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ABSTRACT Although machine translation has received great progress in recent years, machine translation
results usually existed some errors due to the complex relationship between sentence structure and semantics.
Currently, the automatic error detection techniques towards machine translation errors have not been
deeply investigated. To deal with the challenge, this paper proposes an intelligent error detection model
for machine translation using composite neural network-based semantic perception. Firstly, integrating
attention mechanism into Bi-GRU encoder can effectively learn contextual information of sentences and
generate high-quality global feature representations. Then, multiscale CNN can extract local features at
different scales, thereby capturing finer grained semantic information. Experiments are conducted on datasets
containing a large amount of English text and machine translation errors, in which the proposed model is
compared several benchmark methods. The experimental results indicate that the proposal has achieved
significant improvements in machine translation error detection tasks. It comparison, it can more accurately
identify common problems such as grammar errors, semantic errors, and word spelling errors in translation
results, verifying its effectiveness and practicality.

INDEX TERMS Error detection, semantic modeling, intelligent perception, composite neural network.

I. INTRODUCTION
In today’s globalized society, effective communication
between languages has become particularly important, and
English machine translation, as a key technology for
cross-cultural and multilingual communication, has been
widely applied in various fields [1]. However, even the most
advanced machine translation systems are inevitably prone
to some human or automated errors. These translation errors
may lead to distortion, misunderstanding, or even loss of
important details, causing unnecessary inconvenience and
misleading for users [2]. Therefore, in order to solve this
problem and better automatically detect and correct machine
translation errors, scholars from various countries continue
to explore and innovate, seeking a new method for detecting
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errors in English machine translation to improve the quality
and reliability of machine translation systems.

In past research, a common method was to use statisti-
cal machine translation error detection. These models use
phrase based methods to infer the best translation and use
various features to determine whether the translation is
accurate [3]. However, traditional machine translation error
detection methods often rely on manually set features and
rules when identifying errors. The limitation of this method
is that it is difficult to cope with the complexity and diversity
of language, which in turn limits its overall performance [4].
With the rise of deep learning, researchers have begun to
use neural networks to improve the performance of machine
translation error detection.

One important research direction is to use deep semantic
learning frameworks to extract global and local features [5].
Global features help capture the overall semantic informa-
tion of a sentence, while local features can better represent

113490

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0007-0256-5848
https://orcid.org/0000-0002-8587-7017


Y. Wu, Q. Liang: Intelligent Error Detection Model for Machine Translation

the details and structure of the sentence [6]. The Bi-GRU
encoder can effectively capture bidirectional contextual infor-
mation of sentences and transform it into representations with
rich semantics. Multi scale CNN can extract local features
at different scales, thereby better capturing subtle differ-
ences in sentences [7]. By integrating Bi-GRU encoder and
multi-scale CNN, this deep semantic learning framework can
simultaneously consider global and local features, thereby
more accurately detecting errors in English machine trans-
lation. Experimental results have shown that this method
achieves excellent performance on multiple datasets and has
significant improvements compared to traditional statistical
machine translation models. This method has the potential to
improve the quality of machine translation and can provide
useful references for research in related fields. This study has
made contributions to the literature in the following areas:

(1) This study uses twin RNNs to train non English word
vectors, map them to the basic semantic space, learn word
vectors from other languages, and detect errors in English
machine translation.

(2) This study proposes a deep semantic learning frame-
work that integrates Bi-GRU encoder and multi-scale CNN.
Integrating global and local features to improve the perfor-
mance of machine translation error detection.

(3) By integrating global and local features, it is possible to
more comprehensively represent the semantic information of
sentences, better capture the semantic information in English
translation, and thus improve the accuracy and performance
of error detection.

(4) The research results of this article provide new ideas
and methods, which can provide new research directions
for scholars and engineers in the field of English machine
translation detection, and also promote the development of
this field and improve the accuracy and efficiency of machine
translation error detection.

II. RELATED WORK AND PRELIMINARIES
A. APPLICATION OF DEEP SEMANTIC LEARNING IN
MACHINE TRANSLATION ERROR DETECTION
Deep semantic learning has important applications in error
detection in Englishmachine translation. Traditional machine
translation systems mainly rely on statistics and rules
for translation, usually performing well in sentence struc-
ture and grammar rules, but there are certain limitations
in semantic understanding and translation accuracy [8].
Deep semantic learning can capture the semantic informa-
tion of sentences through neural network models, thereby
improving the accuracy and naturalness of machine trans-
lation. Specifically, in English machine translation error
detection, deep semantic learning can have the following
applications:

(1) Error type recognition: Deep learning models can
learn feature representations of different types of errors, such
as lexical errors, grammatical errors, or semantic errors.
By training the model, errors in translated sentences can be

automatically classified and corresponding correction sug-
gestions can be provided [9].

(2) Error localization: By learning to capture contextual
information between different words or phrases in a sentence,
it is possible to accurately locate the location of the error.
By locating errors, it is easier to correct them and improve
the translation quality of machine translation [10].

(3) Error correction: Learn to translate the semantic rep-
resentation of sentences in order to generate more accurate
and natural translation results. By training the model, incor-
rect translation parts can be automatically corrected to more
accurate expressions [11].
Overall, the application of deep semantic learning in

English machine translation error detection is mainly
reflected in improving word sense disambiguation, solv-
ing long-distance dependencies, and correcting structural
errors. By training and optimizing deep learning models,
the translation quality of machine translation systems can be
significantly improved.

B. BUILDING THE BASIC SEMANTIC SPACE OF TWIN
RNNs
To achieve information sharing and mapping across lan-
guage spaces, it is necessary to establish a basic semantic
space that contains rich language elements from multiple
languages [12]. Firstly, traditional word vector models such
as Word2vec’s Skip gram model are used to obtain English
word vector representations by training English monolin-
gual corpora [13]. Using twin RNNs to train non-English
word vectors to generate word vector representations for
other languages, and projecting them into the basic semantic
space, can learn and generate word vector representations for
other languages within the constraint space, thereby detect-
ing errors in English machine translation [14]. This article
takes bilingual Chinese and English as an example, using a
twin RNN to train the binary classification task of bilingual
sentence pairs to learn cross linguistic word vectors. The
structure of the twin RNN is shown in Figure 1.

FIGURE 1. Twin RNN network structure.

The twin RNN consists of two stacked LSTM neural net-
works, which share weight parameters. Receive Chinese and
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English word vector sequences as input, respectively. Fix
the English word vector as a pre trained shared distributed
expression space, and dynamically update the Chinese word
vector by jointly training parallel sentences and aligned word
pairs in Chinese and English, helping us learn better cross
lingual word vectors [15].
This article calculates the cosine distance of distributed

expressions of Chinese and English word pairs to make
semantically identical words in cross lingual word vectors as
close as possible to the shared embedding space. The cosine
of Chinese and English word pairs and the calculation loss
function are:

Lcos = −

R∑
i=1

v′xi · v
′
yi∥∥v′xi∥∥2 ∥∥∥v′yi∥∥∥2 (1)

In the formula, VX = {vx1, vx2, . . . , vxn}, VY= {vy1, vy2, . . . ,
vyn} respectively represent the word vectors corresponding
to English and Chinese sequence words, <x′, y′> represents
the alignment of a certain word x ‘in sequence X with a
certain word y′ in sequence Y , and <v′x , v

′
y> are the corre-

sponding word vectors. Assuming that there are a total of R
pairs of aligned words in parallel sentences between Chinese
and English. R represents the logarithm of the maximum
alignment controlled by the alignment probability threshold,
where R < n and R < m.

Two channels receive Chinese and English sentence
sequences for calculation. For parallel corpora, it is necessary
to ensure that the Chinese and English word vectors are
similar, the sentence meanings are the same, and the network
structure and parameters are the same, to ensure that the twin
network learns consistent semantic features [16]. Otherwise,
the output of each network will be different. The last layer
of twin RNN uses a 2-class contrastive loss function. The
mathematical expression of Stacked-LSTM is:

h(X )k,t = LSTM k (Xt , hk,t−k ) (2)

In the formula, k represents the number of layers in the twin
network, with a value range of [1] and [3], and h(X )k,t represents
the implicit state of the nth layer in the English sequence at
time t. Layer by layer LSTM can gradually extract abstract
features from sentences.

Through multiple levels of processing, each layer focuses
on learning features at different levels. The first layer mainly
learns the vocabulary level features of words, while the sec-
ond layer learns the relationships between vocabulary and
sentences, such as the composition and dependency rela-
tionships of phrases. The third layer learns the features of
the sentence more abstractly, such as the implicit meaning
within the sentence [17]. The entire process can be seen as
an abstraction of words, phrases, sentences, and semantic
levels, ultimately generating a feature vector. In addition, the
two outputs of the twin neural network are compared by
comparing the loss function, and ultimately output a state
value.

III. METHODOLOGY
The deep semantic learning framework proposed in this paper
consists of two parts: Bi-GRU encoder and multi-scale CNN.
Firstly, integrating the attention mechanism into the Bi-GRU
encoder can effectively learn the contextual information of
sentences and generate high-quality global feature represen-
tations. Multi-scale CNNS can then extract local features at
different scales to capture more fine-grained semantic infor-
mation, which is very effective for dealing with complex
linguistic phenomena. By fusing information from these two
parts, the framework is able to understand the text content
more comprehensively, thus improving the accuracy of error
detection.

A. GLOBAL FEATURE MODELING BASED ON Bi-GRU
ENCODER
For global feature learning, we use bi-gated cycle units (BI-
GRUs) as encoders. Bi-GRU is able to capture both forward
and backward information of a sentence to more fully under-
stand the context of the sentence. However, simple Bi-GRU
coding may not highlight the key information in the sentence.
Therefore, we introduce attention mechanisms to enhance
the coding capabilities of Bi-GRU. The attention mechanism
allows the model to focus on the key parts of the sentence by
assigning different weights to the hidden states of each time
step.

1) Bi-GRU MODEL EXTRACTS SEMANTIC INFORMATION
The Bi-GRU model is a sequence model of bidirectional
gated recurrent units. In English machine translation detec-
tion, it is used to encode the input source language sentence
into a fixed length hidden vector representation, capturing the
semantic information of the source language sentence [18].
The advantage of the Bi-GRU model is that it can simul-
taneously consider both forward and backward information
in sentences. Two independent GRU layers have their own
hidden states, propagating information forward and backward
respectively [19]. Finally, the outputs of the two GRU layers
are concatenated at each time step to form a global feature
representation of the source language sentence. Extracting
semantic information through the Bi-GRU model can better
capture contextual information in sentences, thereby improv-
ing the accuracy and fluency of machine translation [20].
Therefore, the Bi-GRU neural network calculates the state of
the hidden layers before and after time t as follows:

h+
t = GRU (xt , h

+

t−1) (3)

h−
t = GRU (xt , h

−

t−1) (4)

In the formula, t = 1,2, T. X represents the input value of the
input layer, and h+ and h− respectively represent the forward
and backward outputs obtained through forward and back-
ward processing, which can extract semantic information of
the context. So the output of the hidden layer at time t is a
cascade of h+ and h−, which can be expressed as:

ht = wth+
t + νth−

t + bt (5)
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In the formula, wt and vt are the weights of the forward and
backward GRU hidden layer states at time t , respectively, and
bt is the bias corresponding to the hidden layer state at time
t . The introduction of these parameters expands the number
of free parameters in the model.

The update gate zt of the model refers to the degree of
influence of the current state at time t and the previous state t-
1 on the output result. The reset gate and update gate are
calculated as:

zt = σ (wz,[ht−1, xt ]) (6)

rt = σ (wr,[ht−1, xt ]) (7)

In the formula, ht−1 represents the hidden state of the pre-
vious moment, σ the sigmoid function can control the value
of ht within the range of (−1,1), where wz and wr are the
weights of the reset gate and update gate, respectively [21].
These weights play a very important role in the judgment
of the model. In order to obtain weights that meet the
requirements, it is necessary to update these weights through
training.

When the Bi-GRU model has n layers, the h+
n and h−

i are
the forward and reverse hidden layer states, respectively.
Then, by combining these two states together, the final hidden
layer state hfinal of the Bi-GRU algorithm can be obtained as:

hfinal = h+
n ⊕h−

i (8)

2) INTEGRATING ATTENTION MECHANISMS TO CALCULATE
ATTENTION WEIGHTS OF SOURCE SENTENCES
In order to further improve the attention modeling of the
source sentence, we introduced an attention mechanism to
calculate the attention weights of the source sentence. The
basic structure of the Bi-GRU encoder after introducing the
attention mechanism is shown in Figure 2. The attention
mechanism allows the model to focus its attention on impor-
tant parts of the source sentence, ignoring parts that are not
important for translation. Our attention mechanism is based
on the output of the bidirectional GRU encoder, and obtains
the attention weight of the source sentence by calculating the
similarity between the hidden state of the source sentence and
the hidden state of the decoder at each time step [22].
Specifically, a weighted averagemethod based on attention

mechanism was adopted, which weights all positions in the
source statement according to their similarity with the target
statement positions, and then introduces theweighted average
vector as a global feature into the model [23]. Therefore,
by comparing different parts of the source sentence with the
current hidden state of the decoder, we can dynamically adjust
the attention of the source sentence. By using the Bi-GRU
fusion attention mechanism to calculate the attention weights
of the source sentence, our deep semantic learning framework
can more accurately capture the global and local features of
the source sentence, thereby improving the error detection
performance of English machine translation.

The attention probability distribution of the hidden state hn
in the Bi-GRU model is:

bn =
exp(h′

n)∑N
i=0 exp(h

′
i)

(9)

where,

h′
n = hTnUhfinal (10)

In the formula, N is the number of tokens input, and U is the
weight matrix.

After calculating the attention mechanism, data normaliza-
tion is also necessary, mainly to unify the numerical range of
attention weights. Normalization can map attention weights
onto a unified scale, which can improve the convergence
speed of the model and reduce the differences in attention
weights between different samples. The usual normalization
method is to use the softmax function to convert attention
weights into probability distributions, so that the sum of all
weights is 1. After normalizing each layer, obtain new hidden
layer states:

hnew = f [
g
σt

2(at − µt ) + d] (11)

bt = Whhht−1 +Wxhxt (12)

In the formula, g and d represent the gain matrix and off-
set matrix, σ Indicates the use of the softmax function,
where Whh and Wxh are the weight matrices between the
hidden layer and the input layer and the hidden layer, respec-
tively.

B. EXTRACTING LOCAL FEATURES AND CALCULATING
WEIGHTS BASED ON CNN
In local feature learning, we use multi-scale CNN to capture
rich semantic information in context. CNN extracts local
features effectively through convolution operations, while
multi-scale convolution kernel provides comprehensive and
detailed description of local features. Therefore, we design a
CNN architecture integrating convolution kernels of different
sizes to extract multi-scale local features in parallel. After
that, the Minimum Error Rate Training (MERT) algorithm is
introduced to optimize the feature weights and dynamically
adjust the translation weights by minimizing the translation
error rate. This strategy improves the model’s understanding
of the text and translation accuracy, thus improving the over-
all translation quality.

1) MULTI SCALE CNN EXTRACTION OF LOCAL FEATURES
CNN performs well in the field of image processing, but
may face two challenges in natural language processing
tasks. Firstly, natural language has word order and contextual
dependencies, which are different from the spatial local-
ity properties in image processing [24]. Secondly, sentence
lengths in natural language are often not fixed, which can lead
to information loss or padding issues when using traditional
fixed size sliding windows for convolution. To overcome
these issues, I introduced a multi-scale CNN to extract local
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FIGURE 2. Basic structure of Bi-GRU encoder.

features. Specifically, a multi-scale convolution operation
was used to process sentences of different lengths. By using
convolution kernels of different sizes to capture semantic
information from different ranges, I am able to better adapt
to sentences of different lengths. In this way, the model can
simultaneously capture local features at different scales. Due
to the fact that semantic correlation often has multiple scales
of expression, this multi-scale convolution operation helps to
improve the model’s grasp of semantic information.

The convolutional layer, pooling layer, and fully connected
layer of CNN network can be used for deep level local feature
extraction. Among them, the convolutional layer is one of the
most basic building units, which applies multiple convolution
kernels to input data for convolution operations to extract fea-
tures of images or texts. The final representation of the feature
map obtained through the activation function is calculated as
follows:

ci = f (w∗UOi:i+t−1 + b) (13)

In the formula, ci represents the operation result of the convo-
lution kernel,w represents its weight matrix, b is the bias term
of the convolution kernel, UOi:i+t−1 represents the vector
matrix, ∗ is the operation symbol of the convolution process,
f (x) represents the activation function, and this article uses
the Rule activation function [25]. All features obtained after
convolution operation are represented as:

C = {C1,C2, . . . ,Cd−t+1} (14)

Adding pooling layers after convolutional layers can
reduce computational complexity and preserve important fea-
tures. This article uses max pooling to select the maximum
value within the pooling window as a new feature, reducing
data dimensions and preserving salient features. The stacking
of convolutional and pooling layers gradually extracts more
important and abstract features from the data, which are
used for subsequent fully connected layers or classifiers for

classification, recognition, and other tasks. The maximum
pooling operation is calculated as follows:

poolingmaxu,ν =
1∣∣�u,ν

∣∣ ∑
i,j∈�u,ν

ai,j (15)

Among them, aij is the activation value of the pooling area; i,j
is an index representation; �u,ν is the corresponding pooling
region on the feature map.

In a fully connected layer, the output of the previous layer
will be input into this layer. Multiply with the initial weight
matrix of this layer and add bias, while adopting a random
dropout strategy. Specifically, the dropout strategy will ran-
domly shut down some neurons in the neural network during
each iteration, using only a subset of neurons to train the
model and obtain the values of the weight matrix w and bias
parameter b [26]. In fact, this is equivalent to training on
different neural networks, which can reduce the dependency
between neurons, thereby helping to reduce the impact of
overfitting problems and enhancing the network’s generaliza-
tion ability.

2) CONTEXT INFORMATION WEIGHT CALCULATION
After extracting local features, use MERT algorithm to cal-
culate the weight of contextual information. The MERT
algorithm is a commonly used optimization method that
selects the best translation by minimizing the error rate.
In this study, the MERT algorithm can dynamically adjust
the weights of different contextual information in machine
translation based on their importance, making themodelmore
accurate [27].
Specifically, first compare and count the number of errors

between the source statement and the output sentence of the
English machine translation system. Use function E(p1, p)
to represent the number of errors calculated and counted.
The purpose of this algorithm is to obtain the target sentence
with the minimum total number of errors from a series of
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candidate corrections, and the algorithm’s parameters are the
optimal ones [28]. When calculating the number of errors,
the system considers the candidate sentence with the highest
score for correction and the standard sentence for calculation.
The calculation is as follows:

λ
M
1 = argmin

{∑s

s=1
E(rs, e(fs; λ

M
1 ))

}
(16)

In the formula, rs represents the output sentence, and t
represents the standard sentence. Fs represents the s-th input
sentence to be corrected (translated). Where e(·) is:

e(fs; λ
M
1 ) = argmax

{∑M

m=1
λmhm(e | Ofs)

}
(17)

score(T , S) =

∑|M |

m=1
λifi(T , S) (18)

In the formula λm represents the obtained local feature
weights, |M | represents the number of features.

C. ENGLISH MACHINE TRANSLATION ERROR DETECTION
MODEL INTEGRATING GLOBAL AND LOCAL FEATURES
In order to make error detection in English machine trans-
lation more accurate, the global and local features extracted
based on Bi-GRU encoder and CNN in the previous text
are fused to obtain more comprehensive features for accu-
rate and effective error detection. This article constructs a
new English machine translation error detection model that
integrates global and local features by integrating two infor-
mation attention weights using a gated unit structure based on
the deep semantic learning framework. The basic structure of
the model is shown in Figure 4, and the relevant pseudocode
is shown in Algorithm 1.

FIGURE 3. CNN Network Structure Diagram.

In English machine translation error detection, gating units
are used to integrate the attention weights of the source
sentence and context. By linearly combining the attention
weights of the source sentence and context, a weighted sum
can be obtained to represent the comprehensive information.
Then, the two attention weights are classified using the soft-
max function and the probability of candidate sentences is

Algorithm 1 The Intelligent Error Detection Model For
Machine Translation Results Using Composite Neural Net-
work

Input: The number of layers in the twin network
k , the implicit state h(X )k,t of the English sequence,
the forward and backward outputs h+

n and h−

i of
1: Bi- GRU, the number of tokens input N , the

attention weight of the source sentence c, the
attention weight of the context C , and the
integrated feature output Yt at time t

2: Constructing Basic Semantic Space Using Twin RNNs
3: Calculate the cosine and loss function of

bilingual word pairs using eq-1
4: for all t = 1 to T do
5: h(X )k,t = LSTMk (Xt , hk,t−k )
6: The value of k introduced is between [1], [3]
7: Calculate hfinal using eq-8
8: for i = 1 : N
9: hfinal = h+

n Åh
−

i
10: if integrating features using a gate

control unit structure
11: Qt = Yt + ct + LtQCt + ct−1
12: Obtain the source sentence and

contextual features
13: else
14: Output the probability of candidate

sentences
15: end for
16: end for

FIGURE 4. English machine translation error detection model integrating
global and local features.

obtained. This process ensures the integration of source sen-
tence and contextual information, and reasonably classifies
the weights of the two types of information. The final output
calculation is as follows:

Qt = Yt + ct + 3t2Ct + ct−1 (19)

In the formula, c represents the attention weight of the source
sentence, C represents the attention weight of the context,
and Yt and ct−1 represent the outputs at time t and t-1,
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respectively; 2 for Hadamard product, 3t2Ct represents the
impact of contextual information on the current moment.

By integrating global and local features into an English
machine translation error detectionmodel, the following opti-
mization effects can be achieved:

(1) By integrating global and local features, this model can
better understand the semantic information of the source and
target languages, thereby effectively detecting errors in the
translation process.

(2) Due to the powerful learning ability of deep learning
frameworks, this model can better capture the relationship
between the source language and the target language, and
make more accurate choices of phrases and vocabulary in
translation.

(3) In translation detection, the model can automatically
correct errors such as verb tenses and subject verb consistency
through learned grammar rules, thereby reducing grammar
and structural issues.

(4) It can adaptively learn translation patterns that are
suitable for different corpora and text types. This allows
the model to perform well in different translation tasks and
provide higher quality translation output.

D. TESTING SCORE MEASUREMENT STANDARDS
The results of error detection in English machine translation
require some evaluation indicators to objectively and accu-
rately evaluate the performance of the model. The experiment
selected common evaluation indicators such as Precision (P),
Recall (R), and F0.5 value to evaluate the performance of
the machine translation error model. Although F1 score is
widely used as an evaluation index, in the task of machine
translation error detection, considering the importance of
machine translation error detection and sensitivity to wrong
translation, more weight is tended to be placed on missed
reports, that is, in the hope of minimizing the omission of
wrong translation. Therefore, F0.5 is chosen, where a beta
value of 0.5 means that we give a higher weight to recall
(the proportion of incorrect translations correctly detected).
By increasing the weight of recall rate, we can reduce the
situation of missing report to a certain extent and improve the
accuracy of error detection. The specific calculation formula
is as follows:

Precision is the proportion of true positive examples output
by the evaluation model. In English machine translation error
detection, positive examples represent the translation results
that the model determines to be translation errors. Therefore,
P measures how much of the translation results identified
by the model as translation errors are correct. A higher P-
value indicates a higher accuracy of the model’s judgment.
In the formula, TP represents the samples correctly predicted
as positive in the positive class samples, and FP represents
the samples incorrectly predicted as positive in the negative
class samples [29].

P =
TP

TP+ FP
(20)

Recall measures the model’s ability to accurately detect
translation errors in translation results. A higher R value
indicates a stronger detection ability of the model. In the
formula, FN represents the samples in the positive class that
were incorrectly predicted as negative classes [30].

R =
TP

TP+ FN
(21)

The F0.5 value is an evaluation indicator that compre-
hensively considers Precision and Recall, and adjusts the
importance of both by weighting them. In some cases, there
is a greater emphasis on the recall of the model, and the
larger the F-value, the better the overall performance of the
model [31].

F0.5 =
(0.52 + 1) × P× R

0.52 × P+ R
(22)

To more accurately evaluate errors in English machine
translation, the GLEU metric is used to evaluate sentence
fluency. The GLEU metric evaluates the quality of machine
translation by calculating the weighted accuracy Pn between
sentence C corrected by the system and the manually
annotated standard sentence R. Among them, S represents
incorrect sentences, R represents correct standard sentences,
and Wn represents a uniform distribution of weight val-
ues [32]. So, the calculation of the GLEU indicator is:

GLEU (C,R, S) = BP · exp(
∑4

n=1
Wnlog p′

n) (23)

The BP calculation formula is:

BP =

{
l if c > r
e(1−

r
c ) if c ≤ r .

(24)

In the formula, c is the length of the system’s output sentence,
and r is the length of the target sentence.

IV. SIMULATION TESTING AND ANALYSIS
A. TESTING ENVIRONMENT AND DATA
1) EXPERIMENTAL ENVIRONMENT AND SETTINGS
The experimental data for this study is large and requires
the use of computers with higher configurations to complete.
Using a server equipped with four high computing hardware
- RTX2080Ti, with Ubuntu 18.04 CPU, it can effectively
support high-performance computing and data processing.
32GB DDR4 3000MHz memory to support large-scale data
loading and processing. High frequency DDR4 memory can
also provide faster data transfer speed, accelerating computer
processing speed. Andwith 11GB x 4 of graphics memory, its
powerful computing power can accelerate tasks such as deep
learning and scientific computing. Meanwhile, the entire
experimental program was written in Python language with
TensorFlow1.14 as the deep learning framework. TensorFlow
is a widely used deep learning framework with highly flexible
graph computation and automatic differentiation capabilities.
It supports various types of neural networks and deep learning
models, and provides rich optimization and debugging tools.
Through TensorFlow, deep learning models can be easily
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constructed, trained, and deployed for accurate translation
error detection.

In order to obtain accurate English machine translation
error detection results, multiple parameters in the model were
repeatedly tested and appropriate values were set to improve
the performance and effectiveness of the error detection
model. The parameter settings for the Bi-GRU model and
CNNmodel used in the proposed model are shown in Table 1.
The Bi-GRU model is optimized during training using the
Adam optimizer.

TABLE 1. Parameter settings of the research model.

2) SAMPLE SET AND PROCESSING
To evaluate the performance of the proposed deep semantic
learning framework that combines global and local features
for detecting errors in English machine translation, it is
necessary to select an appropriate dataset. In this field of
research, selecting and processing experimental datasets is
crucial. The data set should contain correct translations and
wrong English target language translations, which can be
obtained from different sources, such as specially collected
machine translation research data sets, open translation tasks
(such as WMT translation contest data sets) or translation
samples obtained on the Internet. When selecting a dataset,
it is also important to ensure that it can cover various types
and levels of translation errors, and has sufficient sample size
and diversity. Therefore, this article used the following two
datasets:

(1) CoNLL-2014 Dataset: The CoNLL-2014 Official
Grammar Correction Task Corpus is a dataset widely used
in natural language processing and machine translation, con-
taining 60000 parallel sentence pairs. This dataset covers
various types of grammatical errors, including noun errors,
subject verb inconsistency errors, and verb errors. This
dataset can be used to train machine translation models and
other multiple tasks.

(2) WMT Dataset: is an international machine translation
conference whose official website provides a series of par-
allel corpora for English and other languages, which can be
used for machine translation evaluation. This dataset covers
sentences from multiple languages and different topics.

To further verify the performance of the translation error
detectionmethod proposed in this article and ensure the effec-
tiveness and reliability of the model. The experiment divides
each dataset into training, validation, and testing sets, which
can evaluate the performance of the model in real-world sce-
narios. The training set is used to train the parameters of the
model, the validation set is used to adjust the hyperparameters
of the model and select the optimal model, and the test set
is an independent sample for the final evaluation of model
performance. Testing an independent test set on data that
the model has never seen before can objectively evaluate the
generalization performance of the model. Therefore, in order
to train and test the constructed model, both datasets were
divided into training, testing, and validation sets in a 6:3:1
ratio for experimentation and evaluation of our algorithm
results.

B. MODEL DETECTION PERFORMANCE RESULTS
In order to verify the effectiveness and superiority of the
English machine translation error detection model proposed
in this article that integrates global and local features, experi-
ments were conducted based on the CoNLL-2014 dataset and
WMT dataset mentioned above, and the two datasets were
processed and partitioned accordingly to ensure the quality of
the data, and to display the experimental results with appro-
priate visual charts, it will be more intuitive to understand
the relationship and trend between the data. At the same
time, the equipment, parameters, and word vector training
methods used in each model were uniformly processed in the
experiment to ensure the accuracy of the results. This model
was trained and compared with CNN, Bi LSTM, Bi-GRU,
BERT, and Transformer for error detection. The comparison
results are shown in Figure 5-7. Figures 5 and 6 show the com-
parison results of English sentence syntax correction between
the CoNLL-2014 dataset and the WMT dataset, respectively.
In order to further compare the differences between the results
of this model and professional English translation, the GLEU
indicator shown in Figure 7 is used to evaluate the overall
coherence and fluency of sentences.

According to the comparison results of English sentence
syntax errors under the CoNLL-2014 data set in Figure 5
and Table 2, it can be seen that the deep semantic learning
framework model based on the CoNLL-2014 data set has
the best performance in the English machine translation error
detection task, and has the highest accuracy and superiority.
Its prediction accuracy is 87.01%, recall is 48.74%, and the
F0.5 score is as high as 76.22%. This means that the model,
after balancing accuracy and recall, assigns a high weight
to the importance of detecting errors. The performance of
other models is relatively low. The accuracy of the BERT
model is 79.97%, which is relatively high, but the recall rate
is only 43.21%, and the F0.5 score is 55.34%. The Bi-GRU
and Bi LSTM models performed well in terms of recall,
reaching levels of 45.66% and 42.32%, respectively, but with
lower accuracy. The performance of the Transformer model
is at a moderate level in terms of accuracy and recall. The
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FIGURE 5. Comparison of english sentence grammar errors on the
CoNLL-2014 Dataset.

FIGURE 6. GLEU results for each model.

advantage of this model compared to other models may lie in
its ability to extract features from different perspectives. Bi-
GRU can learn global semantic information, while CNN can
better capture local features. This fusion can provide a more
comprehensive understanding of the semantics and structure
in sentences, and effectively detect errors.

Figure 6 shows the comparison results of English sen-
tence syntax errors on the WMT dataset. From the overall
performance of the results, the Ours model performs the
best in accuracy, recall, and F0.5, with values of 82.26%,
43.42%, and 71.45%, respectively. This indicates that the
model can achieve high accuracy and superior performance
in English machine translation error detection tasks. The
Bi-GRU and Bi LSTMmodels have relatively high Precision
and Recall values of 79.93% and 71.57%, respectively, but

FIGURE 7. Precision and recall results of the model in terms of syntax
error types in this article.

TABLE 2. Comparison results of syntax errors in English sentences in the
CoNLL-2014 dataset.

are relatively low in the F0.5 metric. This may indicate that
these two models have some balance issues in comprehensive
evaluation, namely the trade-off between accuracy and recall.
The BERT model performs relatively well in Precision and
Recall, at 73.43% and 41.26%, respectively, but slightly lower
than the Bi-GRU and Bi LSTM models at 48.29% in the
F0.5 metric, indicating that the model has some shortcomings
in balancing accuracy and recall. The Transformer model
achieved 66.56% and 34.37% in Precision and Recall, respec-
tively, and 46.77% in F0.5 metric.
Compared to other models, its performance is relatively

low. Compared to the results of the CoNLL-2014 dataset,
the English machine translation error detection results of this
dataset are significantly lower, which may be due to the fact
that the CoNLL-2014 dataset is mainly used for syntactic
and semantic dependency analysis tasks. The sentences in the
dataset are usually short and annotated with grammatical and
semantic information such as part of speech and dependency
relationships. TheWMT dataset is a dataset used for machine
translation tasks, which contains bilingual sentence pairs
from different languages. WMT datasets typically contain
a large number of sentences and texts, each of which has
a corresponding translation. From this, it can be seen that
the selection of the dataset will have a certain impact on the
experiment, but the accuracy and superiority of the model in
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English machine translation error detection are the highest,
and its error detection performance is the best.

From Figure 7 and Table 3, it can be observed that differ-
ent models have different scores on the GLEU indicator on
the CoNLL-2014 dataset and the WMT dataset. The overall
GLEU results of each model on the WMT dataset are better
than those on the CoNLL-2014 dataset. On the CoNLL-2014
dataset, the highest GLEU score is 0.8689, corresponding to
the model in this paper. On the WMT dataset, the highest
GLEU score is 0.8842, which also corresponds to the model
we proposed. Further verification confirmed that the differ-
ence between the grammar correction results of our model
on two datasets and the translation results of professional
English personnel is relatively small, which means that our
model performs better in grammar correction tasks com-
pared to other models. In addition, it can be observed that
the BERT model has relatively high GLEU scores on both
datasets, with values of 0.7835 (CoNLL-2014) and 0.8401
(WMT), respectively. This indicates that the BERT model
also performs well in grammar correction tasks. However,
CNN and Bi LSTM models have lower GLEU scores on
both datasets and are located in lower positions, respectively.
From this, it can be seen that the model presented in this
article exhibits high grammar correction ability, and has great
potential to achieve better results in natural language process-
ing tasks, with small differences compared to professional
English translation results.

TABLE 3. GLEU results for each model.

1) STATISTICAL ANALYSIS OF ERROR RESULTS
In order to further evaluate the effectiveness and superiority
of this model in grammar correction, 1200 English composi-
tions from students from other majors who took the English
proficiency test were selected from the corpus as the test data
for this study. Conduct experiments on this test set using the
model proposed in this article, and calculate the grammar
error correction accuracy, recall, and F0.5 value of this model
based on the experimental results. The specific results are
shown in Figure 8.

According to the results in Figure 8, it can be observed that
the increase in the number of sentences in the test data has
resulted in a stable improvement in the grammar correction
performance of the model in this paper. When the number of
articles is 200, the accuracy of the model reaches 79.45%, the
recall rate is 60.25%, and F0.5 is 68.63%. When the number

FIGURE 8. The grammar error correction evaluation values of this article’s
model under different article numbers.

of articles increased to 1200, the accuracy rate increased to
81.8%, the recall rate increased to 65.76%, and F0.5 further
improved to 72.91%. Based on a comprehensive analysis
of these data, it can be concluded that as the number of
articles increases, the effectiveness and superiority of the
model in grammar correction have improved. Although there
is some fluctuation in accuracy, recall, and F0.5 score on the
entire test dataset, in most cases, the model can effectively
correct grammar errors, and for different numbers of English
grammar errors, the accuracy is maintained at around 80%,
the average recall is 62%, and F0.5 is around 70%. Overall,
its error correction effect is generally good. Therefore, this
model has certain effectiveness and superiority in grammar
correction.

To verify the effectiveness of the model in correcting gram-
mar errors in this article. We have compiled and categorized
the types of grammar errors annotated: tense errors (Ten),
subject verb consistency errors (SVC), article, preposition,
and pronoun errors (APP), part of speech errors (PS), verb
errors (Ver), coordinate structure errors (CS), sentence struc-
ture errors (SS), incomplete sentence errors (IS), and word
order errors (WO). Calculate the accuracy and recall of each
error type based on the statistical results, as shown in Figure 9.

As shown in Figure 9, considering both precision and
recall, it can be seen that the overall evaluation results of error
types are relatively balanced and high. The model achieved
good results in detecting errors in articles, prepositions, and
pronouns (APP), with accuracy and recall rates exceeding
90%. This means that the model can accurately and compre-
hensively identify errors of this type. Parallel structure errors
(CS) and word order errors (WO) are the worst performing
types of errors in themodel, with low accuracy and recall. The
results of verb errors (Ver) and sentence structure errors (SS)
are both around 80%, belonging to the moderate level. The
results of tense errors (Ten) and incomplete sentence errors
(IS) reached high levels of 89.45% and 91.24%, respectively.
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FIGURE 9. Precision and recall results of the model in terms of syntax
error types in this article.

V. CONCLUSION
Due to differences between languages and limitations of arti-
ficial intelligence technology, errors in machine translation
remain a common problem, hindering its further promotion.
This study aims to develop an effective deep learning frame-
work to improve the error detection capability in machine
translation. Establishing a basic semantic space through twin
RNNs for information sharing and mapping across linguis-
tic spaces. And integrate attention mechanism into Bi-GRU
encoder for global feature modeling and semantic informa-
tion extraction. And integrate the obtained source sentence
features with the local features extracted by multi-scale CNN
using a gating unit structure, integrating the advantages of
these two structures. This framework can consider both global
and local information simultaneously, thereby more accu-
rately detecting and correcting errors in machine translation.

Studies have shown that Bi-GRU encoders are excellent at
capturing source language context information and translat-
ing it into global feature representations, which is essential
for understanding the deep semantics of source language
sentences. At the same time, we use multi-scale CNN to
capture local semantic information at different levels in sen-
tences. By combining these two features - global and local -
effectively, we can show the meaning of the source language
more fully. In English machine translation error detection
tasks, our model shows higher accuracy and wider applica-
bility than traditional methods. Through the verification of
BLEU score, accuracy rate and recall rate, our model has
made remarkable progress in the task of automatic translation
error correction. Especially in dealing with long sentences,
complex grammatical structures and ambiguities, our model
shows stronger performance and robustness. This research
not only provides an effective solution for the field ofmachine
translation, but also provides important implications for the
further application of deep semantic learning in natural lan-
guage processing tasks. However, there are some limitations
and challenges in this model. The introduction of multi-scale

CNN increases the model parameters, which may lead to
overfitting problems in the case of limited data. In addition,
the model currently focuses on error detection in English
machine translation, and its applicability to other language
pairs has yet to be verified. Future research will explore ways
to further enhance the generalization ability of the model by
introducing cross-language data and advanced pre-training
techniques.
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