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ABSTRACT Much research aims to enhance weapon detection by applying different techniques to
object detection models. However, little research focuses on identifying armed people through real-time
surveillance cameras. The proposed solution involves the development of algorithms for identifying people
carrying handguns (pistols and revolvers). We have chosen the YOLOv4 model to detect people, guns,
and faces. Then, we extract information from YOLO related to real-time videos, such as bounding box
coordinates, distances, and intersection areas between firearms and the people in each video frame to
recognize the armed people. There are some challenges to overcome, for example, occlusion, hidden
handguns, and people close to each other. It allows us to develop and compare different types of solutions.
We proposed three heuristics and seven machine-learning models. The heuristics are the method of centers,
the method of intersections, and the method of distances. Furthermore, the machine learning models are
Random Forest Classifier, Multilayer Perceptron, k-Nearest-Neighbors, Support Vector Machine, Logistic
Regression, Naive Bayes, and Gradient Boosting Classifier. The Random Forest Classifier presented the best
performance reaching an accuracy of 85.44%, a precision of 87.07%, a recall of 88.68%, and an F1-score of
87.87%.

INDEX TERMS Armed people detection, machine learning, heuristics, computer vision.

I. INTRODUCTION
This research aims to optimize video surveillance camera
systems to detect armed people. We employ a popular
object detection algorithm in computer vision and deep
learning to detect people, faces, and handguns in video. The
research challenge seeks to identify people with handguns
and distinguish their faces. Thus, we propose to automate the
detection of armed people to reduce the reaction time to a
crime and improve the efficiency of the supervision carried
out by security personnel.

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Olague .

Surveillance cameras have become essential for securing
places such as homes, businesses, and streets. Most cameras
do not have people supervising them and are used to try
to recognize those responsible after crime. These types of
systems represent a useless method to prevent different
crimes. Conversely, some of these systems count on security
personnel supervising them, relying on someone efficiently
monitoring the system to warn security personnel when nec-
essary, increasing reaction time. People who supervise these
systems are exposed to fatigue and different distractions.
In this research, we focus on identifying people carrying
weapons through the video surveillance camera system,
specifically handgun detection, which includes pistols and
revolvers.
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Pistols and revolvers are the firearms that usually are used
to execute different crimes. According to the report made by
the United Nations Office onDrugs and Crime (UNODC) [1],
which includes information from 81 countries, the most
seized firearms due to their illicit uses are the following:
pistols (39%), shotguns (25%), rifles (18%), revolvers (14%),
submachine guns (3%), and machine guns (1%). In addition,
UNODC [2] has determined that in the American continent,
the homicide rate for men between 18 and 19 years old is
46 out of every 100 thousand. Furthermore, firearms are
involved far more often in homicides in the Americas than in
other parts of the world. These statistics support the decision
that the scope of this research focuses on the use of handguns.

For the model to be valid, it must present a reasonable
speed at which the detections can be processed. Therefore, the
object detector model used in this research is YOLOv4 [3].
This model applied to the MSCOCO dataset achieved
65 frames per second and an average precision (AP) of
43.5% on a Tesla v100 GPU. The model has been trained
using three classes: handguns, people, and faces. We have
made up a dataset of 5000 images that collect images
from different internet sources. It contains people captured
by surveillance cameras, close-up pictures of handguns,
and people carrying handguns. Furthermore, some handgun
pictures were extracted from the Internet Movie Firearms
Database (IMFDB) [4]. These are images of firearms taken
from Hollywood movies and video games.

YOLOv4 generates bounding boxes around each of the
given classes. In this research, we take advantage of these
bounding boxes. We propose three heuristics to determine
the people who carry weapons: the deterministic method of
centers that measures distances between bounding boxes,
the deterministic method of intersections that quantifies
intersection areas between bounding boxes, and the deter-
ministic method of distances that detects the location of
bounding box centers inside other bounding boxes. We also
propose seven machine learning models to detect armed
people: a Random Forest Classifier, a Multilayer Perceptron,
a k-Nearest-Neighbors model, a Support Vector Machine,
a Logistic Regression model, a Naive Bayes model, and a
Gradient Boosting Classifier.

There are several challenges to tackle when detecting
armed people. Among those challenges, we can highlight
the following. Occlusion is a common issue presented in
video surveillance, and it happens when two or more objects
appear, one in front of the other in the same direction as
the camera. Hence, the camera captures partial portions of
two or more objects in the same region. Another challenge is
presented when several people are close by since it is difficult
for the algorithm to identify which one carries an object.
Furthermore, there are some situations when the person
carrying the handgun hides it around his body or clothes,
making it difficult for the algorithm to continue identifying
the armed people.

This paper proposes a contribution of different ML
models and deterministic methods as a solution to face

the challenges described above. Thereby, we present an
analysis of the behavior of each of these algorithms,
seeking an optimal solution for armed people detection.
In addition, aware that these algorithms can be perfected,
we make the codes, models, videos, and datasets available
at https://github.com/AlonsoJAG/armed_people_detection.

The remainder of this document is organized as fol-
lows: Section II describes previous related works on
object detection models to recognize firearms. Furthermore,
it describes research related to linking weapons with their
owner. Section III presents the methodology applied during
the research development. It contains a labeling process
technique, object detection model, heuristics, andMLmodels
to identify armed individuals. Section IV describes the
results, and Section V discusses the results of each method
and model. Finally, Section VI brings a general conclusion
and future works to take advantage of the different areas of
opportunity.

II. RELATED WORKS
This section describes the state of the art into two subsections:
firearms detection and armed people detection.

A. FIREARM DETECTION
Because of their ability to make predictions very quickly,
the literature contains many examples of works that use one-
stage detectors, such as YOLO [3], [5], [6], [7]. However,
there is a tradeoff between the speed of the predictions and
the accuracy achieved. Some authors prioritize speed over
accuracy. Thus, they apply these models to obtain fast results
in firearms detection. Accordingly, de Azevedo Kanehisa
and de Almeida Neto [8] used the YOLO algorithm to
detect firearms reaching 70% of the mean average preci-
sion (mAP) with their dataset. Likewise, Duran-Vega et al. [9]
employed Temporal Yolov5, an architecture based on Quasi-
Recurrent Neural Networks [10]. The temporal information
was extracted from the video to improve the results of
handgun detection. Additionally, they explored two temporal
data augmentation techniques based on Mosaic and Mixup.
Furthermore, Veranyurt and Sakar [11] proposed a deep-
learning solution to detect and locate hidden pistols through
thermal images in real-time video surveillance cameras
using their dataset. They developed multiple deep-learning
architectures for image classification and segmentation.
VGG-19 presented the best performance in concealed gun
detection, achieving an F1-score of 84%. Then, applying
the YOLOv3 model, they obtained the highest average
precision (AP) value of 95%. Hashi et al. [12] developed
different deep-learning models to detect firearms. They
compared the deep learning object classification models
VGG-19, ResNet, and GoogleNet to select the best backbone
for building the best object detection model between faster
region-based convolutional neural networks (R-CNN) and
YOLOv6. The best performance was ResNet50, which
achieved an average accuracy of 92%. YOLOv6 achieved
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the highest mAP and inference speed compared to the faster
R-CNN. Another research that relies on the efficiency of
YOLO to detect firearms and bladed weapons is the one
developed by Boukabous and Azizi [13]. They compared
different object detection techniques, such as YOLOv5, faster
R-CNN, and single-shot multi-box detector (SSD). YOLOv5
achieved the optimal balance between mAP and inference
speed for real-time prediction.

Conversely, other researchers have applied a two-stage
detector prioritizing accuracy over speed, such as faster
R-CNN [14], to obtain better accuracy in detecting firearms.
Also, Fernandez-Carroble et al. [15] applied Faster R-CNN
with two types of Convolutional Neural Networks (CNN),
GoogleNet [16], and SqueezeNet [17]. These were pre-
trained on the ImageNet dataset and fine-tuned on a
custom dataset of 3000 images. SqueezeNet reached better
performance, achieving an 85.4% AP50. Likewise, Verma
andDhillon [18] presented an automatic gun detection system
from a cluttered scene using Faster R-CNN with VGG-
16 backbone applying the IMFDB dataset [4]. Meanwhile,
Olmos et al. [19] aimed to minimize the false positives by
building a training dataset according to the results of a CNN
classifier. Consequently, it asses the best classification model
employing a sliding window and region proposal approach.

Another technique to detect firearms is to apply only
CNNs. The research conducted by Egiazarov et al. [20] used
a group of semantic CNNs to detect a weapon. These
networks broke down the problem of detecting and locating a
gun into a set of smaller problems related to the individual
parts of a weapon. The authors argued that it offers a
straightforward way to address situations where firearms
are partially concealed, lack certain distinctive features,
or are modified. Moreover, it used simpler neural networks
dedicated to specific tasks requiring fewer computational
resources and can be trained in parallel. Furthermore,
Berardini et al. [21] proposed two CNNs working together,
the first for people detection, which guides a second for
handguns and knife detection. The proposed solution was
deployed on an NVIDIA Jetson Nano edge device connected
to an IP camera. The results based on COCO average
precision were 79.30% and 5.10 frames per second.

Thereby, Lim et al. [22] presented an improved deepmulti-
level feature pyramid network that addresses the difficulty of
inferring firearms. They trained with a dataset in a multi-level
multi-scale object detector (M2Det). Experiments with their
video surveillance dataset showed that the proposed model
achieved an accuracy of 87.42%.

Besides, Grega et al. [23] presented a novel method to
detect firearms or knives in video surveillance. Their work
used a background subtraction algorithm to analyze the
footage frame by frame. It recognizes image differences
between consecutive frames. As image differences leave
multiple artifacts due to image flickering and changes in
illumination, they applied erosion and dilation to support
removing these artifacts and focus further steps of the
algorithm on the foreground part of the image.

Some recent studies have used the pose estimation
technique to forecast the position and direction of people,
generating artificial skeletons on them for various purposes.
This technique has also been used for weapons detection.
It seeks to reinforce the detection of weapons generated by
the object detection models. An example of this technique is
the one used by Salido et al. [24], who proposed reducing the
number of non-detections of weapons (false negatives) with-
out increasing the number of false positives, incorporating
information associated with the pose of the people who carry
the weapon. Their research aimed to avoid detection errors
due to the small size of the guns’ images, partial occlusions,
and the poor quality of the pictures. Thus, they applied the
object detector to the original images in search of weapons
and added the poses of the people holding the guns to these
same images to compensate for the problems capturing the
gun images. The authors used three object detection models:
Faster R-CNN, RetinaNet, and YOLOv3. Using their dataset
(1220 images), he achieved with YOLOv3 an improvement
in average accuracy from 88.49% (without posing) to 90.09%
(with posing).

Meanwhile, Velasco-Mata et al. [25] proposed more in-
detail research into using pose estimation by armed people.
They proposed combining the object detector with the
individual’s pose information to improve handgun detection.
It presented that the combinational architecture takes two
inputs: the result of the object detection network and the
pose information. Hence, regions detected as handguns by
mistake can be removed from the final result because those
regions do not match with any human on the scene. The
results improved over a handgun detector by leveraging
the human pose. It reached a maximum improvement of
17.5% in AP of the proposed combinational model over the
baseline handgun detector (YOLOv3). Similar research was
proposed by Ruiz-Santaquiteri et al. [26], who combined the
weapon’s appearance and the human pose’s information in
a single architecture. First, key pose points are estimated
to extract regions of the hand and generate binary pose
images, which are the inputs to the model. Each input is
then processed on different subnets and combined to produce
the gun bounding box. Results show that the proposed
combined model improves handgun detection from 4.23 to
18.9 in AP. Thereby, Ruiz-Santaquiteria et al. [27] proposed
an automatic handgun detection based on a combination
architecture that harnesses body pose estimation and gun
appearance features. The architecture contained CNN and
transformers.

Likewise, Chatterjee and Chatterjee [28] aimed their
research at analyzing hand posture patterns for recognizing
a person holding a weapon. They proposed different ML
models to classify guns and non-guns. Furthermore, they
introduced a metric learning approach instead of classifica-
tion, called the fuzzy discernible feature selection (FDFS)
technique. Its best result was obtained by a Deep Neural
Network together with FDDS, which achieved a test accuracy
of 93%.
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B. DETECTION OF ARMED PEOPLE
There is little research on identifying armed people on
video surveillance. Most studies aim to detect guns rather
than the people carrying them. However, the work by
Agarwal et al. [29] exhibits some similarities with ours.
They proposed a model to detect explosives hidden inside
abandoned objects. Hence, they classified abandoned and
unattended objects separately and backtracked to identify the
owner and find the last known location of the owner in a social
environment using visual surveillance in real-time. Their
work used short- and long-term models to determine which
objects have been abandoned. It applied MobileNet-Single
Shot Multi-Box Detector (SSD) and Histogram of Oriented
Gradients (HOG) with Support Vector Machines (SVM)
to detect the people. Besides, it applied a graphical user
interface (GUI) to determine the region of interest (RoI) and
exclude undesirable regions. The authors used Scale-invariant
feature transform (SIFT) [30] to extract the features of all the
humans in a frame. To track the person making a match of the
stored features in consecutive frames, it used Fast Library for
Approximate Nearest Neighbors (FLANN) [31].

McPartlin describes a similar work, where he sought
to identify the owner of abandoned luggage [32]. The
European Commission Framework 7 program funded a
research & development project called ‘‘Surveillance of
Unattended Baggage and the Identification and Tracking of
the Owner’’ (SUBITO), which aimed to detect abandoned
baggage, and identify the owner, determine the location
or path they followed. This project was divided into two
areas: image analysis and threat assessment. Image analysis
included three algorithms: object detection, object tracking,
and object classification. Threat assessment was related
to two algorithms: observation and analysis and threat
classification. The general criteria determining belongings
were that the bag owner was the closest person in appearance,
that the bag was unattended if the owner was not within two
meters, and that the bag was abandoned if it was unattended
for 30 seconds.

The following research presented a theory similar to
the heuristics we set out in this research. Moura et al. [33]
proposed to apply the Intersection Over Union (IoU) concept
to identify weapon carriers or shoots in a video frame using
YOLOv5. However, the proposal varied the original theory
of the IoU. This technique was used for two different classes:
person and weapon. It infers that the person with the firearm
in the same video frame with the highest IoU is the armed
person.

III. METHODOLOGY
In this section, we describe methods, techniques, and
experiments that we have designed to obtain the primary
goal of identifying the carriers of handguns. We have divided
the methodology into three stages. The first stage is the
labeling process technique of our image dataset, which is
applied to train the object detection model. The second

stage shows the characteristics of training the YOLOv4
object detection model. The third stage consists of detecting
armed people, which includes the different heuristics andML
models proposed to identify armed people.

A. LABELING PROCESS TECHNIQUE
The labeling process is essential to get optimal results with
each of the armed people detection methods. We use the
LabelImg program [34] to label manually the classes required
to identify armed people: people, faces, and handguns.
Furthermore, we propose to use the set theory, a novel way
of tagging the images of our dataset, to solve the issue of
recognizing the person and the face of the person carrying
a handgun. The images in the dataset have been labeled
considering the people bounding box as a universal set
containing two items: handguns and faces. Hence, guns have
been considered within the people’s bounding box and, in the
same way, their faces. Figure 1 shows this technique.

FIGURE 1. An example of how the images in the dataset have been
labeled. This technique considers the people bounding box as a universal
set, which always contains the gun and face bounding boxes inside.

We propose three heuristics to identify armed people
using the bounding boxes’ centers, distances, and intersection
areas. In addition, we present seven ML models with the
same purpose. However, applying these solutions requires
an optimal labeling process, which means that the bounding
boxes of faces and guns are always inside the bounding box
of people to correctly extract information related to distances,
intersection areas, and centers. Therefore, we applied the
labeling technique to our dataset, which includes 5,000
images. These images have been downloaded from different
public sources and consist of some simulated images that
show armed people, besides authentic images of armed
people at a crime scene. Likewise, the dataset includes people
images and handgun images. Moreover, some revolvers and
pistols in the dataset were downloaded from the Internet
Movie Firearms Database (IMFDB) [4]. The photos are in
color and have different sizes and resolutions.

B. OBJECT DETECTION MODEL
After executing the labeling process, we used our dataset
to train the YOLOv4 object detector. We trained it from
scratch to recognize faces, handguns, and people in the video.
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FIGURE 2. An example of how DMC identifies armed people.

We randomly divided our dataset into 4,000 images for
training and 1,000 for testing. Afterward, we downloaded
YOLOv4 fromAlexeyBochkovskiy’s GitHub [35] (YOLOv4
creator’s GitHub repository). Furthermore, we trained
YOLOv4 for 6,000 iterations. This experiment used a Dell
Xps 8930-2018withNvidiaGeForceGTX1050TI and a 3+1
voltage regulator module (VRM). In addition, it has 32 GB of
RAM and an 8th generation Intel (R) Core I7-8700-3.2 GHZ
with six cores.

We chose this object detection model because it delivers
optimal performance between speed and precision. It has
the following architecture: as a backbone CSPDarknet53
[36], an additional module called Spatial Pyramid Pool-
ing (SPP) [37]. Furthermore, it applies a path-aggregation
Nek (PANet) [38], and as head, YOLOv3 [7] (anchor-based).
Besides, this model applied Bag-of-Freebies and Bag-of-
Specials methods, which enhanced the model’s performance
during the detector training. This object detector model
reached 65 FPS and 43.5%AP (65.7%AP50) on a Tesla v100
using the MSCOCO dataset.

C. ARMED PEOPLE DETECTION
We propose three heuristics and seven ML models to
identify armed individuals. The heuristics are the Determin-
istic Method of Centers (DMC), Deterministic Method of
Distances (DMD), and Deterministic Method of Intersec-
tions (DMI). These heuristics are described in the following
lines: DMC identifies the armed people using a handgun’s
bounding box center. When a handgun’s bounding box center
is within the person’s bounding box, it means the person
is the handgun owner. Figure 2 shows an example of how
DMC works. In this example, we detect the presence of a
gun with YOLOv4 and calculate its bounding box. We also
detect two subjects (a man and a woman) and calculate
their corresponding bounding boxes. Since the center of a
handgun’s bounding box is inside the woman’s bounding box,
the system determines that the woman has a handgun. Then,
DMC concludes that the woman is armed while the man is
not.

Although DMC works well in many cases, it exhibits a
limited performance when the gun’s bounding box lies within
the bounding boxes of two or more people. As a way to
address such a limitation, we proposed DMD. It relies on
the Euclidean distance to identify armed people. The method

FIGURE 3. An example of how DMD identifies armed people.

FIGURE 4. An example of how DMI identifies armed people. The large
intersection area between the handgun’s bounding box and the woman’s
bounding box indicates that she is armed.

calculates the Euclidean distances between the centers of
the subjects’ bounding boxes and the center of a handgun’s
bounding box. The shortest distance determines positive
belonging, as shown in Figure 3, where the distance between
the centers of a handgun’s bounding box and the centers of the
man and woman are 215.75 and 187.14 pixels. With DMD,
this frame is interpreted as in the previous case: the woman is
armed while the man is unarmed.

The third heuristic, DMI, identifies armed people by
measuring the intersection area between the bounding box of
the identified subjects and a handgun’s bounding box. The
largest intersection area defines the armed person. Figures 4
and 5 show how DMI works. Figure 4 shows that the
woman is armed because her bounding box presents the
highest intersection area related to the handgun’s bounding
box (7,945.95 pixels2). Conversely, Figure 5 shows aminimal
intersection area between the man’s bounding box and the
handgun’s bounding box (1,431.95 pixels2), meaning that the
man is unarmed.

FIGURE 5. An example of how DMI identifies armed people. The small
intersection area between the handgun’s bounding box and the man’s
bounding box indicates that he is unarmed.
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The seven machine learning (ML) models we build to
detect armed people are a Random Forest Classifier (RFC),
a Multilayer Perceptron (MLP), a k-Nearest-Neighbors
model (KNN), a Support Vector Machine (SVM), a Logistic
Regression model (LR), a Naive Bayes model (NB), and a
Gradient Boosting Classifier (GBC).

The hyper-parameters considered for the ML models are
as follows. RFC employs ten estimators and ten folds for
cross-validation. It uses an entropy criterion and applies a
maximum depth of two. MLP has four hidden layers, each
with 25 neurons. It trained through 500 iterations. It applies
the Adam solver to adjust the weights. KNN operates through
three neighbors, and the weights of each neighbor are
uniform. The algorithm for calculating the nearest neighbors
is automatic. SVM works with a linear kernel, and the
regularization parameter C is 1.0. LR employs one versus
remainder (OvR) scheme, the inverse of the regularization
strength C is equal to 100, the solver is the limited
memory Broyden Fletcher Goldfarb Shanno (LBFGS), and
the maximum number of iterations is 10000. NB requires
the Bernoulli Naive Bayes classification algorithm. GBC
works with 100 estimators, a maximum depth of six,
a learning rate equal to 0.1, a subsample of 1.0, and
Friedman-MSE as a criterion. MLP, KNN, and SVM require
data standardization by applying the preprocessing module
StandarScaler. To obtain better performance metrics for each
ML model, they trained and tested with different proportions
between their training and test sets. MLP, KNN, and SVM
employed 75% (9,489 cases) of the dataset (12,652 cases) for
training and 25% (3,163 cases) for testing. LR, NB, and GBC
employed 70% (8,856 cases) for training and 30% (3,796
cases) for testing. Finally, RFC employed 80% (10,121 cases)
for training and 20% (2,531 cases) for testing.

The ML models have been trained with the dataset
detailed in Table 1. The dataset has 20 predictors within
which the main characteristics of the heuristics have been
considered. These are the center of intersection that expresses
whether the center of the handgun’s bounding box is
inside the person’s bounding box, the intersection area
between the handgun bounding box and the people bounding
boxes, the handgun bounding box area, and the distances
between the handgun center bounding box and the people
center bounding boxes. In this way, the models learn the
advantages and disadvantages of each heuristic. Moreover,
the models could recognize in which frame it is convenient
to prioritize particular predictors, surpassing the efficiency of
the heuristics.

The ML models used in this work operate in two different
phases. The first phase is data extraction, while the second
is armed people detection. The data extraction data phase
begins when the model receives the streaming from the
video surveillance camera. The video surveillance streaming
enters the object detector model, adding information from
the bounding boxes of detected people, faces, and guns to
the video. This information is extracted and sent to the next
phase. The data extraction phase is illustrated in Figure 6.

Subsequently, the ML models receive twenty measures
related to people and handguns. The phase of armed people
detection receives the measurements obtained from each
video frame. Those measurements go into the ML model
and detect the armed people presented in the video. The
information related to people and faces is then fed into the
face ML model to identify the faces of the armed people.
Figure 7 shows the detection phase of armed people.

We trained our ML models on a dataset created from three
videos with a total duration of three minutes and 28 seconds.
The videos show up to four people with up to five guns.
We processed the videos, and they have generated 12,652
records. The records have been compiled frame by frame,
generating each record by taking the data related to the first
person with the data corresponding to the first gun, then
the first person with the second gun, thus combining all the
people and weapons present in the frame. Therefore, the
number of records per frame depends on the number of people
and handguns. The records represent each case in our dataset,
where the ground truth indicates whether the person is armed
or unarmed. Hence, the number of armed people is 4,228, and
8,424 are unarmed. Please note that the heuristics require no
training because they obey specific rules that regulate their
behavior. However, the ML models and heuristics require a
dataset that allows us to evaluate their performance.

For this reason, we used a 37-second video to test their
effectiveness. The video features two people with a pistol.
The handgun changes carrier during the video. In some
moments of the video, both people fight over handgun
possession. We previously processed the video, extracting
information from each frame to create a dataset. The video
resolution is 1920 x 1080 pixels, and the split video resulted
in 1,135 frames. The test video was processed using the same
technique as the training videos. It generated 639 records.
It associates the information corresponding to each person
with each handgun presented in the video frame. Each
record represents information about a person with one of
the weapons. The records show 380 armed people and
259 unarmed people. Table 2 illustrates the general details
of the datasets.

IV. EXPERIMENTS AND RESULTS
This section shows the results of the object detection model
used to identify the following classes: people, faces, and
handguns, which are mandatory for armed people detection.
Likewise, it describes the behavior of the results of heuristics
and ML models for armed people detection.

A. RESULTS FOR OBJECT DETECTION
The implementation of YOLOv4 has followed the instruc-
tions given by its creator, Bochkovskiy, in his GitHub
repository. Figure 8 shows the training results of the
object detection model. The x-axis represents the number
of iterations through the training. Likewise, the y-axis
represents the loss value presented in each iteration. The
Mean Average Precision (mAP) value is represented through
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FIGURE 6. The first phase in our ML models corresponds to data extraction.

FIGURE 7. The second phase in our ML models corresponds to armed people detection.

TABLE 1. Dataset predictors considered for this work.

the red line. We trained the YOLOv4 model for 6,000
iterations, reaching an mAP of 89%, reducing the loss by

2.1856 with a growing tendency to improve. This trend
suggests that increasing the number of images in our dataset
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TABLE 2. Characteristics of the datasets considered for this work.

and the number of iterations makes it possible to obtain better
results.

FIGURE 8. YOLOv4 Training results.

In general, YOLOv4 provided competent results in
assessments performed with the test set, as illustrated in
Table 3. However, some elements can be improved. One
such element is the people class’s average precision (AP),
which presented the lowest score of the three categories.
A potential explanation for this performance is that people
can take different positions, unlike handgun and face classes.
Also, based on the camera locations, the human bodies do not
always appear complete. Therefore, it hinders the network
learning process. This difficulty is overcome by increasing
the number of images of people in different positions, both
with full and partial bodies.

Moreover, we detected 1,988 true positives (TP), 526 false
positives (FP), and 483 false negatives (FN). True negative
(TN) is not a metric applicable to measuring the performance
of an object detector. It is because the TN should measure all
parts of the image where the model correctly claimed not to
detect any of the classes (faces, people, andweapons). It is not
measurable since it cannot be verified with the labeled classes
in the dataset images (Ground Truth). These results originate
from the test set and represent quite competent results.
Furthermore, the precision, recall, and F1-score are 79%,
80%, and 80%, respectively, which means that precision and
recall metrics maintain equilibrium and that the model works
highly efficiently. The average intersection over union (IoU)
equals 65.5%, representing a high percentage of coincidence
between the model predictions and the Ground Truth. Finally,
the mAP is close to 89%, which is a high score for model

detection. Hence, these results are adequate for the next phase
of this research related to armed people identification.

TABLE 3. YOLOv4 training metrics.

B. RESULTS OF THE HEURISTICS AND ML MODELS
Table 4 shows the results of applying the heuristics to the
training videos. These methods do not require any training.
However, this experiment is relevant for comparison with
the training results of ML models. The true positives are
the number of people correctly identified as armed by
the different heuristics. Thus, true negatives are people
correctly identified as unarmed. In addition, false positives
describe the number of people misidentified as armed,
while false negatives represent cases where the methods
incorrectly recognized an unarmed person. DMI, DMC, and
DMD achieved accuracies of 80.87%, 78.61%, and 72.91%,
respectively.

TABLE 4. Performance metrics obtained by the heuristics on the training
videos.

Like the training video, the test video has been divided
into frames to analyze the results of each method. The split
video resulted in 1,135 frames. However, only 376 are valid
because the rest are qualified as occlusion or no detection.
The occlusion occurs when the handgun does not appear
on the frame because an object blocks it from the camera’s
view. The armed people detection models only work when
YOLOv4 detects the presence of a handgun in the frame.
Each method is evaluated according to the number of people
correctly classified in each frame.
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Table 5 presents the results of the heuristics applied to
the test video. DMI presents the best performance, reaching
an accuracy of 81.53%. This model correctly identified
335 armed and 186 unarmed people. Besides, it made
45 errors detecting armed and 73 errors identifying unarmed
people. Regarding its performance, the following method
is the DMC, which reached an accuracy of 76.05%. DMC
identified correctly 337 armed and 149 unarmed people.
DMC also produced 110 errors identifying unarmed and
43 errors identifying armed people. DMD presents the
worst performance, reaching an accuracy of 51.64% and
correctly identifying 225 armed and 105 unarmed people.
Moreover, it made 154 errors identifying unarmed people
and 155 errors identifying armed people. The results hold
the same performance position as the experiment with the
training videos.

TABLE 5. Performance metrics obtained by the heuristics on the test
video.

Table 6 depicts the main metrics that evaluated the training
of each ML model. The model with the best accuracy is the
GBCwith 99.31%. The next model with the best performance
is the MLP, which achieved an accuracy of 99.02%, then
KNN reached 98.89%, LR got 92.78%, SVM delivered
91.65%, NB achieved 90.83%, and RFC reached 90.79%.
Regardless of the differences, we can conclude that all seven
models performed competently.

Table 7 shows the results of applying the sevenMLmodels
to the test video. The RFC presents the best performance,
reaching an accuracy of 85.44%. The next model with the
best performance is the MLP, which delivered an accuracy of
79.18%. KNN achieved 76.83%, SVM presented an accuracy
of 76.05%, LR got 75.11%, NB reached 72.77%, and GBC
presented the worst performance with an accuracy of 71.67%.

Starting from the hypothesis that each heuristic and
ML model has certain advantages and disadvantages for
predicting cases of armed people with particular character-
istics, we evaluated their performance in different ranges
of intersection areas (Pixels2) of the people present in each
frame on the test video. The results of this experiment are
presented in Table 8 and illustrated in Figure 10. They allow
us to identify which of the proposed techniques performs best
at different intervals of intersection areas between people.
The first interval shows us 338 cases where there were no
intersection areas. In this interval, the DMI obtained the best
accuracy. In general, the superiority of the machine learning
models over heuristics is evident for the rest of the intervals.

To better understand the performance of the ML models,
we have obtained their respective Receiver Operating Charac-
teristic (ROC) curves and their Area Under the Curve (AUC)
metrics. Table 9 shows each ML model’s AUC and average
precision score (APS) applied to the test video. These metrics
are essential because they give us an idea of the performance
of binary classifiers such as those proposed in this research.
Figure 9 presents an overview of the ROC curve and the
AUC calculated based on the probabilities in the predictions
of the ML models. They show that RFC performs best,
outperforming the other models with an AUC of 82.8%. The
probability of predictions is calculated for each ML model
differently, affecting the ROC curve’s accuracy. This effect
is most evident in the case of MLP and KNN, where the
probabilities tend to be 0 or 1.

V. DISCUSSION
We have divided the discussion section into two stages:
deterministic methods and ML models for armed people
detection. Three approaches perform deterministic methods:
DMC, DMD, and DMI. The ML models have seven
approaches: RFC, MLP, KNN, SVM, LR, NB, and GBC.

A. DETERMINISTIC METHOD
The results show that detecting armed people in real time
through a surveillance camera system using deterministic
methods andMLmodels is possible. Regarding the determin-
istic methods, the DMI presents the best accuracy, reaching
81.53% as shown in Table 5. It performs better, allowing
a considerable approach between people and minimizing
overlapping. It does its job correctly until people get close
enough, causing the intersection area to be more significant
in the person not carrying the handgun, generating a false
positive. Also, when the intersection areas are the same for
both people, an error occurs when detecting multiple people
armed with a single handgun.

However, it fails when people are very close, unlike
the other two deterministic methods that present the same
problems when people are not so close. It allows the DMI
to identify the armed person at relatively short distances
among the people in the video. The results of our experiments
showed that the DMI did not present any multiple detections
of armed people for a single handgun in a frame.

Conversely, the DMD identifies armed people by measur-
ing in pixels the distance between the center of the person’s
bounding box and the center of the handgun’s bounding box
through the Euclidean distance formula. The shortest distance
determines the armed people. However, it tends to fail when
a person extends his arm to aim the handgun. In that case,
the distance between the center of his bounding box and the
center of the handgun bounding box increases. This effect
means that when the armed person approaches and points the
handgun at another person, the distance of the gun quickly
becomes less between the center of the handgun’s bounding
box and the center of the person’s bounding box who is
threatened, so it is considered incorrectly armed.
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FIGURE 9. ROC curve applied to the results of the ML models on the test video.

TABLE 6. Performance metrics obtained by the ML models on the training videos.

TABLE 7. Performance metrics obtained by the ML models on the test video.

TABLE 8. Performance of heuristics and ML models through the areas of intersection between people in the test video.

Consequently, this method presents the worst performance,
reaching an accuracy of 51.64%, as shown in Table 5.
However, the number of errors due to multiple armed person
detections for a single handgun presented in a frame was
equivalent to one person. It is because, like the DMI, it is

unlikely that the distances between the center of the people
and the center of the handgun bounding box will be the same.

Meanwhile, the DMC identifies the armed people using the
center of the handgun’s bounding box. When the center of
the handgun’s bounding box is within the person’s bounding
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FIGURE 10. Accuracy of heuristics and ML models across intervals of intersection areas
between people in the test video.

TABLE 9. Area under the curve accuracy on the test video.

box, this person is considered armed. DMC obtained an
accuracy of 76.05%. The drawback of this method is that
when the people are closed, the center of the gun’s bounding

box is inside the bounding box of both people. It generated
93 multiple detections of armed people for a single handgun
presented in a frame. It represented the highest number of this
kind of errors made for deterministic methods.

Figure 11 shows the same frame of the test video processed
by each deterministic method. The bounding boxes painted
in white on the people are the ones the system recognizes
as armed people. The bounding boxes painted in blue are
those the system recognizes as unarmed people. Likewise,
the system generates a red bounding box on the handguns.
This image shows the superiority of the DMI over the other
deterministic methods. The DMC, when it presents people
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FIGURE 11. Detection nearby armed people.

very close to each other, causes the center of the handgun’s
bounding box to be inside the bounding boxes of both people,
and it erroneously indicates that both are armed. In this case,
the DMD wrongly identifies the unarmed person as armed.
It is because when the person extends his arm to aim the gun,
the distance between the centers of the bounding boxes of
the handgun and the unarmed person becomes less than the
distance between the gun and the armed person.

B. MACHINE LEARNING MODELS FOR ARMED PEOPLE
DETECTION
We trained the ML models on a dataset containing the
main features of deterministic methods. The dataset includes
the corners and center coordinates of the bounding boxes,
areas, and distances between the different classes. These
predictors are detailed in Table 1. The ML models aim to
identify the convenience of using particular characteristics
of the deterministic methods according to the scenario
presented in the video frames. In that sense, ML models
must be able to take advantage of the best deterministic
methods.

Table 6 shows the training results of the ML models
using the three training videos in the dataset. All the models
presented metrics above 90%. Even GBC and MLP obtained
an accuracy of 99.31% and 99.02% correspondingly. It rep-
resents optimal performance for predicting armed people.
Meanwhile, the deterministic methods were applied to the
three training videos, reaching the following results. TheDMI
obtained an accuracy of 80.87%, the DMC 78.61%, and the
DMD 72.91%, whose metrics are detailed in Table 4. TheML
models performed better during their training with the same
dataset used by deterministic methods. Table 7 illustrates the
performance metrics of the ML models in the test video.
These obtained optimal results, showing that ML models
have learned from deterministic methods. RFC outperformed
all three deterministic methods. MLP and KNN surpassed
the deterministic method with the second-best performance,
DMC. Thereby, SVM achieved the same accuracy as DMC.
Furthermore, all ML models successfully passed the DMD.

Although, in the training process, the GBC presented the
highest accuracy of the ML models, with the test video,
it delivered the lowest. This effect is attributed to the fact that
GBC entered a state of overfitting. GBC became too biased
in the training data and could not generalize its predictions
with new data.

The ML models used in this research were developed on
the Jupyter Notebook platform. The dataset used for theMLP,
KNN, and SVM training process was standardized before
training using the function StandardScaler from the Scikit-
Learn library. However, we imported the models into our
general system to receive the input data from YOLO’s live
stream. It implies that the input data must be in the same con-
ditions as the training process. Consequently, it was manda-
tory to standardize the input data in real-time, so we have
applied the mathematical formula used by the StandardScaler
function according to z = (x − u)/s, where x represents the
input data to be standardized, u stands for the mean, and s is
the standard deviation of the training samples. The drawback
of this solution is that we are using the mean and standard
deviation of our training dataset, but it does not correspond to
the real-time input data. Therefore, it generates a slight inac-
curacy in the prediction of our MLP, KNN, and SVMmodels.

Additionally, to better understand the behavior of ML
models and heuristics, the accuracy is calculated by intervals
of intersection area of people in the test video. It is shown in
Table 8 and illustrated in Figure 10. In this way, it is evident
that when there are no intersection areas between people, the
best accuracy is presented by DMI, which obtained 93.19%.
In this same interval, the best ML models are NB and GB,
with an accuracy of 89.94%. However, by increasing the
intersection area between people, the performance of ML
models over heuristics improves.

Comparing the heuristics and the ML model with the
best accuracy, we will realize that DMI presents a slight
improvement in accuracy only in the first three intervals
(0 - 9,294.77 Pixels2). This improvement does not exceed
3.23% for the two intervals that present intersection areas.
In the rest of the intervals (9,295.99 - 91,605.88 pixels2),
RFC exceeds the accuracy presented by the DMI by a more
significant margin as the intersection area increases. In the
last interval (74,920.21 - 91,605.88 pixels2), RFC obtained
an accuracy of 100%, and the DMI obtained 51.72%.

In this experiment, it is worth highlighting that although
RFC obtained the best accuracy in general, in the first
five intervals (0 - 24,789.52 pixels2), there were ML
models that equaled or surpassed it. It is an interesting
fact as it shows that the ML models have advantages
and disadvantages in certain intersection areas. No other
ML model surpassed its accuracy in the subsequent six
intervals (25,163.05 - 91,605.88 pixels2). It demonstrates its
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superiority by identifying armed people when they are very
close.

Furthermore, another metric that allows us to appreciate
the superiority of RFC is the ROC curve and its respective
AUC. RFC obtained an AUC equal to 82.8% and an APS
of 80.1%. The next model with the best performance is
LR, which obtained an AUC of 80.04% and an APS of
78.27%. Although MLP had the second-best accuracy and
KNN the third, their AUCs are not optimal due to their way
of calculating the probability in their predictions. They do not
have much variance in their probabilities, most of which are
0 or 1. It causes their ROC curve to be made with only a few
coordinates, reducing the AUC.

VI. CONCLUSION
The results presented in this document show that it is possible
to identify armed people in real time through a surveillance
camera system like the one proposed in this work. The
concept of heuristics has generated a dataset with 12,652
records, which have been used to train the ML algorithms.
These algorithms show a better performance, overcoming the
heuristics. Therefore, the ML models have learned the best
characteristics and performances of the heuristics through the
dataset.

The ML models can work together with YOLO to identify
automatically armed people. Consequently, these depend on
YOLO performance because if the object detection model
fails to recognize the handguns or the people, it would be
impossible to determine who is armed. Although we trained
YOLO with 5,000 images for this research, 254 frames
of the test video presented problems detecting handguns.
Therefore, the machine’s algorithm could not identify armed
people in those frames. Hence, to overcome these issues,
we plan to migrate to more current versions of YOLO, such
as YOLOv9 [40] for future research. Meanwhile, we plan
to increase the number of images in the dataset, specifically
with natural scenes of armed people taking them from video
surveillance cameras. It is necessary to complement the close-
up pictures since, in actual cases, it requires recognizing guns
that are further away from the camera and look smaller.

This research aims at identifying armed people through
video in real time. However, this task is challenging when
people are close to each other, and handguns are occluded.
The different methods and models presented tackle these
challenges. However, in occlusion, they cannot identify the
armed persons because YOLO cannot detect the handguns.
Therefore, for future research, we will use recurrent neural
networks, such as Long Short Term Memory (LSTM) [41],
to predict the coordinates of handguns when they enter an
occlusion state. Hence, it will be possible to have a prediction
of armed people at all times.

Furthermore, although we have identified that the RFC is
the ML model with the best accuracy, other models make
better predictions in certain situations delivered in video.
Therefore, it is possible to generate an automatic model
selector that identifies and applies the best of the seven ML

models to a specific condition presented on video. Thus,
we would have the seven ML models working together,
improving the accuracy of detecting armed people.
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