argmax each customer’s time-series training dataset to

map the policy based on the cluster number
4: Train forecasting models for individual n customers and
N clusters

5: Initialize policy configuration and maximum training
episode = Tmax

6: Initialize P2P DA energy trading environment for
training

7: for episode← 1 to Tmax do
8: Random datetime index
9: for t ← 1 to 24 do
10: for agent ← 1 to N do
11: Submit at based on policy π (at |ot )
12: end for
13: Allocate buy and sell order book
14: Execute clearing algorithm and published cleared

order book
15: for agent ← 1 to N do
16: Receive rt from cleared order book
17: end for
18: if t = 24 then
19: Reset the environment
20: end if
21: end for
22: Update the policies
23: end for
24: For testing, repeat 6 to 23, remove the random datetime

index, environment reset, and policy update

measured in watts per square meter (W/m2) [35]. GHI is used
as additional weather information in this research, obtained
from the National Solar Radiation Database (NSRDB) [36].

B. MODULE 1: CLUSTERING
A time-series machine learning analysis tool called
TSlearn [37] has been applied to cluster and map the energy
consumption behavior of the customers. The clustering
algorithm used in this research is K-means. To find and
visualize the best number of clusters, we compare the results
with the elbow method and the silhouette scores using
dynamic time warping (DTW) as the metric, with clusters
ranging from 2 to 10.

C. MODULE 2: FORECASTING
We compare the forecasting models between LSTM,
DeepAR, and TFT. Pytorch-Forecasting is the main frame-
work for constructing the forecasting models to forecast
24h-ahead net load energy. The variates for all models,
including hour, day of the week, and month, are obtained

using the cyclical index transformation. The time-series for
each group is normalized by the group normalizer. The
learning rate is 0.001 with the seven-day (168h) lookback.
The optimizer is Adam, training the models with 20 epochs
using the last day as validation data. The last day in the
training dataset is used for the forecasting task as validation.
The accuracy of the models is evaluated by the root mean
square error (RMSE) method.

D. MODULE 3: DEEP REINFORCEMENT LEARNING (DRL)
We train and evaluate the experiment for DRL under the
Ray RLlib [25] framework. The discharging and charging
efficiency of the energy storage battery is 95%, with the
minimum storage at 2 kWh and the maximum at 10 kWh.
The energy storage of all agents at t = 0 is 6 kWh. For
each training episode, consisting of 24 steps, the initial setting
of the date and time index at step 0 is randomized. With
each subsequent step, the time index is incremented by one
until it reaches 24 steps. Upon completion of these steps,
the environment resets, and the date and time index are
randomized again. This cycle repeats until the reward from
the model stabilizes and converges. A limit of 4,000 episodes
has been set for this training process. The experiment
assessed the performance of the proposed method against
several baselines, including direct trading with the grid and
the zero intelligence (ZI) approach. All agents were required
to execute actions entirely at random, without consideration
of the environmental state or any accumulated knowledge
from past experiences. This methodology was also applied
in the evaluation of the MADDPG and A3C3 algorithms.
We also extended the experiment by changing the policy
network from multi-layer perceptron (MLP) to LSTM and
attention [38], [39]. PPO relies on current information and
doesn’t effectively utilize past observation data. LSTM and
attention mechanisms are useful when agents need to base
their decisions on long-term dependencies or when they only
have partial observations. This improvement is expected to
enhance the PPO algorithm. Performance was evaluated by
the average daily electricity cost of 300 customers with an
average of three runs.

V. EXPERIMENTAL RESULTS
In this section, we will discuss the experimental results:
the clustering module for selecting the best K clusters, the
comparison of the accuracy of the forecasting models in the
forecasting module, and the optimization of MB-MARL.

A. MODULE 1: CLUSTERING
Weused four clusters for the training dataset [17]. In Figure 9,
illustrates the results of two cluster validation methods: the
silhouette score on the left and the elbowmethod on the right.
The silhouette score assesses the cohesion and separation
of clusters, with the highest value at k = 4, suggesting
optimal cluster definition at this number. Concurrently, the
elbow method, which evaluates the within-cluster sum of
squares, demonstrates a pronounced bend at k = 4, indicating
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TABLE 1. Root Mean Square Error (RMSE) comparison of forecasting
models between LSTM, DeepAR, and TFT for 300 customers. Boldface
refers to the winner. % difference column is the difference compared with
LSTM.

that increasing the number of clusters beyond this point
yields minimal improvement in clustering quality. Both
methods independently corroborate k = 4 as the most
effective number of clusters. Figure 10 shows four separate
clusters, each depicting variations in energy consumption
and generation over time. The horizontal axis in each panel
represents time, while the vertical axis measures energy
values—positive values for consumption and negative values
for generation. The bold red line in each graph likely
represents the average or median trend across the data points.
Cluster 1 shows minimal fluctuations, primarily indicating
steady energy consumption. Cluster 2 exhibits a slight upward
trend, suggesting increasing energy consumption. Cluster
3 has the most pronounced variation, showing significant
dips into negative values, which implies substantial energy
generation during daytime, surpassing consumption. Cluster
4 shows considerable volatility with both peaks and troughs,
indicating periods of high energy consumption as well as
significant generation. In Figure 11, an overview of energy
consumption and generation in the dataset is given. Cluster
2 is seen to have the highest number reaching 34,502,
followed by Cluster 1 (21,597), Cluster 4 (11,536), and
Cluster 3 (9,165).

B. MODULE 2: FORECASTING
The RMSE between the clustered training dataset and
the individual 300 customers training dataset is shown in
Table 1. TFT performed best being 21% better than LSTM
at 0.4296. Likewise, DeepAR performed 8% better than
LSTM at 0.4999. Figure 12 illustrates the validation results
for 24h-ahead predictions using LSTM, DeepAR, and TFT
models across two scenarios: 4 clusters and 300 customers,
employing a 168h lookback period. All models performed
well on the clustered training dataset due to the aggregation
of data, resulting in an easier pattern for prediction. Among
the models, TFT and DeepAR outperformed LSTM, largely
due to their superior handling of multiple time-series data,
capturing complex temporal dependencies more effectively.
The TFT model, in particular, demonstrated the highest pro-
ficiency, benefiting from its advanced architectural features
like variable selection mechanisms and adaptive gating lay-
ers, which optimize responsiveness to changing data patterns.

C. MODULE 3: DEEP REINFORCEMENT LEARNING (DRL)
1) BASELINES EVALUATION
In Table 2, the average daily net electricity cost is shown.
When compared with baselines (MADDPG and A3C3), our
model achieved the most substantial reduction in average

daily net electricity costs. Specifically, it outperformed
MADDPG by 4.20% and A3C3 by 3.95%, with our
costs amounting to $460 versus $479.88 and $478.70 for
MADDPG and A3C3, respectively. Our best model is seen to
save electricity costs by 12.48%, 15.29%, and 7.14% when
compared with grid trading ($526.20), random ZI ($543.63),
and non-MB PPO ($495.91), respectively.

2) EFFECT OF THE ACCURACY OF FORECASTING MODELS IN
MB-MARL
As observed in Table 1, TFT had the lowest RMSE value,
followed by DeepAR and LSTM. In Table 2, all cases using
TFT resulted in better average daily net electricity cost by
0.90% and 2.64%, on average, compared with DeepAR and
LSTM, respectively.

3) EFFECT OF INCORPORATING GHI
In Table 2, we have presented the electricity costs with
and without the inclusion of global horizontal irradiance
(GHI). The PPO with MLP as the policy network and LSTM
model as the forecasting model exhibits a decrease in costs
from $487.55 to $484.27 (0.67% reduction). A shift in the
forecasting model from LSTM to DeepAR and TFT results
in reductions from 481.60 to478.49 for DeepAR (0.65%
reduction), and from $475.03 to $473.16 for TFT (0.39%
decrease). These figures underscore the subtle yet consistent
impact of integrating GHI on reducing electricity costs across
various models.

4) EFFECT OF THE POLICY NETWORK MODELS
Changing the policy network from MLP to LSTM further
reduced the average daily net electricity cost by 2.63%.
LSTM leverages, between external and internal trading best,
resulted in the lowest average daily net electricity cost.
In contrast, using attention increased the average daily net
electricity cost by 0.74%. However, attention helped to
increase internal trading. When using TFT as the forecasting
model, internal trading value reached 123.13 kWh.

VI. DISCUSSION
Our work addresses important aspects of P2P energy trading,
focusing onmaking it more scalable and efficient while main-
taining private information. We applied clustering technique
to group customers into smaller sets, which helps in handling
large numbers more effectively during training. The TFT
model achieved better accuracy in predicting the 24h-ahead
net load while GHI provides PV generation information.
These two parameters effectively inform the agents to make
better trading decisions. Furthermore, we applied LSTM to
enhance the decision-making process of our model, leading
to further reductions in electricity costs.

A. IMPORTANCE OF COST REDUCTION IN P2P ENERGY
TRADING
The proposed model achieved a 4.20% and 3.95% reduction
in microgrid electricity costs relative to MADDPG and
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FIGURE 9. Comparison of results between silhouette score (left) and elbow method (right). Both reveal similar results, with k = 4 as
the best number of the cluster groups.

TABLE 2. Comparative analysis of average daily net electricity costs ($), external and internal trading quantity (kWh) and value ($), calculated over three
separate runs. for various combinations of policy networks, forecasting models, and weather parameter (GHI). Boldface refers to the winner.

FIGURE 10. Visualization of 4 clusters showing energy consumption
(positive) and generation (negative).

A3C3, respectively, and a substantial 12.48% reduction
when compared to direct utility grid trading. These cost
reductions are noteworthy as they significantly lower the
energy expenses for end-users while maintaining the privacy
of user information, thereby enhancing the economic viability
of peer-to-peer (P2P) energy trading as an alternative to
traditional energy procurement methods.

From an efficiency perspective, these cost savings under-
score the model’s capacity to optimize energy distribution
within the microgrid, effectively balancing supply and

FIGURE 11. Population of each cluster in the training dataset.

demand while reducing dependency on the utility grid.
By reducing transaction costs and improving energy man-
agement, the overall efficiency of the microgrid is enhanced.
This efficiency translates to fewer energy losses and more
stable grid operations, which are critical for the feasibility
and scalability of P2P trading systems. Moreover, these cost
reductions foster the adoption of renewable energy sources
by making decentralized energy trading more attractive and
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FIGURE 12. Validation results for the 4 clusters and 300 customers: each row reveals 24h-ahead prediction (orange) with 168h
lookback period (blue) following LSTM, DeepAR, and TFT models.

financially sustainable for prosumers, thereby promoting a
more resilient and sustainable energy ecosystem.

B. SCALABILITY OF THE PROPOSED MODEL
We applied a clustering technique to categorize energy con-
sumption and generation patterns into four distinct clusters.
This approach significantly reduces computational resource
requirements. Increasing the number of clusters does not
yield a notable improvement in performance. Consequently,
our proposed model demonstrates the capability to maintain
its performance without necessitating re-training, even as the
population size varies.

C. PRACTICAL IMPLEMENTATION IN REAL-WORLD
ENERGY TRADING SYSTEMS
While our work demonstrates the concept of scalability
and cost reduction performance in real-world energy trading
systems, one of the main challenges is the integration of the
model with existing energy management systems and infras-
tructure. Ensuring compatibility and seamless data transfer
between the model and the hardware/software used in energy
trading systems is crucial. Moreover, real-world deployment
will require rigorous testing to ensure the reliability and
security of the model in live environments. Solutions to
potential challenges could include developing standardized
protocols for transactions, enhancing the model’s robustness
against cyber threats, and creating user-friendly interfaces for
stakeholders to interact with the system.

D. FUTURE RESEARCH DIRECTIONS
Future research in P2P energy trading with MARL can focus
on enhancing data privacy and security, particularly with
blockchain integration, to prevent cyber-attacks. Improving
the computational efficiency and scalability of MARL

algorithms is essential for handling larger networks and
real-time decision-making. MB-MARL can enhance the
predictive accuracy of energy supply and demand, promoting
better trading performance. Exploring the socio-economic
impacts on different community scales and regulatory
environments will provide insights for policy development.
Finally, developing frameworks for interoperability among
various renewable energy sources and storage systems can
maximize renewable utilization and reduce grid dependency.

VII. CONCLUSION
In this paper, we developed a method based on multi-agent
deep reinforcement learning for P2P energy tradingwithin the
microgrid. Our approach is seen to enhance the MB-MARL
algorithm in the non-sharing information scenario providing
the same or better performance compared with sharing
information. Results show that increasing the policy network
using LSTM and adding the weather parameter (GHI) boosts
performance. The accuracy of the forecasting model also has
a significant impact on the outcomes. The study employed the
clustering technique to solve the horizontal scaling problem
on the Ausgrid data set, which included 300 Australian
households. Applying PPO as the learning policy algorithm,
LSTM as the policy network, TFT as the forecasting model,
and GHI as the weather parameter, the average daily net
electricity cost is reduced to $460.52, 4.20% lower than
MADDPG, 3.95% lower than A3C3, and 12.48% lower than
trading directly with the utility grid.

For future work, we aim to extend our model to larger
datasets and enhance P2P energy trading from within to
between microgrids. We plan to integrate other renewable
sources such as wind, and hydroelectricity. Additionally,
we intend to utilize blockchain technology for secure,
transparent transactions and assess the environmental impacts
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of P2P energy trading, focusing on renewable adoption rates
and carbon emissions.

APPENDIX A NOMENCLATURE
Abbreviations
A3C3 Actor centralized-critic with communica-

tion.
CTCE Centralized training centralized execution.
CTDE Centralized training decentralized execu-

tion.
DDPG Deep deterministic policy gradient.
DRL Deep reinforcement learning.
DTDE Distributed training decentralized execu-

tion.
DTW Dynamic time warping.
FiT Feed-in-tariff.
GHI Global horizontal index.
LSTM Long short-term memory.
MADDPG Multi-agent deep deterministic policy gra-

dient.
MARL Multi-agent reinforcement learning.
MB-MARL Model-based multi-agent reinforcement

learning.
P2P Peer-to-peer.
PPO Proximal policy optimization.
RNNs Recurrent neural networks.
SAC Soft actor-critic.
TD3 Twin-Delayed Deep Deterministic Policy

Gradient.
TFT Temporal fusion transformers.
ToU Time-of-use.
WCSS Within-cluster sum of squares.
ZI Zero intelligence.

Symbols
λbt Grid buying price (ToU) at time t .
λst Grid selling price (FiT) at time t .
λst Internal trading price of the agent n at time

t of order i.
λin,t Internal trading price of the agent n at time

t of order i.
an,t Action of the agent n at time t .
En,t Energy storage of the agent n at time t .
Ln,t+1 Predicted net load energy of the agent n at

time t + 1.
Ln,t Net load energy of the agent n at time t .
on,t Observation of the agent n at time t .
Pn,t Trading price magnitude of the agent n at

time t .
Qn,t Energy quantity magnitude of the agent n

at time t .
qin,t Internal trading quantity of the agent n at

time t of order i.
qsn,t Grid selling quantity of the agent n at time

t .
rn,t Reward of the agent n at time t .
Wt Weather parameter (GHI) at time t .

APPENDIX B
HYPERPARAMETERS
In Table 3, we list the hyperparameters for environment
configuration, PPO algorithm, and model.

TABLE 3. Hyperparameters overview.
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