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ABSTRACT To address the issue of model performance degradation in combat intention recognition caused
by the long-tailed distribution of battlefield data and the neglect of the spatial dimension information of
multivariate time series data, this paper proposes a class balanced spatio-temporal self-attention (CBSTSA)
model. By incorporating spatial and temporal attention mechanisms, the model captures interdependencies
among features and extracts salient information from both temporal and spatial dimensions. Furthermore,
taking the long-tailed distribution of battlefield data into account, a re-weighted class balanced loss function
is introduced to train the model. Experimental results show the superiority of our CBSTSA model, e.g.
achieving approximately 95.67% accuracy in typical scenarios, surpassing benchmark schemes by 4–5%.

INDEX TERMS Combat intention recognition, long-tailed distribution, self-attention.

I. INTRODUCTION
Combat intention recognition refers to the judgment and
interpretation of the enemy’s operational assumptions, and
operational plans by analyzing the information obtained from
various information sources on the battlefield. According
to the different level of impact of combat, it can be
subdivided into strategic intention recognition, campaign
intention recognition and tactical intention recognition [1].
This paper focuses on tactical intention recognition.

The intent recognition methods can be generally divided
into two categories: model-driven methods and data-driven
methods [2].With the development of science and technology
in recent years, the forms of modern warfare and elements of
confrontation have become more and more complex, and the
amount of data that needs to be processed in the battlefield has
increased exponentially. Model-driven methods are difficult
to meet the needs of today’s battlefield, thus more and more
researchers focused on data-driven intention recognition
methods in recent years, e.g., neural network and deep
learning [3], [4], [5], [6], [7], [8].
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The majority of the current data-driven methods treat the
combat intention recognition task as a multi-classification
problem, which based on multivariate time series data. These
approaches commonly employ recurrent neural networks
(RNNs) [9] and their variant [10], or temporal convolutional
networks (TCNs) [5] to primarily extract temporal features.
In [3], [4], [7], and [8], the authors combined convolutional
neural networks (CNNs) [11] and RNNs in joint architectures
to capture both local and global dependencies in the temporal
dimension. However, in a real combat scenario, the feature
obtained by sensors should be viewed as a two-dimensional
space that encompasses both spatial (the correlation between
different features attributes at a single time) and temporal
dimensions. The above models only analyze data from
temporal dimension, disregarding the valuable information
embedded in the spatial dimension. As a consequence,
a significant number of essential features within the intention
samples are overlooked.

Moreover, a significant limitation of the current data-driven
methods is the lack of consideration for the imbalanced
distribution of battlefield situation data across different
intentions. Actually, intentions with low threat levels, such
as scout and early warning, can collect a large number of
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samples in the real battlefield. In contrast, some high-threat
intentions, such as strikes and intercepts, tend to appear
less frequently and with a shorter duration in the battlefield,
resulting in a smaller sample size. This characteristic lead
to a special skewed distribution within the dataset, known
as a long-tailed distribution [12]: a few categories, termed
head classes, dominate the number of samples, while others,
referred to as tail classes, have only a small number
of samples. The long-tailed distribution can lead to the
data-driven model performing well in the head classes but
inefficient for tail classes, thereby negatively impacting the
overall recognition accuracy. The tail classes in combat
intention recognition usually correspond to the intentions
with high threat levels, which play a more critical role in
supporting the commander’s operational command. Failure to
enhance performance on these tail classes could significantly
undermine the reliability of the entire intention recognition
system could.

In this paper, we propose a novel class balanced spatio-
temporal self-attention (CBSTSA) model for the combat
intention recognition task. Extensive solid results show that
CBSTSA outperforms benchmark schemes, including GRU-
FCN [3], 1DCNN-BiLSTM [4], TCN-attention [5], etc. The
main contributions are as follows:

(1) A spatio-temporal self-attention (STSA) mechanism
is proposed to enhance feature extraction. The STSA
mechanism begins by transposing the time series data,
enabling the subsequent application of the spatial multi-head
self-attention module. The spatial module serves to enhance
the features of the original time series data in the spatial
dimension. Additionally, a time multi-head self-attention
module is employed to capture long-term features in the
time dimension. The proposed space-time tandem structure
facilitates the holistic utilization of the original data in both
temporal and spatial domains, while maintaining the inherent
time dimension structure of the input data.

(2) A novel class balanced (CB) loss function is proposed.
Aiming at the performance degradation of the intention
recognition models caused by long-tailed distributions,
we employ the novel CB loss function during training. The
proposed CB loss function integrates two key factors: the
sample size and the threat level. This function is designed
with a reweighting term that balances the trade-off between
these factors for each class. By assigning a strategic penalty,
the model is encouraged to focus on classes with fewer
samples and higher threat levels. This approach helps the
model to better capture the distinctive features of these
classes, thereby enhancing its performance on imbalanced
class distributions.

The rest of this paper is organized as follows. Section II
provides a summary of the related work.1 Section IV presents
the problem statement and the details of the CBSTSA

1Section I discusses the overall situation, existing problems, and
development trends of the research in combat intention recognition field,
and indicates contributions of our works on this basis. Details and analysis
of related works will be presented in Section II.

model. Section V includes experimental validation and result
analysis. Section VI concludes the work of this paper.

II. RELATED WORKS
Most of previous efforts on combat intention recognition
can be divided into two regimes: model-driven and data-
driven [2].

A. MODEL-DRIVEN
Model-driven methods typically involve the predefined
models based on prior knowledge or expert experience. These
methods aim to explicitly model the mapping relationship
between the input and output through various techniques,
including template matching [13], [14], [15], [16], expert
systems [17], [18], [19], Bayesian networks [20], [21], and
D-S evidence theory [22].

The intention recognition method based on template
matching was initially proposed by Azarewicz et al. [13],
which constructed an intention recognition model by inte-
grating predictions of future activities and the assumptions of
external behavior recognition. However, with the increasing
volume of data on the battlefield, it becomes increasingly
challenging to construct templates. The expert system,
an important branch of early artificial intelligence, was first
applied to combat intention recognition by Kirillov et al. [17].
They transformed the intention recognition problem into
a multi-hypothetical dynamic classification problem and
achieved identification of the threat target intention by
continuously received data. This method is more flexible than
template matching, but it heavily relies on prior knowledge
and subjective factors, resulting in poor robustness of the
models. Subsequent studies have made improvements to
template matching [14], [15], [16] and expert systems [18],
[19] for various problems. Despite these improvements
enhancing the performance and fault tolerance of the model,
it still retains the inherent limitations of the methods.
These limitations make template matching and expert system
challenging to handle uncertain reasoning and adapt to the
increasingly complex battlefield environment.

Due to the inherent capability of Bayesian networks and
D-S evidence theory in dealing with uncertain problem, they
have been employed for combat intention recognition task.
Bayesian networks, for instance, combine prior probabilities
and uncertainty reasoning to achieve improved analysis
results. They can address the challenges of uncertainty and
incompleteness by deriving the output probabilities based
on input variable information. Deng et al. [20] proposed
the use of a multi-entity Bayesian network (MEBN) to
describe the tactical intention of the enemy. The MEBN
extends Bayesian networks using first-order predicate logic to
accommodate multi-entity combat situations, but it neglects
the temporal dimension of information. Yu [21] analyzed the
enemy’s intentions from the time dimension, introducing a
dynamic Bayesian network (DBN) and incorporating fuzzy
classification functions and probability conversion theory to
reduce errors arising from subjective judgments. However,
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the difficulty of constructing the DBN will continuously
increase with the growing number of battlefield factors.
Compared with Bayesian networks, D-S evidence theory is
capable of handling weaker conditions and excels in express-
ing and synthesizing uncertain information. Sun et al. [22]
combined the high-dimensional spatial similarity calculation
model with the D-S evidence theory to achieve sequential
identification of the target’s tactical intention. Although
Bayesian network and D-S evidence theory address the
limitations of previous methods in dealing with uncertainty,
as probabilistic inference models, they still struggle to
avoid the influence of subjective assumptions on the model,
such as setting judgment thresholds and prior probabilities.
Furthermore, with the continuous growth in the volume of
battlefield data, manually constructing these models becomes
increasingly challenging. As a result, the aforementioned
methods cannot fully meet the requirements of current
combat intention recognition tasks.

B. DATA-DRIVEN
Data-driven methods involve the automatic construction of
inference models by learning the mapping between input and
output data. In the context of combat intention recognition,
most of data-driven models treat it as a time series data
classification task. Ou et al. [6] designed a tactical intent
recognition model based on stacked auto encoder (SAE),
which encodes data from multiple moments uniformly as
network inputs to achieve intention recognition. The SAE
model is not time-sensitive, therefore the approach of
encoding-recognizing is not intuitive. Liu et al. [7] proposed
a CNN-GRU model for intention recognition by considering
the combination of static map features and action trajectories
of combat units in a war game. The model consists of
a 2-dimensional CNN for extracting map features and a
1-dimensional CNN for extracting temporal features, but it
is specific to the war game scenario and difficult to apply
in practical settings. Li et al. [8] proposed a hierarchical
aggregation model based on CNN-BiLSTM-attention, taking
into account the hierarchical nature of combat intention
and the dependency relationship between intent behaviors.
This method is designed for real combat environments but
still relies on ideal assumptions, overlooking the complex
situations present on the battlefield, such as inconsistent costs
of misjudgment and the imbalanced sample distributions.
To address the problem of imbalanced battlefield intent
misjudgment costs, Ding et al. [3] proposed a cost-sensitive
aerial target intention recognition method based on GRU-
FCN. Zhang et al. [4] divided the target data into multi-
ple sub-sequences and employed a baseline model called
1DCNN-BiLSTM to handle long time series data. Taking
the sample imbalance into consideration, Zhao et al. [5]
proposed a temporal convolutional self-attention network
(TCN-attention) based on sliding-window estimation. The
authors addressed the imbalance by determining difficult-
to-categorize samples through pre-training and oversam-
pling those categories through sliding-window estimation

expansion, thereby alleviating the sample number imbalance.
However, all the aforementioned methods neglect the spatial
dimension of the battlefield, which limits the improvement in
performance.

III. PROBLEM FORMULATION
Data-driven approaches usually model the combat intention
recognition task as a multivariate time series classification
problem. A single moment of intent feature x is first
determined based on the combat scenario, which can be
formally represented as:

x = (x1, x2, . . . , xn) (1)

where xn denotes the n-th intentional characteristics of the
enemy target at a given moment, which is then extended to m
consecutive moments to obtain a complete representation of
feature space X :

X =


xt1
xt2
...

xtm

 =


x t11 x t12 · · · x t1n
x t21 x t22 · · · x t2n
...

...
. . .

...

x tm1 x tm2 · · · x tmn

 (2)

where x tmn denotes the n-th intentional characteristics of the
enemy target at the moment tm.
The enemy targets’ intent space is determined as:

I =
{
i1, i2, . . . , ip

}
(3)

where ip denotes the p-th intention of the target.
The mapping relation f (·) from the feature space X to the

intent space I , which the data-driven models need to learn,
can be expressed as:

I = f (X) = f
([
xt1 , xt2 , . . . , xtm

]T) (4)

In this paper, we focus on a typical combat scenario
where our battle units confront enemy targets. Our goal is
to recognize the intention of the enemy target based on
the information obtained by our sensors and the current
state of our battle units. Considering the specific task,
it is observed that the same intention often exhibits similar
characteristics. By considering these characteristics patterns,
the state information of our battle units, the radiation source
category information equipped by the enemy target and the
radiation source working mode information are determined
as the features of a single moment.

Based on the above discussion, we construct a feature
space with a time dimension of m simulation moments for
the above sea combat scenario. Each moment in the feature
space consists of five feature parameters: distance between
ourselves and the enemy (d), speed of our battle units (v),
altitude of our battle units (h), the type of enemy target’s
radiation source (t), and the working mode of the radiation
source (w). Table 1 presents the specific form of these
feature parameters. The feature space consists of two main
types of data, numerical and non-numerical. The numerical
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FIGURE 1. Intention space.

parameters include: distance between ourselves and the
enemy (d), speed of our battle units (v), altitude of our battle
units (h), and the non-numerical parameters includes: the type
of enemy target’s radiation source (t), and the working mode
of the radiation source (w). The non-numerical parameters
are represented using multi-hot encoding with a total of
12-bit coding. Therefore, the feature space X ∈ Rm×15,
where m represents the number of simulation moments.
By constructing this feature space, we capture essential
information about the sea combat scenario, enabling the
subsequent intention recognition process.

The intent space is generally determined by experts in
warfare. In this paper, we establish an output space that
encompasses five types of intentions: scout, pre-intercept,
intercept, obstruct, and lure. The determination of these
intentions is based on a comprehensive consideration of
factors such as the battlefield environment of the multiple
battle units cooperative combat, the working state of the
enemy’s radiation sources, and the mission context. Fig. 1
represents the encoding and representation of these five types
of intentions within the intent space.

IV. APPROACH
A. OVERVIEW
In order to extract the spatial features of the battlefield
and to address the long-tailed distribution issue, we pro-
pose CBSTSA model for combat intention recognition.
An overview of our CBSTSA model can be found in
Fig. 2. The CBSTSA model consists of spatio-temporal self-
attention (STSA) mechanism and class balanced (CB) loss
function. More specifically, we start by training our model
on the training set using the CB loss, as indicated by the
yellow arrow in the diagram. This approach allows our model
to focus more on fitting the few-shot, high-threat categories
effectively. And then, the trained model can be used for
testing. During test, the intention is directly obtained by
applying argmax function to the output of STSA, as indicated
by the orange arrow in the diagram.

B. SPATIO-TEMPORAL SELF-ATTENTION MECHANISM
Multivariate time series refers to a time series dataset con-
taining multiple observed variables at a single moment [23].
When analyzing multivariate time series, we should not
only focus on the temporal dependence of these variables
(temporal dimension), but also pay attention the connection
of observed variables with each other (spatial dimension).
Currently, the dominant combat intention recognition models
are based on the structure of 1DCNNs+RNNs (in series [4],
[7], [8] or in parallel [3]). The 1DCNN module performs
convolutional operations on the temporal dimension of the
data. This allows it to extract more refined local features in the
time domain. And the RNN module, with its ability to model
contextual dependencies, efficiently captures the long-term
dependency features of the time series data.

However, the above structure does not consider the
connection among observations of different features, i.e., the
features of spatial dimensions. To address this challenge, this
paper proposes a novel spatio-temporal self-attention (STSA)
mechanism for intention recognition. The proposed model
comprises three main components: a spatial attention module
with ns self-attention mechanisms, a temporal attention
module with nt self-attention mechanisms, and a fully
connected layer with softmax activation function (serves as
the classification layer). The architecture of the model is
depicted in Fig. 3.

Instead of analyzing the battlefield situation data only in
the temporal dimension, the proposed spatio-temporal self-
attention (STSA) augments the input data in the spatial
dimension before extracting features from the temporal
dimension. Specifically, the spatial attention module takes
the transposed time series data XT as input, and aims
to capture the dependencies among the variables from
the spatial domain. Through this process, the module
obtains the enhanced time series data feature f space, which
encompasses refined information from the spatial dimension.
Subsequently, the temporal attention module receives the
transposed output of spatial attention module, denoted as
f Tspace, as its input. The temporal attention module, similar
to RNNs, focuses on capturing the long-term dependencies
within the data from the temporal dimension. This pipeline
enables the model to extract more comprehensive and
meaningful temporal features which play a critical role in
enhancing the understanding and recognition of intentions.
Finally, the final classification result is obtained by the
classification layer, which is a fully connected layer with
softmax activation.

The basic unit of both the spatial attention module and
the temporal attention module is the multi-head self-attention
mechanism, as shown in Fig. 4. Each self-attention module
can be represented as:

Attention (Q,K,V) = αV = softmax

(
QKT

√
dk

)
V (5)
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TABLE 1. Parameters of feature space.

FIGURE 2. The overview of proposed CBSTSA model for combat intention recognition.

where Q, K , V denote the query vector, key vector, and
value vector, respectively. These vectors are obtained from
the input X either through three linear layers, alternatively,
by directly utilizing the input X . dk denotes the dimension
of the query and key. The purpose of the self-attention
mechanism is to recalibrate the input data by evaluating the
correlation between each component of the data. Specifically,
the attention term α of a particular component in relation to
others is calculated by the scaled multiplicative attention, and
then the value vectors are weighted by αV to obtain the final
self-attention output.

The multi-head self-attention mechanism, as the name
suggests, uses multiple self-attention modules and combines
the results of each attention module together as outputs by
means of concatenation. The inputs to each attention head are
obtained by linearly mapping the original Q, K , V n times,
and each attention head computes the outputs in parallel. All
the results are concatenated together and passed through a
linear layer to obtain the intention output. Assuming that
Q,K,V ∈ Rm×d input are the inputs, the multi-head self-
attention mechanism can be formally represented as:

MultiHead (Q,K,V)

= Concat (head1, head2, . . . , headn)WO

head i = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
(6)

where WQ
i ,WK

i ∈ Rdinput×dk and WV
i ∈ Rdinput×dv denote

the input mapping matrices. WO
∈ Rndv×doutput denotes the

output linear layer weight matrix of the multi-head attention.
Concat denotes the concatenate operation.

C. CLASS BALANCED LOSS
As mentioned in Section I, the combat intention datasets
exhibit a long-tailed distribution [12], with different inten-
tions having varying importance. The presence of a
long-tailed distribution in the dataset reflects the inherent
asymmetry of real-world combat scenarios, which poses
challenges for data-driven models, particularly for the
recognition of the tail classes. These tail classes typically
represent intentions with higher threat levels.

In this paper, we propose a novel CB loss function to
address the issue of long-tailed distributions. The CB loss
function operates by adaptively reweighting the traditional
cross entropy (CE) loss function. Specifically, the reweight-
ing term applied to the head classes is smaller compared to
that applied to the tail classes, so that the model can allocate
more attention to the tail classes. This adjustment ensures
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FIGURE 3. Structure of the spatio-temporal self-attention mechanism.

FIGURE 4. Self-attention mechanism unit.

that the abundance of samples in the head classes does not
overshadow the importance of the tail classes.

The reweighting term in the CB loss function is designed
by incorporating both the threat level of each intention and
the effective number of samples. The threat level of each
intention Ly is assumed as shown in Table 2.
The effective number of samples can be expressed as [24]:

Ey =
1−βny

1−β

β =
N−1
N

(7)

TABLE 2. Threat level of intention.

where Ey represents the effective number of samples for class
y. ny denotes the number of samples for class y.N denotes the
volume of the sample space of the overall dataset, and usually
N ≥ 1. It is evident that the β is less than 1.When the number
of samples for a particular class ny is larger, the effective
number of samples Ey will also be greater. This relationship
is logical and aligns with our expectations.

Considering that the biggerEy is, the greater penalty should
be, we use αi ∝ Li/Ei as the reweighting term of the class i.
Formally, the raw cross entropy loss function for one sample
is:

CE(p, y) = −

C−1∑
i=0

yi log (pi) (8)
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FIGURE 5. Relationship between class balanced term and sample size
(Li = 1).

where p = [p1, p2, . . . , pC−1] denotes the model prediction
result, pi ∈ (0, 1) and

∑C−1
i=1 pi = 1. y = [y1, y2, . . . , yC−1]

denotes the label of the sample. yi = 1, if the sample belongs
to the class i, otherwise yi = 0. C denotes the number of
classes.

Further, reweighting CE loss using αi, the CB loss function
is given by:

CB (p, y) = −

C−1∑
i=0

(1 − β)Li
1 − βnyi

yi log (pi) (9)

The CB loss can ensure the model focuses on recognizing
and addressing the most critical scenarios. By assigning
appropriate weights to different classes based on their threat
levels and effective number of samples, the head classes
will not dominate the training process and overshadow the
importance of classes with fewer samples but higher threat
levels.

In practice, since N is difficult to determine, this paper
directly chooses β as the hyper-parameter, and adjusts the
reweighting term by adjusting β. Different β will make the
loss function have different sensitivity to the number of
samples, and the closer β is to 1, the greater the penalty of
the reweighting term for the head category samples will be,
as shown in Fig. 5. In addition, we apply normalization to
the reweighting term αi during the experiments, so that the
sum of all category reweighting terms equals the number of
categories C .

C−1∑
i=0

αi = C (10)

The normalization step helps to ensure the scale of the loss
function, thereby minimizing the impact of scaling variations
in the loss values on the effectiveness of training process.

V. EXPERIMENTS
A. DATASET AND EXPERIMENTAL ENVIRONMENT
1) DATASET AND EVALUATION
The raw data comes from a combat simulation system, and
we first use the sliding window to segment the raw time-

series data. Subsequently, we submit this segment data to
warfare experts for accurate labeling. The dataset comprises
a total of 12,000 samples, with each sample being a two-
dimensional time-series containing 10 simulation moments.
Each moment has 15-dimensional feature parameters. Hence,
one sample can be denoted as X ∈ R10×15. The dataset
is divided into a training set and a test set according to
the ratio of 8:2. The training set has a total of 9,600
samples, of which 47.083% are scout intention, 41.875% are
pre-interceptor intention, 5.417% are interceptor intention,
5.417% are obstruct intention, and 0.208% are lure intention.
The test set has a total of 2,400 samples, and each type of
intentions has 480 samples.

Furthermore, this work obtains multiple test sets with
different difficulty levels by adding different degrees of noise,
as a way to test the robustness of the model in a complex
battlefield environment. Specifically, signal-to-noise ratios
(SNR) of 10dB, 5dB, 0dB, -5dB, -10dB is added to the
numerical parameters (following the method in [3]), and the
noise with error rate of 15%, 20%, 25%, 30%, 35% is added
to the non-numerical parameters.

Following the previous approach [3], [4], [5], In this
paper, accuracy, recall, precision, and F1 score are used as
evaluation metrics. Moreover, the average-accuracy of the
model on test sets with different noise levels is used to
evaluate the robustness.

2) EXPERIMENTAL ENVIRONMENT
We programed in python 3.9 on 64 bit Windows 10 computer
with the Tensorflow deep learning framework, a 12th Gen
Intel(R) Core(TM) i7-12700 @ 2.10 GHz processor, and
32GB of RAM.

B. IMPLEMENTATION DETAILS
To determine the structure of the model, we need to set fol-
lowing parameters: the number of layers ns for the multi-head
attention in the spatial attention module, the number of layers
nt for the multi-head attention in the temporal attention
module, and the β of the class balanced loss function.
In order to make the model more attentive to the long-term
temporal dependencies, we impose a constraint that the
number of layers in spatial attention module not exceed
that in the temporal attention modules, i.e., ns ≤ nt .
We further conduct a parameter search within (ns, nt ) ∈

(1, 1), (1, 2), (1, 4), (2, 4). For β, we perform parameter
search among β ∈ {0, 0.9, 0.99, 0.999, 0.9999}, where
β = 0 indicates that the standard cross entropy loss
function is used for training. Additionally, the multi-head
self-attentionmechanism in the temporal and spatial attention
module are configured with the following parameters: the
number of attention heads h is set to 8, the dropout rate is
set to 0.1, and dk = dv = 64.
The model is trained with each of the above configurations

using the Adam optimizer, the learning rate is set to 0.001,
over 50 epochs with a batch size of 200, and then evaluated
on the original test set. As depicted in Fig. 6, the performance
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FIGURE 6. Performance of different model structures.

TABLE 3. Implementation details.

of the model significantly deteriorates compared to the other
three configurations when the number of layers is set to
(2, 4). An excessive number of layers enables the model to
extract more intricate features but also leads to overfitting.
The complex patterns and features in the input data are not
adequately extracted when the number of layers is set to
(1, 1), which leads to a weak effect of the class balanced loss
function. The insufficient depth of feature extraction hampers
the model’s ability to capture and understand the intricate
characteristics embedded within the data. Both the (1, 2) and
(1, 4) configurations demonstrate optimal results exceeding
95% accuracy. However, the (1, 2) configuration shows
a more consistent and stable performance improvement.
Considering training efficiency and stability, we determine
the model structure as follows: ns = 1, nt = 2 and β = 0.9.
The specific implementation details are shown in Table 3.

C. COMPARATIVE EXPERIMENT
To evaluate the performance of the proposed CBSTSA
model in the combat intention recognition task, comparative
experiments are designed. The CBSTSA model is evaluated
by compared with several baseline models, including the
MLP model, SAE model [6] GRU-FCN model [3], the
1DCNN-BiLSTM model [4], the TCN-attention model [5],
and the Transformer encoder model. The structural param-
eters of all the aforementioned models are set according

TABLE 4. Results of original test dataset. Acc is an abbreviation for
accuracy. Precision, Recall, and F1 scores are all macro-averaged.

to the original papers. Note that the transformer encoder
model uses the complete encoder module from [25]and
stacks 3 layers, which aligns with the number of layers in
CBSTSA model. And MLP is the basic neural network,
which is also set to three layers, with 512, 256, and
128 neurons, respectively. The training regime is consistent
across all models and is detailed in Section V-B. To ensure
the fair and avoid contingency, each model undergoes
training and testing processes five times, and the optimal
results are selected for comparison. As shown in Table 4,
the CBSTSA model achieves an accuracy of 95.67%,
showcasing a significant performance improvement over the
baseline models. Specifically, it outperforms the GRU-FCN,
1DCNN-BiLSTM, TCN-attention, and Transformer encoder
bymargins of 5.04%, 5.29%, 4.25%, and 1.54%, respectively.

Further, to validate the robustness of the model, an addi-
tional comparative experiment is conducted on test sets
with different levels of noise, as indicated by the signal-
to-noise ratio (SNR). It is crucial to noted that, this work
refrains from retraining the model under the different
SNR. Instead, the model trained on the original dataset
is directly used for testing with different noise, which
is different from the method in [3]. By adopting this
methodology, we aim to evaluate the model’s generalization
and adaptability to noisy environments, which aligns with
real-world conditions. Results in Table 5 shows that our
model consistently maintains optimal performance across
all SNR, exhibiting robustness to varying levels of noise.
On average, it achieves an accuracy improvement of 6.08%,
6.57%, 4.35%, 6.88%, 3.72%, and 2.22% compared to the
other models, respectively.

In addition, we calculate the gradient of the linear
trend line to quantify the model’s susceptibility to noise,
offering a quantitative measure of its sensitivity and further
elucidating its performance profile. As depicted in Fig. 7,
the calculated gradients are -3.28 for TCN-attention, -
4.04 for the Transformer encoder, and -3.31 for our proposed
model. It means that as the SNR decreases, our model
exhibits a slower or similar performance decline compared
to the other models. This suggests that our model displays
greater resilience to noise and enhanced adaptability to the
complexities of the battlefield environment.
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TABLE 5. Results of robustness test. We compare the accuracy of the
models at different SNRs. The SNR is set to /, 10, 5, 0, -5, -10 in dB, where
/ stands for the original test dataset.

FIGURE 7. Linear trendlines for baseline models and CBSTSA. The dashed
line represents downward trend in model performance.

Considering the requirements of lightweight and timely
for intention recognition models in real combat scenarios,
we count the parameter quantities and FLOPs for above
models to quantify the model’s size and computational
complexity. As shown in Table 6, although MLP and SAE
have lower computational demands, their performance is
suboptimal. The FLOPs of other models are in the million
range, but our CBSTSA model is more lightweight, with
only 87k parameters. Therefore, considering the model size,
computational complexity, and performance, CBSTSA is the
optimal choice.

D. ABLATION EXPERIMENT
To evaluate the influences of each component, we design
ablation experiments for the class balanced loss function,
the spatial attention module, and the temporal attention
module. Note that the model is trained based on the original
cross entropy loss function when the class balanced loss
function is removed. Table 7 shows the effectiveness of
spatial-temporal structure. The spatio-temporal self-attention
model can achieve the best performance when same loss
function is used for training. Especially, when the class

TABLE 6. Statistics on model size and computational complexity. Params
represents the number of model parameters, and FLOPs represents the
number of floating-point operations a model has for one sample.

TABLE 7. Results of ablation experiments. ✓ indicates that the
component is activated. When the Class Balanced loss is activated,
we annotate the values of the hyperparameter β.

balanced loss is employed, the Acc (Avg.) of STSA can be
improved by 1.42% (1.81%) and 1.17% (3.65%) compared to
the spatial-attention based model and the temporal-attention
based model, respectively.

Furthermore, the class balanced loss function can improve
the model performance to a certain degree. Specifically,
1.29% for the spatial-attention based model, 0.54% for the
temporal-attention based model, and 1.38% for the STSA
model. As shown in Table 8, we also compare the F-1 scores
(based on STSA model) for both head and tail classes with
and without the CB loss. The results suggest that the CB
loss function can improve the performance of tail intentions
without compromising the performance of head one, thus
achieving an improvement in overall performance. More
intuitive display of tail performance improvement is shown
in Fig. 8.

E. RESULT DISCUSSION
The extensive experiments demonstrate the solid improve-
ment of our model in the combat intent recognition task. This
improvement is largely attributed to the STSA mechanism
and CB loss function. More specifically, in the comparative
experiments with other baselinemodels (as shown in Table 4),
it can be found that Transformer encoder model [25] and
our CBSTSA model achieve the top 2 accuracy. We consider
the capacity of the self-attention mechanism to capture
contextual features in sequential data as the crucial factor
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TABLE 8. F-1 scores for head and tail classes with and without CB Loss.
CE stands for the cross-entropy loss. Scout is the head class, and lure is
the tail class.

FIGURE 8. Illustration of the F-1 score for tail class (lure intention).

underlying this phenomenon. However, as the level of noise
increases, the advantages of the CBSTSA model become
more pronounced (as shown in Table 5), and we attribute
this to the effect of the spatial attention module. To further
validate this opinion, we conduct ablation experiment, and
Table 7 illustrates that when spatial and temporal attention
modules are simultaneously activated, the performance is
superior (no matter with or without CB loss). Furthermore,
we conduct validation on the effect of the CB loss,
as presented in Table 8 and Fig. 8. The incorporation of
the CB loss enables the model to achieve a significant
improvement of approximately 4% on tail classes, while
maintaining the performance on head classes.

VI. CONCLUSION
Anovel CBSTSAnetwork for combat intention recognition is
proposed. By implementing the self-attention mechanism in
the feature space dimension, the STSA enhances the feature
of the original time series data and effectively improves the
feature expressions for classification. Additionally, by incor-
porating the sample size and threat level into the reweighting
term, the CB loss function can effectively deal with the
inherent asymmetry in battlefield intention data. Extensive
experiments show that both the spatial attention module

and CB loss are pivotal in advancing combat intention
recognition. In future work, we try to extend the CBSTSA
framework to more combat scenarios.
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