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ABSTRACT 3D space perception is one of the key technologies for autonomous mobile robots that perform
tasks in unknown environments. Among these, building global topological maps for autonomous mobile
robots is a challenging task. In this study, we propose a method for learning topological structures from
unknown data distributions based on competitive learning, a type of unsupervised learning. For this purpose,
adaptive resonance theory-based Topological Clustering (ATC), which can avoid catastrophic forgetting
of previously measured point clouds, is applied as a learning method. Furthermore, by extending ATC
with Different Topologies (ATC-DT) with multiple topological structures for extracting the traversable
information of terrain environments, a path planning method is realized that can reach target points set in an
unknown environment. Path planning experiments in unknown environments show that, compared to other
methods, ATC-DT can build a global topology map with high accuracy and stability using only measured

3D point cloud and robot position information.

INDEX TERMS Adaptive resonance theory, autonomous mobile robot, topological map.

I. INTRODUCTION

For robots autonomously moving in unknown environments,
the ability to perceive and recognize the surrounding 3D
space is important for efficiently performing tasks. In recent
years, with the development of 3D distance measurement
sensors such as LiDAR and depth cameras, robots have been
able to easily measure high-precision 3D point cloud, and
research on space recognition using 3D point clouds has been
rapidly advancing [1], [2], [3], [4], [5]. In particular, the
development of research on 3D SLAM, which simultaneously
builds a 3D environmental map and localizes the self-
position, which is essential information for autonomous
mobile robots, is remarkable, and methods of 3D SLAM
that operate in various environments have been realized [6],
[71, [8]. Against this background, it is becoming increasingly
important to extract necessary information from the built
global 3D environmental map and utilize it for the task
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planning. In particular, an important task plan for autonomous
mobile robots is path planning to move from the current point
to the target point. In order to plan a path in an unknown
environment, it is necessary to extract information such as
the objects existing in the environment and the shape of the
terrain surface. Also, for the path planning, it is necessary to
extract a graph structure (global topological map) described
by nodes and edges from 3D point cloud of the environmental
map.

In the research of information extraction from 3D point
clouds, various methods, including 3D object recognition
using deep learning, have been proposed in recent years,
enabling high-precision recognition of objects and shapes
[9], [10], [11], [12]. However, autonomous mobile robots in
unknown environments are expected to constantly encounter
unknown objects, and even with methodologies based on
supervised learning, there are still problems of false detection
for unknown objects and shapes, even when using large-
scale datasets. In addition, recognition technology using
deep learning is still weak against environmental changes,
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and when operating autonomous mobile robots in various
environments, it is necessary to construct a dataset accord-
ing to the environment. Furthermore, in order to utilize
information for path planning, it is necessary to have a
topological structure as mentioned above, so a framework for
information extraction including environmental recognition
using deep learning and topological map building. In this
context, a methodology based on competitive learning, which
is one of unsupervised learning and learns the topological
structure from unknown data distributions, has been proposed
as a research to realize information extraction from 3D point
cloud. In particular, the Growing Neural Gas (GNG) [13]
proposed by Fritzke is often used among the competitive
learning methods for unknown 3D point cloud because GNG
can dynamically add and delete nodes and edges contained
in the topological structure and learn the 3D space while
preserving the geometric features of the 3D point cloud.

In this context, we have proposed GNG with Different
Topologises (GNG-DT), a real-time 3D space perception
method to extract information from 3D point cloud by learn-
ing different topological structures from various attributes
such as color and shape [14], [15]. Furthermore, utilizing
the topological structures with different attributes for the
path planning, our proposed method has realized the path
planning in the unknown environment [16]. However, this
method has a problem in that all the 3D point cloud contained
in the environmental map that the robot has built so far by
3DSLAM is used as the input vector for GNG-DT. As the
environmental map expands, the memory usage required for
the input vector becomes enormous. In addition, when only
the measured 3D point cloud is used as input, the learning
rate is fixed in the conventional GNG learning algorithm.
Therefore, as the robot gradually moves, the nodes are pulled
in the direction of the robot’s movement, which is a problem
that the geometric structure of the map information cannot be
properly preserved.

Generally, the ability to preserve knowledge learned in
the past (stability) and the ability to learn new knowledge
(plasticity) has a trade-off relationship. This trade-off rela-
tionship is called the stability-plasticity dilemma [17], and it
is an important problem to deal with, especially in continual
learning methods. The GNG-based methods can flexibly
learn new knowledge by adaptively generating topological
structures (i.e., nodes and edges) according to given data
points. On the other hand, because the nodes and edges
are excessively and persistently inserted, the GNG-based
methods have the potential to cause catastrophic forgetting,
where information learned in the past is forgotten when
learning new data. Adaptive Resonance Theory (ART) [17]
is one of the representative theories to avoid catastrophic
forgetting. ART provides a learning mechanism that is
inspired by the brain and is defined as a two-layer competitive
learning neural network consisting of a feature representation
layer and a category representation layer. Representative
ART-based clustering methods include Fuzzy ART [18]
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and Bayes ART [19], and many methods that introduce
topological structures have been proposed [20], [21], [22],
[23], [24].

The purpose of this study is to adaptively and continuously
build a global topological map using only the information
from a 3D distance measurement sensor. To achieve this,
we apply ART-based Topological Clustering (ATC), which
can avoid catastrophic forgetting. Furthermore, we propose
ATC with Different Topologies (ATC-DT), which has mul-
tiple topological structures, to extract attribute information
necessary for autonomous mobile robots to plan paths, and
realize path planning on the global topological map. The main
contributions of this paper are as follows:

1) We propose a global topological mapping method that
uses only measured 3D point cloud, resulting in a small
memory consumption of the input vector.

2) We propose an algorithm that can place nodes at any
threshold for application to the space perception of
autonomous mobile robots.

3) We demonstrate that it is possible to build a global
topological map in simulation environments and plan
a return path form the trarget point to the starting point
by utilizing the global topological map.

The rest of this paper is organized as: Section II
summarizes the learning methods for 3D point cloud based on
competitive learning related to this study, Section III explains
the path planning problem in unknown environments in this
study, Section IV proposes a method for building a topologi-
cal map based on the proposed ATC, Section V explains the
path planning method using the global topological map, and
Section VI shows the simulation experiments to verify the
effectiveness of the proposed method. Finally, Section VII
draws the conclusions of the work.

Il. RELATED WORKS

As mentioned above, many researches on building topolog-
ical maps from 3D point cloud using competitive learning
methods have proposed the use of GNG based learning
methods. The GNG is able to place nodes appropriately
to unknown data distribution by gradually increasing the
number of nodes. Each edge has the concept of age, and
the neighborhood relation can be changed according to the
density distribution by deleting edges that exceed a threshold
value [13]. Because of these characteristics, applying GNG
to 3D point cloud is a learning method that not only
enables the topological map building that preserves geometric
information, but also enables downsampling and filtering,
which are necessary in the 3D point cloud processing.
References [27] and [28] have applied GNG to downsampling
and filtering methods for extracting local features from 3D
point cloud and shown that GNG enables the noise reduction
of 3D point cloud and more accurate feature extraction.
For learning color information included in the 3D point
cloud information, [29] has proposed a method for accurate
color assignment by utilizing the neighborhood structure and
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adding weights based on the likelihood of the surrounding
color information. In addition, as a method for learning
normal vectors as attribute information included in input
vectors, [30] has proposed a method for learning normal
vectors when learning the GNG. However, the proposed
feature extraction methods is basically based on point cloud,
and GNG is used only for downsampling and filtering, and
feature extraction that efficiently utilizes the neighborhood
structure is not performed. These method requires the
estimation of shape features such as normal vectors from raw
3D point cloud. On the other hand, [31] realized that the shape
features, such as normal vectors, can be extracted by building
local surfaces from the learned topological structure built by
the GNG.

Moreover, when performing such feature extraction, it is
essential to have a method to efficiently determine the
appropriate number of nodes and neighborhood structure
from the acquired point cloud information. References [32],
[33], [34] have been proposed that focus on speeding up
to enhance the adaptability of the GNG algorithm in order
to apply it to dynamic data such as gesture and object
tracking. Reference [32] has proposed the real-time 3D object
tracking method that speeds up by using a uniform grid
structure when selecting the winner node. References [33],
[34] have proposed adaptive adjustment methods of criteria
for adding and deleting nodes based on the probability density
distribution of data and nodes, and the effectiveness has
been demonstrated with real data. However, it is difficult
to design parameters to achieve node placement at regular
intervals, and it is difficult to use it as a methodology for
global topological mapping for robots. On the other hand,
[35] has proposed based on the euclidian distance between
the first winner node and the input data, not the number
of learning times, for the condition of adding nodes. This
simple addition method based on such a distance base is
easy to realize any node position interval. Therefore, in this
study, we propose a method to add nodes using a similar
method. Next, in the neighborhood structure construction,
many methods have been proposed to perform triangulation
during learning of the topological structure by GNG, and
the effectiveness has been demonstrated in the field of 3D
modeling where triangulation is required [30], [36], [37].
However, such a method of performing triangulation adds
edges even in places where there is no data. Therefore,
there is a possibility that edges will be generated in places
where autonomous mobile robots cannot pass in the path
planning.

In this way, GNG based topological structure learning
methods can extract information included in the point cloud
due to the design of the learning algorithm, and can learn
any topological structure. Therefore, it is also used as a
recognition technology in the field of robots, including
autonomous mobile robots. For example, in [38] and [39],
the Dynamic Density GNG (DD-GNG) is proposed as
a method for detecting terrain surfaces in environmental
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recognition method for legged robots. This method increases
the sampling of the point of interest from the features
extracted by the topological structure learned so far to learn
a dense topological structure for the point of interest, and
is a method that adjusts the density, demonstrating the
effectiveness in the real environment. Furthermore, as an
extension of DD-GNG, [40] has proposed to detect dynamic
objects, increase the node density of dynamic objects by using
a node addition method based on Add-if-silent, and utilize it
for obstacle avoidance of moving robots. However, in these
proposed methods, the topological structure learned by GNG
is used for robot perception, and the learning algorithm
includes the dead node deletion rule. Such a rule of node
deletion plays a very effective role in perception, but in the
global topological map building, which is the subject of this
study, there is a problem that the topological structure outside
the range of measurement data is deleted. In addition, [16],
[41], [42] have proposed the global topological map building
methods for the path planning. However, these methods use
all the point cloud measured so far as input, and as the
environment becomes larger, there are problems such as the
difficulty of efficient sampling for executing in real time
and the memory space for holding 3D point cloud data.
Therefore, in this paper, we propose a new methodology
to continually learn a global topological map only from
point cloud data measured by the 3D distance measurement
Sensor.

IIl. PROBLEM SETTING

This section explains the problem of path planning set in this
paper. As shown in Fig. 1, this study assumes a robot (red
sphere) placed in a 3D rough terrain environment, and the
problem is set as the path planning for the robot to reach the
set destination. The current position of the robot is assumed
to be able to estimate its own position by SLAM. At this
time, the point cloud drawn in gray in Fig. 1 (a) represents an
unknown environment, and the green point cloud represents
3D point cloud data measured by a 3D distance sensor.
The input data used for the the global topological map
building is, in conventional research, all 3D point cloud
that has become a known environment as the robot moves,
as shown in (b). In this study, as shown in (c), only the 3D
point cloud data measured at the current time by the 3D
distance measurement sensor installed on the robot is used for
learning.

IV. LEARNING ALGORITHM

A. ART-BASED TOPOLOGICAL CLUSTERING WITH
DIFFERENT TOPOLOIES

In this study, we develop a method based on ATC, an unsuper-
vised learning method applicable to unknown data structures
for learning 3D point cloud. ATC is a method that can
simultaneously learn the geometric structure of input vectors
and preserve the topological structure. In the following,
we explain the learning algorithm of ATC-DT.
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(c) This research

FIGURE 1. Terrain environment.

Firstly, we define the main variables used in ATC-
DT. Firstly, we define the set of attributes in this study
as § = {position information(pos), normal vector(nor),
tarversability(fra)}, and we define the input vector and the
reference vector as p = {p’*}, h; = {h”, h", "},
respectively. Next, we define the distance d? between the
input vector and the i-th node’s reference vector for a certain
attribute o as follows.

dy = |p’ —h|l. (1

In addition, by defining the set of edges of each attribute o
(e S)as C? = {c(f,z’ .. Cf'),j» .-}, we learn the topological
structures for each of multiple attributes. In the following,
we explain the detailed contents of the overall algorithm
whose flowchart is shown in Fig. 2.

Step 0. For initialization, set the learning times ¢ to 0 and
obtain the initial measurement data set P. Randomly generate
two node reference vectors h; and h, and set the number of
node winstoM; =1, M, = 1.
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FIGURE 2. Flowchart of the learning algorithm.

Step 1. Obtain one input vector v randomly from the
measurement data set V.

Step 2. Select the 1st winner node s; and the 2nd winner
node s; for the input vector v.

. 0S8
§1 = argmin df ,
i€A

= arg min d’”, 2
52 gieAl\sl ! 2

where A represents the set of node numbers.
Step 3. If the distance db " of the 1st winner node is smaller
than the vigilance parameter Vi, (dflm < Vur), execute
Step 4. Otherwise, add a node according to the following

procedure,

pOS
hy,, =p
My41 =1,

N <N +1, 3)

where M; represents the number of times the ith node became
the 1st winner node, and N represents the number of nodes.
After adding a node, execute Step 7.

Step 4. Update the reference vector of the 1st node
s1 according to the following equation,

hglos <« hP* 4+

, — 1. 4
N T @ ) 0

Furthermore, when the distance df’zos of the 2nd winner
node is smaller than the vigilance parameter Vy,, (dfzm <
Vir), the reference vector that has a connection with the 1st
winner node is updated according to the following equation,

1 oS
(P —h). (5)

e ey
T T o0,
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Step 5. Increment the age of the edge that has a
neighborhood relation with the 1st winner node and the
position information.

8s1,i < 8s1.i + 1. (6)

Furthermore, if the distance di,” to the 2nd winner node
is smaller than the vigilance parameter Vi, (dg)s < Vi),
the age of the edge is reset to 1 (gs152 = 1), and if
there is no position information edge between nodes s; and
52, a new position information edge is added (¢}, = 1).
The creation of edges for attributes o (€ SP?) other than
position information is performed according to the following
equation,

o _ [ L if fo(hg , he) = true, o

51527 | 0 otherwise,

where f°(-) represents the result of the decision function
according to the attribute, and the function returns true
if the similarity between attributes is high, otherwise the
function returns false. In addition, contour node detection is
performed.

Step 6. Update the age threshold g, of the edge
(SectionIV-C), and delete all edges of attributes o (€ S) that
exceed the threshold (c;’L o ="0).

Step 7. Increment the learning count ¢, and update the
measurement data set P every A times. Then, return to Step 1.

Through this procedure, this study learns the terrain data of
3D point cloud. In the following sections, we will discuss the
differences from previous studies in the learning algorithm
and the method of extracting perceptual features used in path
planning in this study.

B. UPDATING AND ADDING NODES

In the GNG-DT method, which was used in previous study
[16] for learning topological structure, the update of nodes
was performed according to the following equation,

hg; < hg +71(p — hy),
h < b’ +m@e—h)) if ;=1 (®)

where n; and 7, represent the learning rates, which were
fixed values. Therefore, in this study, as the robot gradually
moves and the density distribution of the data also gradually
shifts, the node positions are updated accordingly. This led to
aproblem where it was not possible to maintain the geometric
structure of the global topological map. On the other hand,
in the proposed method, as shown in Egs. (4) and (5), the
learning rate decays each time it is selected as the first
winner node, leading to a learning algorithm where the node
positions converge.

In addition, in the conventional GNG-DT, nodes are added
and the topological structure grows every time the number
of learning times reaches a fixed number. On the other hand,
in the proposed method, ATC-DT, as shown in Fig. 3, nodes
are added and updated by dividing the cases into three based
on the relationship between the input vector and the distance
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(c) Case 3

FIGURE 3. Learning case classification based on vigilance parameters.
Red and green circles indicate the 1st and 2nd winner nodes, respectively.

of the 1st and 2nd winner nodes and the vigilance parameter.
Specifically, when the positional relationship between the
input vector and the 1st winner node is outside the range of the
vigilance parameter as in Case 1 (Fig. 3(a)), nodes are added
as in Eq. (3), and in other cases, Case 2 (Fig. 3 (b)), Case 3
(Fig. 3(c)), the 1st winner node is updated based on Eq. (4).
Furthermore, when the positional relationship between the
2nd winner node and the input vector exists within the
range of the vigilance parameter (Case 3), the nodes with
a neighboring relationship with the first winner are updated
based on Eq. (5), making it a learning algorithm that places
nodes in appropriate positions. In this way, by using a
method of updating and adding nodes based on the vigilance
parameter, our proposed method improves the problem of
topological structure deviation due to movement of the data
distribution, which was a problem in the conventional method
[16]. Furthermore, by designing the vigilance parameter Vy,,
in this study, it is possible to place nodes at any euclidean
distance. This is a very important element in path planning
from the learned topological structure, and it is a method
that can build a topological map according to the robot
embodiment.
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C. UPDATING AGE THRESHOLD

In previous studies using GNG-DT, the age threshold for
edge deletion was manually designed. On the other hand,
in ATC-DT, the threshold is automatically determined based
on the information of existing edges and edges that have
been deleted in the past, similar to [25]. Specifically, the
age threshold g, of the edge is updated by the following
equation,

. IT et | ( IT gei | )
Smax = Vel —————+gur (1 - —=—), ©
e D + T ™ ITaer] + IT|

where I" and I 4,; represent the set of edge ages held by the 1st
winner node and the set of edge ages that have been deleted
so far in learning, respectively. Y. is the arithmetic mean of
the set I"g;. The coefficient g, is calculated by the following
equation,

gimr = To75 + IQR(T), (10)

where 'y 75 represents the 75th percentile of the set I', and
IQR(T") represents the interquartile range.

D. TRAVERSABILITY ESTIMATION

In this study, as in [16], the slope angle of the learned
terrain is used to determine the feasibility of travel for path
planning. Specifically, in Step 4 of the ATC-DT learning
algorithm, the normal vector is estimated for the 1st winner
node s; using a method based on principal component
analysis [43]. Specifically, the normal vector is calculated
using the following equation for the covariance matrix Fj,
considering the 1st winner node s and its neighboring nodes
as local surface elements.

0S8 0s. 4T 0S8 oS
" — W] T —
Fy, = : : . (11)
0s DOS 0s DOS
hjZ - hsl hjz - h51

Next, compute the eigenvectors and eigenvalues from the
covariance matrix Fy,. At this time, the normal vector that
becomes the feature is calculated as the eigenvector h{’”
of the node, which has the minimum eigenvalue among the
obtained eigenvalues.

In this way, the slope angle of the 1st winner node is
calculated using the normal vector of the 1st winner node s
estimated in this way and the unit vector of the z axis in the
global coordinate system u, = (0, 0, 1) as follows.

nor

51 Uz
—_—), (12)

gy 1l - fla |

degs, = cos™! (

where deg, represents the slope angle of the 1st winner node.
Furthermore, if the maximum slope angle that the robot can
travel is deg™**, the attribute of the node of the slope angle
that can be traveled is determined as follows (A"“

s 7°
a 1 if degy, < deg™™.
=1,

13
otherwise, (13)
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Furthermore, using the traversability information, in
Step 5, the traversability edge cf,’]‘-’ of the ith and jth nodes
is updated by the following equation,

fra frra

1 if ¢ = ¢!
o = ! 7 14
W 0 otherwise. (14)

In this way, we learn the topological structure related to
traversability (C"?) and utilize it to path planning.

E. CONTOUR NODE DETECTION

In this study, we deal with path planning to reach a target
point in an unknown environment. When realizing such path
planning, it is important to perceive the boundary between the
unknown and known environment. This boundary becomes
the contour node of the global topological map learned by
ATC-DT, so it is necessary to detect contour nodes from the
topological structure. In this study, in the learning algorithm
Step 5 of ATC-DT, we perform an approximate contour node
detection of only the Ist winner node and its neighboring
nodes, as in conventional research [16]. Specifically, we start
by detecting the direction of gravity from the accelerometer
mounted on the robot. In this study, this corresponds to
the z-axis direction of the global coordinate system. Next,
we project the position information of the i-th node (hé7 )
onto the vector in the direction of gravity. Finally, we place
the group of nodes located in the vicinity of the i-th node
in counterclockwise order. After that, we calculate the angle
0 formed by adjacent nodes, and detect the contour nodes
by performing threshold determination represented by the
following equation,

1
W=7,

oM = m];ax 6. (15)

if gmax < ethr’

otherwise.

The contour nodes detected by this equation are considered
as sub-goal candidates, and by selecting an appropriate sub-
goal from among the sub-goal candidates, a path that can
move to the destination is planned.

V. PATH PLANNING IN UNKNOWN ENVIRONMENTS

A. PATH COST

In this study, for path planning, we use the same method
as the conventional one mentioned in [16]. As a path
planning method, we use Dijkstra’s algorithm [44], and use
the topological structures CP?* and C". The path cost in
Dijkstra’s algorithm not only uses the distance information
between nodes, but also calculates and uses the slope angle
information R; using the normal information possessed by
node i, as shown in the following equation,

R H degi/deg"™ if 0 < deg; < deg"™,
P =

) (16)
o0 otherwise,

where R; takes a value of 0 < R; < 1 as long as it
does not exceed the maximum possible slope angle, with
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values closer to 0 representing flatter areas and values closer
to 1 representing steeper slopes. Furthermore, in order to
consider the surrounding environment, we also use the angles
of the nodes 7, j and the nodes with edge cf " based on position
information, and calculate the average value as follows,

o Zcﬁ.":zl,neA Ry Zd;":f:l,neA Ry
b N; ]Vj

r

where N; and N; represent the number of nodes that have a
neighborhood relationship with nodes i and j, respectively.
Utilizing these elements, the slope cost r;; is defined as
follows,
rij=Ri+Rj+r". (18)

In this way, the slope cost is calculated by the topological
structure CP°® of the normal vector and position held
by the node. The obtained slope cost is used in the
Dijkstra’s algorithm with the topological structure C" of the
traversability shown below, and determines the path.

Step 0. Initialize the cost from the start node s to each node
to infinity.

Step 1. Set the cost df;” between all pairs of vertices.

0 if i =},
dff* =1 «“rij+diy i ey =1, (19)
o) otherwise.

Step 2. From the nodes with undetermined minimum cost,
select the node i with the smallest cost and determine the
minimum cost.

Step 3. For the node i confirmed in Step 2 and the unsettled
node j that is in a neighboring relationship with it, if the sum
of the costs with node i is smaller than the previous cost,
update it.

dS% «— dP +df if dS > dSP +dP. (20)

Step 4. Continue Steps 2 and 3 until the minimum cost to
all nodes is determined, and calculate the minimum cost from
node s to each node.

Where the coefficient «®” in Eq. (19) of Step 1 is a
coefficient related to the slope cost, and the smaller adan is,
the more it plans the shortest distance path, and the larger it

is, the more it can plan a path with a smaller slope.

B. SETTING SUB-GOALS IN UNKNOWN ENVIRONMENT

In path planning, if the target point is included in the global
topological map, it is possible to plan the path. However, in an
unknown environment, it cannot set the node that becomes
the target point. Therefore, it is necessary to set sub-goals.
In this study, by selecting the contour nodes of the topological
structure constructed by ACT-DT as candidate points for sub-
goals, the robot plans the path in an unknown environment.
where if the set of candidate points for sub-goals is A% (=
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{ilzi =1 ﬂhﬁm = 1}), then the node s**? that becomes the sub-
goal is selected from the traversable nodes by the following
equation,
s’ = arg min df”b,
icAsub

= arg min_[[p — b, @1

icAsub

where p™" represents the position vector of the target point.

In this way, by selecting the node closest to the destination
from the traversable nodes as the sub-goal, the robot moves
to the destination while knowing the environment to the target
point. Even if the sub-goal selected is a dead end, the global
topological map is updated in real time with the movement
of the robot, so it is possible to reselect the best sub-goal and
replan the path.

VI. EXPERIMENTS

A. EXPERIMENTAL ENVIRONMENTS

In order to verify the effectiveness of the proposed method,
we constructed a simulation environment and conducted
experiments. Specifically, we obtained point cloud of a 3D
rough terrain environment from STL files of terrain data
provided by the Geospatial Information Authority of Japan,
and used it for the experiment. The terrain data used in this
experiment is shown in Figs.4 and 5. In Fig. 4, except for
a mountain in the center, it is a simple flat environment,
and the size of the environment was set to 150[m] x
150 [m]. Also, the start point in path planning was set to
(x,y,2) = (5,5,0), and the target point was set to (x, y, z) =
(140,140,0). Next, in Fig. 5, in order to verify whether it can
be applied to complex terrains, we used terrain data with
severe undulations. where the size of the environment, the
start point, and the target point were the same as in Fig. 4
for the experiment.

In this experiment, we used the conventional method
of GNG-DT and Grow When Required (GWR) [45],
which incorporates measures against catastrophic forgetting,
as a method of comparing topological maps. In order to
compare the performance of topological map building at
any euclidean distance, we used the euclidean distance
calculated by the following equation, which is different from
the conventional method, for the calculation of activity a in
GWR,

a=p" — >, (22)

where 51 represents the 1st winner node for the input vector v,
and if the activity a exceeds the activity threshold ar, it was
set as the node addition condition related to the activity of
GWR. Also, the basic parameters related to ATC-DT used
in the experiment are shown in Table 1, and for parameters
excluding the node placement interval in the comparison
methods GNG-DT and GWR, the ones used in [16] and [45]
were used.

In the evaluation of the experiment, the Root Mean Square
Error (RMSE), which is a quantization error that shows the
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150 [m]

150 [m]

(a) Top view of STL data

o
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(b) Bird view of 3D point cloud

FIGURE 4. Experimental environment (Data 1).

TABLE 1. Experimental parameter setting.

Parameter Value
A 4000
adee 0.5
gthr 135.0 [deg]

deg"* 20.0 [deg]

basic performance of competitive learning, is used.

1 ,
Evay = \/m > lp— B2 (23)

veV

Furthermore, to verify whether nodes can be placed at any
threshold, the average distance of the edges calculated by the
following equation is used as an evaluation metric.

1 pos pos
|CPos| Z I hi - h./ Il 24)
dP=1

ij

Eva, =

Furthermore, as a metric to determine whether learning
converges, the maximum update amount of nodes in the node
placement at the current time and one time before, calculated
by the following equation, is used.

Evaz; = max min_[[h”(t) — hj"”(t - D, (25)
i€A(t) jeA(t—1)
where A(¢) represents the set of node numbers at time ¢, and
h?” (1) represents the position of the ith node at time . In this
study, we used these metrics to verify the effectiveness of the
experiment.
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150 [m]

150 [m]

(a) Top view of STL data

Target position

. o |
(b) Bird view of 3D point cloud

FIGURE 5. Experimental environment (Data 2).

B. COMPARATIVE EXPERIMENT IN A KNOWN
ENVIRONMENT

1) EXPERIMENTAL CONDITIONS

In this section, we conducted a comparative experiment by
inputting all point cloud in each simulation environment
to verify the basic learning performance of the proposed
method. In addition, the purpose was to verify whether each
proposed method can be placed at any euclidean distance, and
the experiment was conducted with the threshold for adding
and deleting nodes in each method set to 2.5, 5.0, 10.0. The
number of point cloud inputs per trial was set to 1000 times.
The trial was conducted 10 times and the evaluation was
conducted using the average and variance of the evaluation
metrics mentioned above.

2) EXPERIMENTAL RESULTS

The experimental results are shown in Fig. 6 and Table 2.
The number of nodes of each method and the value of
RSME are converging for all data sets and parameters. Also,
as the number of nodes increases, the RSME decreases,
indicating that nodes are being added appropriately, and Each
method is able to learn 3D point cloud. This can also be
confirmed from the learning result examples of 3D point
cloud and topological map shown in Fig. 7. Furthermore,
from the results of the average edge distance, the proposed
method, ATC-DT and GWR, can learn with smaller errors
compared to the conventional method, GNG-DT, for the set
parameters, and GWR has the smallest errors in all results.
Next, in the results of the maximum update amount of
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nodes from one time before, GNG-DT continues to have a
large update amount until the end of learning. The update
amounts of ATC-DT and GWR are smaller compared to
GNG-DT, and in ATC-DT, except for the results where
the threshold is 2.5, the update amount at the end of
learning is 0.00, indicating that learning has completely
converged.

3) DISCUSSION

From the results of the distance between edges, it is concluded
that GNG-DT cannot place nodes at any distance using
the threshold value 7%, This is thought to be because
the threshold 7% represents an approximate value of
quantization error in learning, not a parameter in node
placement. Therefore, when comparing the set threshold
value and the value of quantization error in GNG-DT, it is
found that the results are almost identical. On the other
hand, GWR can place the nodes according to the set distance
threshold, and GWR has obtained the result with the smallest
error with the set parameter. From this, GWR is a method
that can place nodes according to any distance, and has the
smallest error result for the set threshold. However, in GWR,
as shown in Fig. 8, there are example results where nodes
are generated in places where there is no data distribution
in the learning process. This is thought to be because the
addition of nodes in GWR is a method of adding a new
node at the midpoint between the input vector and the 1st
winner node, and nodes are actually added where there is no
data distribution when the initial nodes are sparse, and the
nodes remain as they are. On the other hand, the proposed
method, ATC-DT, does not produce any dead nodes in all
trials, and although the offset error is large compared to
GWR, it is able to place nodes at a value close to the
set threshold. From this, it is thought that the proposed
method, ATC-DT, is a method that can appropriately
learn the geometric structure of 3D point cloud at any
granularity.

Next, in the results of the node update amount, it is
considered that GNG-DT oscillates with a constant update
amount because it uses a fixed learning rate at the time of node
update, so the learning about node update does not converge.
On the other hand, ATC-DT and GWR use a method that
reduces the learning rate based on the input vector to converge
the node update, so they take values close to O at the end of
learning. In particular, in ATC-DT, the update amount is O in
all results, except for the result with a vigilance parameter
value of 2.5. Therefore, it is considered that the proposed
method of using the winner count for adjusting the learning
rate is a method that can easily converge the node position to a
stable position compared to other methods. This convergence
property is a very important in the global topological
map building, which is the purpose of this study, and the
proposed method using ATC-DT is an effective methodology,
including the ability to place nodes according to any
threshold.

VOLUME 12, 2024

C. COMPARATIVE EXPERIMENT IN UNKNOWN
ENVIRONMENT

1) EXPERIMENTAL CONDITIONS

Next, to verify the effectiveness of a topological map
building using only measurement data, we conducted a path
planning experiment in an unknown environment, similar
to [16]. In this experiment, we used GNG-DT and GWR as
comparative methods for the proposed method. In GNG-DT,
we prepared two patterns: one using the current measurement
data as the input vector set (GNG-DT1) and the other using
all the 3D point clouds measured so far as the input vector
set (GNG-DT2), similar to [16]. The parameters of each
method related to the node placement interval were set to
5.0. In GNG-DT, since nodes cannot be placed according to
the parameters, we used 2.5, which was the closest to 5.0 in
the previous experimental results, as the parameter. Each
method was tried 10 times, and the evaluation metric used
the RMSE, the average distance between edges, the number
of nodes, and the number of data in the input vector set, where
to verify the learning performance of the global topological
map, we calculated the RMSE for all the point cloud sets used
as input vectors so far, not the input vector set at the current
time, and used it as an indicator. As a new evaluation index,
we added the number of successful return path planning and
the path length when planning the path from the target point
to the start point after reaching the target point.

2) EXPERIMENTAL RESULTS

The experimental results are shown in Table 3, and an
example of a global topological map building is shown in
Fig. 9. In Table 3, in the path planning experiment in an
unknown environment, the length of the planned path changes
with each trial and the number of learning times is different,
so the results of each index when arriving at the target point
are summarized. From the experimental results, the number
of input point cloud is about one-tenth of both environments
compared to [16] in the proposed method, ATC-DT, GNG-
DT1, GWR. Next, when looking at the results of the number
of nodes and RMSE, which are indicators of the results of
the global topological map building, in GNG-DT1, which
learned only with the measured point cloud, the number of
nodes is small and RMSE is also a large value, and the global
topological map has not been built. On the other hand, other
methods including the proposed method have a larger number
of nodes compared to GNG-DT1, and RMSE is about 2, and a
global topological map has been build. In terms of the average
distance of the edges, the proposed method, ATC-DT, has the
smallest error in both results compared to the set node, which
is one interval of 5.0.

Next, to verify the performance of topological map
building, the number of successful return path plans from the
target point to the start point after arrival, and the average
value of path length are shown in Table 4. In addition, the
results of the path moved from the start point to the target
point and the return path in each method are shown in Fig. 10.

111379



IEEE Access

Y. Toda, N. Masuyama: ART-Based Global Topological Map Building for an Autonomous Mobile Robot

Number of nodes

RMSE
M= T

0 200 400 0 500 1000
Epochs

5| — GNG-DT
R
—— ATC-DT

Number of nodes

RMSE
=T

Epochs Epochs

&

0 200 400 600 800 1000
Epochs

Average distance of edges

0 200 400 600 800 1000

Epochs

Max update amount

Max update amount

Rk

M ITETRR WCTOR 71 TR
0 200 400 600 500 1000

Epochs

0 200 400 600 800 1000

B
s | g -
7 L .
3 \ < 10 H
s g s 3
H Z . 6t H
E ) H
t s 5
e £
z 2 53 =
1 <2
0 o e
o w0 e w0 m 0w T
Epochs. Epochs
w0 .
o | 14
s | 50
s g
5 i rc- Zh H
£ 6 i £
5 2 s 551
3 2 4 Zo6 H
: ]
: . H :
z g 4 ]
z 2 53 =
: <2
0 o
o w0 e w0 mw 0 W w0 e w0 o
Epochs Epochs Epochs Epochs
n 6
5 [ —
. s
g 7 Em
2 W 6 3 16 g
H e — —— — = R o
5 N Zn| 2 WR
2 S0 z2 —— ATC-DT
£ s E : 3
Z E s
> £ .
E
: : |
0 0 o 0
om0 @ s e o w0 e w0 m 0w e 0 w w e w0
Epochs Epochs. Epochs Epochs
0 6
5 [
8 — GNGDT %2 s
5 7 R ?, ] .
z o 6 —— ATC-DT = %
< z | S— g Py
s 2 s | H 23
] 2 4 2 z
£ 3 g z?
z 5 § =
> 5 :
X z
. o Rz
o w0 e w0 0 o w0 w0t
Epochs Epochs Epochs Epochs

() 10.0 (Data 2)

FIGURE 6. Experimental results on the transition of each evaluation. The subfigure results represent, from left to right, the evaluation metrics:
Number of nodes, RMSE, Edge distance, and Maximum update amount. The values in the subcaptions represent the node interval thresholds set for

each method.

As a result, in GNG-DT1, it was not possible to plan a return
path in all trials. Next, in GWR, although it was successful
8 times in the Data 1 environment, it was only successful
3 times in the Data 2 environment with more complex terrain.
On the other hand, in the proposed method ATC-DT and
the conventional method GNG-DT?2, it was possible to plan
a return path in all trials in both environments. In addition,
when comparing the average value of the path length, in the
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Data 1 environment, ATC-DT had the shortest result, and in
the Data 2 environment, GNG-DT?2 had the shortest result.

3) DISCUSSION

The results show that GNG-DT1 could build only a global
topological structure using the measured point cloud. This is
because in GNG-DT, a rule is incorporated to delete nodes
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(a) 2.5 (Data 1)

(b) 2.5 (Data 2)

(c)5.0 (Data 1)

(d) 5.0 (Data 2)

(e) 10.0 (Data 1)

(f) 10.0 (Data 2)

FIGURE 7. Learning examples. The green and red spheres indicate traversable and untraversable nodes, respectively.The results for
each method show the cases with the smallest number of nodes among 10 trials. The results in the subfigure represent the
topological structures built using all point cloud data by GNG-DT, GWR and ATC-DT, from left to right. The values in the sub-captions
represent the node interval thresholds set by each method.
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TABLE 2. Learning results at the end of each method.

Dataset Method Parameter | Number of Nodes FEvai Fvas Fvas
GNG-DT 647.447.1 2.5040.02 6.4740.03 3.65+2.15
GWR 2.5 3376.41+49.5 1.0840.01 2.7840.02 0.0740.02
ATC-DT 2373.1+12.3 1.31£0.00 3.34+0.01 0.04+0.01
GNG-DT 181.54+1.43 4.6240.02  12.1940.05  1.82+0.21
Data 1 GWR 5.0 840.5+13.4 2.1640.02 5.5240.04 0.08+0.01
ATC-DT 625.94+5.97 2.5540.01 6.56+0.03 0.00£0.00
GNG-DT 46.21+0.4 9.20+0.05 24.07+£0.19  5.09+0.89
GWR 10.0 225.045.52 4.2140.05 10.58+0.13  0.25+0.07
ATC-DT 167.243.08 4.9540.04 12.75+0.13  0.00+0.00
GNG-DT 665.01+8.01 2.5240.02 6.48+0.03 3.83£1.76
GWR 2.5 3358.2+15.1 1.08+0.00 2.7840.03 0.08+0.01
ATC-DT 2486.4+10.27 1.3140.00 3.3240.01 0.06+0.01
GNG-DT 186.3+1.2 4.63+0.02  12.11+0.04  1.78+0.31
Data 2 GWR 5.0 868.4+12.8 2.1740.01 5.4840.05 0.59+1.60
ATC-DT 647.34+6.7 2.5640.01 6.5340.03 0.00£0.00
GNG-DT 47.440.70 9.1440.06  23.86+0.21  5.11+0.68
GWR 10.0 230.043.3 4.234+0.03  10.49+0.08  0.23+0.05
ATC-DT 168.243.6 5.004+0.06  12.77+0.13  0.00+0.00
TABLE 3. Learning results of the topological mapping.
Dataset Method Number of Inputs ~ Number of Nodes Fvaq Fvas
GNG-DT1 3230.2+254.5 45.0+3.9 86.86+3.07  5.6040.09
Data 1 GNG-DT2 | 305515.5+765.6 334.14+9.4 2.36£0.01 6.11£0.03
GWR 3349.1+187.6 603.94+23.9 1.9940.02 4.2440.02
ATC-DT 3357.8+221.5 44544134 2.08+0.01 5.41£0.03
GNG-DT1 3147.1+£192.4 39.34£3.1 86.364+2.25 5.7440.10
Data 2 GNG-DT2 31679.9+£508.0 358.146.5 2.37£0.01 6.1140.01
GWR 3162.3.54202.8 632.7+27.4 2.08+0.12 4.1540.12
ATC-DT 3220.6.94+180.9 475.1+£7.0 2.10£0.01 5.3840.02

V

FIGURE 8. An example of dead node occurrence in GWR.

that are not selected as winner nodes in order to adapt to
dynamic data, resulting in the topological structure within the
measurement range. On the other hand, GWR could preserve
nodes outside the measurement range, and to some extent,
GWR could build a global topological map. However, there
were cases where it is not possible to plan a return path,
especially in Data 2, where it was only successful three times.
This is because in GWR, the learning rate is converged by
the number of learning times to converge the node update,
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TABLE 4. Experimental results of the return path planning.

Dataset Method Number of Successes ~ Path Length
GNG-DT1 0 -
GNG-DT2 10 224.34+4.9

Data 1

GWR 8 231.84+6.2
ATC-DT 10 220.14£3.5
GNG-DT1 0 -
GNG-DT2 10 2574475
Data 2
GWR 3 271.0+1.4
ATC-DT 10 263.8+7.2

and finally, GWR becomes a learning rule that converges to
a certain fixed value. Therefore, if the robot is stagnant near
a certain point, the structure of the global topological map
will be disrupted due to being dragged by the learning of the
input measurement point cloud. Fig. 11 shows an example of
a topological map in GWR, but the start point and the target
point were topologically clustered as different clusters, and it
can be confirmed that a path from the start point to the target
point was not generated.

On the other hand, in both ATC-DT and GNG-DT2,
a return path could be planned in all trials in both
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(a) Data 1

(b) Data 2

FIGURE 9. Examples of the learnign result. Green, red, and blue spheres indicate the traversable, untraversable, and contour nodes, respectively.The
results for each method show the cases with the smallest travel distance among 10 trials. The results in the subfigure represent the topological
structures built using only point cloud data measured by GNG-DT1, GNG-DT2, GWR and ATC-DT, from left to right.

(a) Data 1

(b) Data 2

FIGURE 10. Experimental results of the return path planning. Red and blue lines indicate the return path and robot trajectory from starting point to
end point, respectively. The results in the subfigure represent the paths planned using the topological structures built by GNG-DT1, GNG-DT2, GWR

and ATC-DT, from left to right.

environments. However, in GNG-DT2, since learning is
performed using all point cloud, a global topological map
is built, so GNG-DT2 is natural that a return map can be
planned. However, in the proposed method, ATC-DT, it is
possible to build a global topological map only from the
measured point cloud and the robot’s position information.
This is because the learning rate in ATC-DT converges to
0 as shown in Eq. (4) due to the winner count, and the
update amount of the node has converged because ATC-
DT could be placed in the appropriate node position as
learning progresses. This can also be confirmed from the
fact that the error between the average value of the distances
between the edges and the target value is the smallest in both

VOLUME 12, 2024

environments. Furthermore, in path planning in unknown
environments, even if the robot encounters a dead end, the
robot plans the shortest path until the robot perceives an
untraversable area, due to the unknown ahead, in both Data
1 and Data 2. After that, when the robot perceives the
untraverable area, the robot avoids that area and becomes
a travel path to reach the target point. On the other hand,
the return path can plan a path to avoid that area from the
beginning. In fact, the average travel distance of the robot in
each environment in ATC-DT is 239.1 & 16.4 for Data 1 and
321.2 £ 74.6 for Data 2. Therefore, an efficient path could
be planned because the travel distances are longer distances
compared to the results in Table 4. From the above, the
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FIGURE 11. An example of topological clustering results using GWR.
Different colors indicate different clusters.

proposed method is a method for building an efficient global
topological map for autonomous mobile robots.

VII. CONCLUSION

In this paper, we conducted research with the aim of building
a global topological map from only the measured 3D point
cloud and the robot’s position information. Specifically,
in the conventional learning method based on GNG, it was
impossible to preserve a global geometric structure when
only the measured data was used for learning because the
nodes that become dead nodes were deleted. Therefore,
we proposed a learning method that can learn without
forgetting the point cloud measured in the past by using the
topological clustering method based on the ART, which is
a learning approach to avoid catastrophic forgetting, as a
learning method. Furthermore, by extending to ATC-DT,
a learning method with a topological structure of multiple
attributes used in conventional methods, we proposed a
method that allows for perception of traversability against
terrain data from unknown 3D point cloud and path
planning in unknown environments, just like conventional
methods. In the experiment, we showed that in simulation
environments using the terrain data of the 3D point cloud, the
arbitrarily set nodes can be placed at appropriate intervals,
although there is an offset error for the threshold of the
position interval. In addition, in the path planning experiment
in an unknown environment, we showed that a global
topological map can be built accurately and stably using
only the measured data and the robot’s position information
compared to other competitive learning methods.

However, in the experiments in this paper, we have only
stayed in the simulation environment and have not verified
the effectiveness using autonomous mobile robots in the real
environment. Therefore, as a future task, we will verify the
effectiveness of the proposed method in the real environment
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integrated with the self-localization method using 3D LiDAR.
In addition, the proposed method is expected to be difficult to
apply in large-scale environments because the computational
cost increases as the number of nodes increases. Therefore,
we also plan to construct a learning algorithm that suppresses
the amount of computation for a large number of nodes.
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