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ABSTRACT Recent advancements in text-to-image generation have demonstrated significant progress,
especially with diffusion-based models conditioned on textual prompts, which excel in image quality and
diversity. However, these methods often encounter a semantic gap between image and text modalities and
suffer from imprecise localization during text-based image editing. To address these challenges, we propose
the Diffusion-based Knowledge-enhanced Mask Transformer (Diff-KT) text-to-image model. Diff-KT
leverages knowledge enhancement strategies to incorporate fine-grained textual and visual knowledge of key
scene elements, thereby improving the fidelity and textual consistency of generated images. Furthermore,
it enhances the controllability of textual influences on image generation by using masks to precisely target
areas in the image for editing. To facilitate deeper fusion of visual and textual information, we introduce
a multimodal pre-trained model CoCa, to extract joint representations of images and text, enhancing the
detailed expression in generated images. Diff-KT improves the correlation between text and generated
images and enhances image localization precision within the diffusion model, resulting in high-quality
images. Experimental results validate the advantages of the Diff-KTmodel, demonstrating higher correlation
between generated images and text prompts, as well as more accurate localization during text-guided image
editing, underscoring its practical value.

INDEX TERMS Text-driven image editing, diffusion model, knowledge enhancement, mask transformer.

I. INTRODUCTION
Recent advancements in the field of text-to-image generation
have achieved groundbreaking progress, with applications
widely adopted in education, art design, game development,
and other areas. The goal of text-to-image generation is to
create high-quality, realistic images that align with textual
descriptions and encompass rich details. Among existing
text-to-image generation methods, diffusion models [1], [2],
[3] have shown excellent performance in image fidelity
and have gained widespread use. However, upon further
investigation of diffusion-based text-to-image models, issues
have been identified, including low correlation between
generated images and textual prompts, as well as inaccurate
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localization of editing regions during text-based image
editing.

To address the issue of low correlation between generated
images and textual prompts in diffusion models, a text-
conditioned diffusion model [4] was proposed. This model
leverages CLIP text embeddings and the corresponding CLIP
image embeddings as generative conditions within the latent
space, enhancing the alignment between generated images
and textual prompts. Although this method uses a contrastive
learning strategy to learn joint text-image representations,
it neglects the multimodal text-image representation learning,
resulting in generated images that fail to match textual infor-
mation in fine details. To further mitigate information bias
in diffusion models, the VQ-Diffusion model [5] employs a
masking mechanism to alleviate error accumulation during
the inference process. However, visual scenes often comprise
multiple elements of varying importance, and diffusion

112948


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0009-0006-2570-9173
https://orcid.org/0000-0001-5433-6667


H. Zhao et al.: Diff-KT: Text-Driven Image Editing by Knowledge Enhancement and Mask Transformer

models do not prioritize these elements during the denoising
process, leading to the omission of key elements andmodality
interactions. Consequently, the generated images fail to
accurately represent the important semantic content of the
textual prompts and cannot precisely edit specific regions or
attributes of the image, limiting the flexibility and accuracy
of the model’s editing capabilities. This also poses a risk
of text-image misalignment, such as attribute confusion,
blurred positional information, and inaccurate entity counts.
Moreover, diffusion models often lack attention to the critical
semantic information in textual prompts, which hampers their
ability to precisely guide the image generation process, thus
restricting the controllability of the generated results. For
example, the SDEdit method [6] struggles to maintain the
color and posture of an object when editing its category
attributes, ignoring detailed image features and modifying
regions that do not require editing.

In recent years, several Transformer-based models have
been introduced into the field of text-to-image generation,
including DALL-E [7], Imagen [8], and Parti [9]. DALL-
E combines GPT-3 and VQ-VAE to handle multimodal
tasks involving both text and images, achieving high-quality
text-to-image generation. Imagen integrates Transformers
with diffusion models to generate high-fidelity images from
textual descriptions, excelling in detail and semantic rele-
vance. The Parti model utilizes the self-attention mechanism
of Transformers to further enhance the quality of gener-
ated images and their alignment with textual descriptions.
Through innovative architecture and algorithm design, these
models effectively address the limitations of diffusion models
and have made significant progress in the field of text-to-
image generation.

We demonstrate the problem of low correlation between
generated images and their corresponding text descriptions,
as well as the inadequate representation of text-edited images.
As shown in figure 1 (a), the DALL-E model [7] erroneously
interprets the text prompt ‘‘white’’ as ‘‘snow,’’ failing to
accurately capture the intended semantics. Additionally, the
VQ-Diffusion model generates a region where the ‘‘bus’’
is located that is inconsistent with the text description,
highlighting the lack of a robust mapping relationship
between text and image information. Consequently, the
generated images fail to effectively match the desired text
semantics. In figure 1 (b), the goal is for the model to only
modify the object attributes of the ‘‘cat’’ according to the
textual prompt while preserving the background information.
However, the SDEdit model and FlexIT model [10] not only
modify regions of the image that do not require editing but
also alter the style of the image, indicating poor text editing
capabilities.

To alleviate the problems of low correlation between
generated images and textual prompts, as well as impre-
cise positioning of text-edited images, we propose a
diffusion text-to-image generation model based on a
Knowledge-Enhanced Masked Transformer. First, the model

FIGURE 1. Problems with the diffusion model-based approach to
text-driven image editing.

employs a knowledge-enhancement strategy to incorporate
additional visual scene knowledge during the denoising
process of the diffusion model. By enhancing the model’s
attention to semantically crucial information in the textual
prompts, the model selects elements of higher importance to
generate the corresponding images, thereby improving the
correlation between generated images and textual prompts.
Secondly, the multimodal pre-training model CoCa [11] is
utilized to learn joint multimodal representations between
text and images. This focuses on the detailed visual
representation of the generated images and uses the denoising
loss function as a supervised loss for the diffusion model,
assisting in generating high-quality images with fine-grained
features. Finally, the introduction of a masking mechanism
involves randomly masking different parts of the image
and using multiple Transformer layers to extract features.
The cross-entropy loss is calculated between the real labels
and the masked labels to improve the model’s ability to
locate the text editing areas, enabling strong text editing
capabilities. During the training process, the model predicts
the positions of all masks and iteratively predicts masks
during the inference process, resulting in improved image
generation quality.
(1) The knowledge enhancement strategy is introduced

for incorporating text and visual knowledge into the
diffusion model of text-generated images, which is
helpful to improve fine-grained semantic control and
mitigate text-image inconsistencies.

(2) We propose the masking mechanism to edit positional
regions in the original image. This can help to reduce
information changes in the background region of the
image while changing object properties.

(3) The text-image encoder-decoder is combined with
contrast loss and subtitle loss for pre-training, and multi-
modal image-text features are incorporated into the
cross-attention mechanism to reduce semantic differ-
ences between text and image.
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II. RELATED WORKS
Denoising Diffusion Probabilistic Models (DDPMs), pro-
posed in 2020, are a type of generative model that uses
variational inference to train a hidden Markov chain, simu-
lating a specific distribution from random noise. Diffusion
models consist of a forward process and a reverse process.
In the forward process, complex data (typically images)
are gradually corrupted with noise; in the reverse process,
the noise is transformed back into samples from the target
distribution.

A. TEXT-TO-IMAGE
To address the low correlation between generated images
and text prompts in diffusion models, Avrahami et al. [12]
proposed a text-conditioned diffusion model. This model
uses CLIP text embeddings and the corresponding CLIP
image embeddings as conditions to enhance the alignment
between generated images and text prompts. Although this
method uses a contrastive learning strategy to learn joint
text-image representations, it overlooks the learning of
multimodal text-image representations, leading to generated
images that fail to match the text information in detail.
To further reduce information bias in diffusion models,
the VQ-Diffusion model [5] uses a masking mechanism to
mitigate error accumulation during the inference process.
However, visual scenes often contain multiple elements of
varying importance, and diffusion models do not select
these elements during denoising, leading to the omission
of key elements and modality interactions. As a result,
generated images cannot accurately express the important
semantic content of the text prompts, limiting the flexibility
and precision of model editing. This also results in risks
of text-image misalignment, such as attribute confusion,
blurred positional information, and inaccurate entity counts.
In complex application scenarios, the Imagen [8] uses a
text sequence encoder and a cascade of diffusion models
to generate high-resolution images, conditioning on text
embeddings returned by the encoder for precise text-to-
image mapping. While this method improves the correlation
between text prompts and generated images, it still lacks
sufficient attention to key semantic information in the text
prompts, limiting the controllability of the generated results.
For example, the SDEdit [6] cannot ensure that the color
and posture of objects remain unchanged when editing their
category attributes, ignoring detailed image features and
modifying regions that do not require editing. The DALL-E
model [7], proposed by Song et al., uses GPT-3 to generate
text descriptions and a decoder to generate corresponding
images, showcasing the potential of large-scale pre-trained
models in text-to-image generation tasks. However, this
method still has room for improvement in fine-grained
image generation. Ramesh et al. introduced DALL-E 2
[13], which improved the initial model by using a more
powerful pre-trained model and an optimized generation
process, enhancing the accuracy and detail of text-to-image
generation.

B. TEXT EDITING IMAGES
For the task of text-guided image editing, the precise
mapping process from image to noise and back to image
is crucial. This mapping process plays a central role in
diffusion models, determining how the model progressively
transforms the original image by adding noise and eventually
generates the edited image through denoising. DDIM [3] is
widely used due to its near-perfect inversion [37]. However,
the local linearization assumption in DDIM can lead to
image reconstruction errors and error propagation [38]. The
DiffusionCLIP [14] first uses a pre-trained diffusion model
to convert the input image to a latent space, and then
fine-tunes the diffusion model during the reverse process.
This model employs CLIP loss and consistency loss to
align the target image with the text while minimizing
changes to the background. However, DiffusionCLIP requires
fine-tuning for each new target domain, which increases
inference time. To avoid fine-tuning, the LDEdit [12]
proposes using a deterministic forward process in the latent
space, conditioning the reverse process on the target text.
This approach performs well across a wide range of image
editing tasks, providing a general framework. To address the
issue of simple text modifications leading to different outputs,
Hertz et al. [15] employ a cross-attention mapping strategy
during the diffusion process to capture the association
between each image pixel and word in the text prompt,
resulting in consistent and stable image outputs. Additionally,
Kwon et al. [16] propose an unsupervised image editing
method that successfully disentangles style and content
representations. This method can learn attributes from a
source image and transfer them to a target image, achieving
style transformation and content preservation without requir-
ing additional supervision. Furthermore, DALL-E 3 [17]
improves text-to-image generation quality and consistency
by enhancing the model’s generative capabilities and text
understanding. StyleGAN3 [18] improves image fidelity
and diversity through network architecture and training
strategy enhancements. These methods demonstrate high
practicality and flexibility in applications such as creative
advertising generation, medical image analysis, and virtual
reality scene construction. However, challenges remain in
fine-grained image generation and precise matching of
textual information. Overall, existing methods still have
room for improvement in multimodal joint representation of
text and images, semantic extraction of key elements, and
localization accuracy.

To address the aforementioned issues, this paper introduces
a knowledge-enhanced andmasked Transformermodel based
on the diffusion framework. The model integrates textual
and visual knowledge during training to improve its ability
to perceive fine details and generate higher-quality images.
Additionally, the multimodal pre-training model CoCa is
employed to learn joint representations between text and
images, enhancing the consistency of generated images with
their corresponding text prompts. The model also utilizes a
masking mechanism to guide the diffusion model in editing
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local regions of the image. The cross-entropy loss between
the real and masked labels is used as the learning objective,
ensuring that the generated images avoid problems such
as text-image misalignment, attribute confusion, and blurry
positional information. TheDiff-KTmodel not only enhances
text-image consistency but also demonstrates precise image
editing capabilities using textual prompts, exhibiting superior
performance in both image generation quality and flexibility.

III. METHODOLOGY
To alleviate the above-mentioned problems, this paper
introduces the knowledge-enhanced andmasked Transformer
model based on the diffusion framework. The model incor-
porates the textual and visual knowledge during training to
enhance its ability to perceive fine details and generate better-
quality images. At the same time, the multimodal pre-training
model CoCa is used to learn the multimodal joint represen-
tation between text and image to improve the consistency of
the generated images with the text. Additionally, the model
employs a masking mechanism to guide the diffusion model
in editing local regions of the image. The cross-entropy loss
between the real labels and the masked labels is used as
the learning objective, ensuring that the generated images
avoid issues such as text-image misalignment, attribute
confusion, and blurry positional information. The Diff-KT
model not only improves the text-image consistency, but
also demonstrates precise image editing capabilities using
textual prompts, showcasing superior performance in image
generation quality and flexibility.

The Diff-KT model incorporates a knowledge enhance-
ment module, a CoCa pre-trained encoder module, and a
masking mechanism module into the underlying diffusion
model, as shown in Fig.2. The knowledge enhancement
module is responsible for integrating additional information
from the visual scene, enhancing the relevance between the
generated image and textual cues by selectively generating
elements. The encoder module learns multimodal joint
representations between text and image, ensuring that the
generated images possess visual realism and fine-grained
features. The masking mechanism module is employed to
accurately locate the editing region in the image, thereby
enhancing the model’s text editing capabilities.

Firstly, textual prompts and corresponding initial images x0
are separately input into the text decoder and target detector
respectively to extract the key elements of the scene, which
are used as a knowledge enhancement strategy to guide the
model to select different elements during the learning process
to enhance the importance of the semantic representation in
the scene, thus avoiding issues such as attribute confusion and
text-image misalignment in the generated images. Secondly,
the CoCa pre-trained model with frozen weights is used as an
encoder to extract text features and image features, making all
text markers interact with image regions during the learning
denoising step, enhancing the cross-modal interaction of the
diffusion model in cascade space. Then, a masked feature
map is then obtained by randomly masking different parts of

the image. The masked feature map is fed into the underlying
Transformer module together with the text features to further
learn the joint multimodal representation between text and
image, and the output reconstructed feature map is used
to guide the diffusion denoising process. Simultaneously,
the cross-entropy loss between the ground truth labels and
the masked labels is used with the denoising loss function
as a supervised loss for the diffusion model to assist the
model in generating images with high-quality and fine-
grained features. Finally, Diff-KT uses text conditioning and
reconstructed feature maps to infer and localize the regions in
the image that require editing during the denoising process,
minimizing edits outside the regions of interest. Furthermore,
the model focuses on different aspects during each stage
of training. In the early stages, the input image is highly
noisy, and the model needs to delineate semantic layouts
and skeletons from almost pure noise. In the later stages,
the model primarily focuses on denoising approximately
complete images to improve details and enhance the quality
of the generated images.

A. DIFFUSION MODEL
In recent years, DDPM have demonstrated remarkable gen-
erative performance in the field of text-to-image generation.
DDPM is a class of score-based generative models that
generate images by iteratively training an inverse diffusion
process. DDPM consists of a forward process q and a reverse
process pθ . The forward process q gradually adds smaller
Gaussian noise to the initial data through T -step iterations
until the data structure is completely broken at T -step.
Conversely, the reverse process pθ progressively removes the
added noise using a denoising function, ultimately restoring
the original data, as shown in Fig.3.

During the training of the forward diffusion process, the
model iteratively adds Gaussian noise to the initial image x0
and transforms the data distribution into an isotropicGaussian
distribution after T steps, the forward process is defined as:

xt =
√

αtxt−1 +

√
1 − αtϵ (1)

where t ∈ {1, . . . ,T }, ϵt ∼ N (0, I ) is the noise added at
each step, and {αt }1...T is the predefined schedule. The reverse
diffusion process is the denoising process, which involves
sampling from Gaussian noise to compute xt . The reverse
process is defined as:

xt =

√
ᾱtx0 +

√
1 − ᾱtϵ (2)

where ᾱt =
∏t

s=1 αs, the coefficient αt is defined as the noise
level decreasing with time step t , αt ≈ 0 is the noiseless state
and α0 = 1 is the almost pure noise state. During the training
of the denoising process, Song et al. [3] proposed to construct
an implicit model of denoising diffusion with a deterministic
process through a denoising network ϵθ (·), where a given xt
is recovered by predicting the noise through the denoising
network to x0. The denoising network is defined as:

L = Ex,ϵ∼N (0,I ),t

[
∥ϵ − ϵθ (xt , t)∥22

]
(3)
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FIGURE 2. Diff-KT model overall structure.

FIGURE 3. Diffusion models consist of both a forward process q and a reverse process pθ .

In the inference process of the DDPM, variables x are
updated by small iterations in the direction of ϵθ . The update
equation is defined as:

xt−1 =
√

αt−1

(
xt −

√
1 − αtϵθ (xt , t)

√
αt

)
+
√
1 − αt−1ϵθ (xt , t) (4)

In this paper, we relate the sampling process to a discretized
and blurred ordinary differential equation (ODE), using a
smaller step size T compared to the training process. The
discretized ODE is defined as follows:

du = ϵθ

(
u

√
1 + τ 2

, t
)
dτ (5)

where u (t = T ) ∼ N (0, αT I ). In the experimental setup of
this paper, the time step t is parameterized between 0 and 1,
so which corresponds to the T diffusion steps in the original
equation. Furthermore, during the encoding process, the Er

function is used in the encoding process to encode x0 onto
a latent variable xr of time step r ≤ 1 using the Eulerian
sampling method up to the time step r , where the variable
is called the encoding rate. In the Euler sampling scheme,
as long as there are sufficiently small sampling steps, the
decoding xr can approximately recover the original image
x0. In the task of text editing images, this method allows
for specific region editing and modification of the image
based on textual descriptions, significantly improving the
controllability of text-based image editing.

B. KNOWLEDGE ENHANCEMENT MODULE
The goal of text-to-image tasks is to generate high-quality
images based on text descriptions that accurately reflect the
content and detailed attributes described in the text. Key
elements of a visual scene are represented differently in
text and images, with keywords in the text corresponding
to salient regions in the image. However, conventional
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diffusion models do not prioritize the importance of these
elements, generating all components indiscriminately during
the iterative denoising process. To address this, we propose
integrating additional textual and visual knowledge during
the training phase of the diffusion model. This integration
enhances the model’s fine-grained semantic perception and
improves the quality of the generated images.

1) TEXT KNOWLEDGE
To capture all the key semantic information provided by
the textual prompts, this study proposes the utilization of
knowledge graph embeddings to represent the relationships
between entities mentioned in the textual descriptions,
as shown in Fig.4. At the input layer, the triplet embeddings
and text embeddings are concatenated into a joint matrix with
two channels. This joint matrix is treated as a unified input
that is fed into the convolutional layers and gated units. The
text features, after passing through the convolutional layers,
are fused with the structural features, thereby incorporating
the textual information. Through multiple rounds of feature
fusion, the model is able to learn the overall impact and
interactions between the triplets and entity descriptions.

In the embedding layer, the structural embedding matrix,
the textual embedding matrix and the joint embedding matrix
are organized such that each column represents either a
head entity h, the relation r or the tail entity t . During
the convolutional operation, which represents the embedding
dimension and w represents the number of convolutional
kernels, the feature map is split into two equal parts. The
symbols denote element-wise multiplication and addition,
respectively. The operation f represents the Rectified Linear
Unit (ReLU) activation function. After the dot product
operation on the feature vectors, the final score for the triplet
is obtained.

Knowledge graph embedding is a technique that addresses
the knowledge graph link prediction problem by embedding
relationships and entities into a low-dimensional continuous
vector space. While triplets (entity/subject, relationship,
pseudo-entity/object) effectively represent structured data in
knowledge bases, they may not fully capture the intrinsic
connections between entities and relationships, relationships
and relationships, and entities and entities. Therefore, in this
work, different convolutional kernels are used to generate
distinct feature maps for text embedding Md , structural
embedding Ms, and joint embedding Mjion. These feature
maps are concatenated into a single vector (in shown Fig.4),
which is then multiplied by a weight vector w to compute the
score (h, r, t) for the triplet using a dot product calculation.
The scoring function f (h, r, t) is defined as:

f (h, r, t) = concat


(
f
(
Mjoin ∗W + b

)
⊕f

(
Mjoin ∗ V + c

) )
⊗

(
f (Ms ∗W + b)
⊕f (Ms ∗ V + c)

)
⊗f (Md ∗ U + d)

 · w (6)

where W , V , U are different convolution kernels, Ms =

[hs, r, ts], Md = [hd , r, td ], Mjoin = [h, r, t] are
3-dimensional matrices, (h, r, t) is an embedding of a triplet,
b and c are shared parameters. The loss function of the textual
knowledge graph embedding is defined as:

Ltextual−knowledge

=

∑
log

(
1 + exp

((
l(h,r,t) · f (h, r, t)

))
+

λ

2
∥w∥

2
2

)
(7)

W ij
a

=

{
1 + wa toki ∈ {x} , tokj ∈

{
x, ykey

}
1 otherwise

(8)

where W ij
a is a scaling factor for the weight of attention

between word vectors tokj, wa is a hyperparameter, x is a
token for all images, and ykey denotes the most efficient triad
embedding. In this paper, the relationships of entities in the
text description are reinforced by loss functions, and the text
knowledge graph embeddings are fused with text features
to extract more effective key semantics, thus improving the
consistency of the text with the generated images.

2) VISUAL KNOWLEDGE
Similar to textual prompts, there are salient regions in the
image that represent attributes of entities, such as people,
cats, flowers, and other objects. To fully leverage the visual
knowledge from the image, this paper utilizes an object
detector provided by Anderson et al. [19] on 80% of the
training samples and then employs a heuristic strategy to
select objects with significant attributes from the detector’s
output. As the denoising loss function of the diffusion model
operates directly in the image space, this paper modifies
the loss function for the denoising process to assign higher
weights to the corresponding regions, thereby promoting the
model’s focus on generating these objects. The loss function
for the denoising process is defined as follows:

Lvisual−knowledge = Ez,ϵ∼N (0,I ),t

[
Wl · ∥ϵ − ϵθ (zt , t)∥22

]
(9)

W ij
l =

{
1 + wl losij ∈

{
xkey

}
1 otherwise

(10)

where Wl ∈ Rnh×nw is the weight matrix, nh and nw are the
heights and weights in image space,wl is the hyperparameter,
losij is the loss term in the i-th row and j-th column of image
space, and xkey corresponds to the regions of the key entities.

When calculating the denoising loss function
Lvisual−knowledge, the regions corresponding to the key entities
are assigned higher weights. For example, as shown in Fig.2,
the regions of ‘‘cat,’’ ‘‘dog’’ and ‘‘basket’’ receive more
attention. During the model training phase, the additional
selection strategy is enhanced by randomly selecting a subset
of samples. This strategy allows the model to perceive hints
from different perspectives, thereby enabling the generation
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FIGURE 4. Knowledge graph embedding describes the relationships between entities in the textual prompt.

of higher-quality images during the inference stage based on
the given rough textual prompts.

C. COCA PRE-TRAINED ENCODER MODULE
The task of text-to-image generation requires a powerful
semantic text encoder to extract complex and constructive
features from natural language text. The current state-of-
the-art methods for extracting text features in this field
involve training language models from scratch or using
pre-trained models on image-text pairs. Inspired by Yu et al.
[11], we utilize the Contrastive Captioner (CoCa) pre-trained
model with frozen weights as the encoder. In Appendix A,
we present pseudocode for the CoCa pre-training process.
In Appendix B, we compare the effects of using CoCa
and CLIP as pre-trained encoders on model performance.
Experimental results indicate that CoCa emphasizes condi-
tional attention mechanisms in image generation, while CLIP
focuses on unified encoding and understanding of image and
text information in cross-modal learning. Therefore, using
CoCa as a pre-trained encoder has advantages in enhancing
the controllability of text-guided image editing tasks. CoCa
combines contrastive strategies and generative methods to
improve performance, which pre-trains the basic text-image
encoder-decoder model by incorporating contrastive and
captioning losses. The overall structure is illustrated in Fig.5.
By incorporating an approach based on object detection, the
model first obtains the object and attribute categories for each
region of the image. Then, the corresponding class labels
are combined with the original textual prompt, enabling
fine-grained descriptions and ensuring that the final input
contains both coarse-grained and fine-grained information.

CoCa adopts a structure similar to the standard image-
text encoder-decoder model, which encodes the image into
latent representations using a Vision Transformer encoder
and decodes the text using a Transformer decoder with causal
masking. However, CoCa differs from the standard decoder in

FIGURE 5. CoCa pre-trained model as an encoder with a cascaded
decoder structure.

its implementation mechanism. Specifically, CoCa omits the
cross-attention mechanism in the first half of the decoding
layer and directly uses the unimodal text representation from
the encoding layer as the input to the decoder for multimodal
image-text tasks. As a result, the CoCa decoder produces both
unimodal and multimodal text representations, allowing the
model to apply contrastive and generative objectives as the
loss functions. The loss function is defined as:

LCoCa = λCon · λCon + λCap · λCap (11)

where λCon and λCap are hyperparameters for the weighted
losses. Contrast loss between image and text embedding is
used in training, as well as caption loss, which automatically
predicts text labels to mitigate the problem that selected
objects may not appear in text prompts, thus promoting
consistent alignment between words and objects during
learning. Additionally, CoCa adopts a cascaded decoder
structure, integrating the image encoder for multimodal
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image-text representation into the cross-attention mecha-
nism, enabling a seamless fusion of cross-modal features.
Compared to traditional encoder structures, CoCa offers
higher computational efficiency and superior performance.

D. MASKING MECHANISM MODULE
In the field of text-to-image generation research, the predom-
inant focus is usually on the quality of the generated images,
while the usability of text for image editing receives relatively
less attention. The goal of text-based image editing is to make
changes to specific parts of an image, such as attributes or
entities, while keeping other parts unchanged. Previous text-
to-image generation methods did not explicitly specify the
regions of the image that needed to be edited, resulting in
modifications to the entire image. To enhance the text editing
capability of the model, this paper proposes a mask-based
semantic image editing method that uses text conditioning
in the diffusion model to infer masks indicating the regions
that need editing. Starting from the DDIM encoding of the
input image, the inferred masks guide the denoising process,
minimizing edits in the unaltered regions and improving the
controllability of text-based image editing.

1) COMPUTING THE EDITING MASK
During the DDIM denoising process, different diffusion
models conditioned on different text conditions produce
different noise estimates. By using a mixture of Gaussian
noise with different proportions, different regions of the
image can be associated with the conditional text, while the
variation in noise estimates minimally affects the background
of the image. For example, in Fig.2, changing ‘‘cat’’ to
‘‘rabbit’’ while keeping the background regions such as
‘‘dog’’ and ‘‘basket’’ unchanged. Therefore, the differences
in noise estimates can be used to infer masks that match the
regions in the input image that need to be edited. During
the experimentation process, adding too much noise to the
input imagemakes it difficult to correctly recognize the visual
elements in the input image. Hence, this paper uses Gaussian
noise with an intensity of 0.5 in all experiments and removes
extreme values from the noise predictions to stabilize the
spatial differences in the noise. To ensure the integrity of
controlling the editing regions, the masks typically extend
slightly beyond the regions that need to be edited, allowing
them to be smoothly integrated into the context.

2) ENCODING
The Diff-KT model uses the DDIM encoder Er to encode the
input image x0 and then fuses it with the reconstructed token
M that has undergone the masking mechanism to construct
the edited image. Since xr is the encoding of x0 in the hidden
space at the time step r , decoding xr using DDIM can restore
the original image x0. Assume that X = Rd is the space
of input images and pD represents the data distribution of
the original image and the text query (x0,Q) that edited the

image. For any x ∈ X , t ∈ [0, 1] satisfies the assumptions:

∥ϵθ (xt ,Q, t)∥2 ≤ C (12)

where ϵθ (·, ∅, t) is K1 − Lipschitz, K2 =

E(x0,Q)∈pDmaxt∈[0,1] ∥ϵθ (x,Q, t) − ϵθ (x, φ, t)∥. We have
further explanation in Appendix C. Then, for all noise coding
ratios 0 ≤ r ≤ 1, there are the following two bounds:

E
(x0,Q)∼pD
ϵ∼N (0,1)

∥x0 − Dr (Gr (x0, ϵ) ,Q)∥2 ≤ (C + 1) τ (13)

E
(x0,Q)∼pD

∥x0−Dr (Er (x0) ,Q)∥2≤
K2τ

√
τ 2+1

(
τ +

√
τ 2+1

)K1

(14)

where τ =
√
1/αr − 1 increases with the coding ratio r .

The encoding ratio r determines the strength of editing, and a
larger value can better match the text query, giving the model
stronger editing capabilities. This parameter’s impact on the
model was evaluated in the ablation experiments conducted
in this paper.

3) DECODING WITH MASK GUIDANCE
During the image editing process, DDIM with the textual
query Q as a condition is used to decode the image. In this
paper, the mask M is used to guide the diffusion process. The
diffusion process is guided by a mask M. The edited image
should be the same as the input image, except for the regions
masked by mask M. This means that while modifying the
edited image in the editing region, the background region
of the original image should be preserved. After inferring
the latent xr from the DDIM encoding, the pixel values
outside the mask are replaced with xr , and the image is finally
mapped back to the original pixels through decoding. The
mask-guided DDIM update process is defined as follows:

ỹt = Myt + (1 −M) xt (15)

Furthermore, both unconditional and conditional noise
estimation networks yield similar estimation results. There-
fore, when initialized with the same starting point xr , the
decoding behavior will also be highly similar, which helps
to minimize the distance between the edited image and the
input image.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) DATASETS
This paper conducts experiments on three datasets: CUB-200
[20], MS-COCO [21], and ILSVRC-2012 [22]. The specific
details of these datasets are shown in Table 1.

2) IMPLEMENTATION
In this paper, a basic Transformer model is trained, including
self-attention blocks, cross-attention blocks and Multi-Layer
Perceptron blocks, which cross-attention between text and
images, as well as self-attention within image tokens. For
detailed parameter designs, please refer to Table 2.
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TABLE 1. Details of the datasets.

TABLE 2. Basic transformer model configuration.

This experiment was conducted using NVIDIA A100
GPUs for both network training and testing. During the
training process, a batch size of 256was used, and the training
was performed for 15,000 steps, which took approximately
one week to complete. The Adafactor optimizer was utilized
to save memory consumption, allowing the model to fit with-
out model parallelization. Additionally, in DDIM sampling,
50 steps with a fixed schedule were used, and the encoding
ratio parameter further reduced the number of updates used
for editing. As a result, Diff-KT was able to complete image
editing within 10 seconds on a single A100 GPU.

3) EVALUATION CRITERIA
a: FID
The Fréchet Inception Distance(FID) score is a metric used
to measure the distance between the feature representations
of generated and real images. A lower FID value indicates
that the features of the two sets are closer, indicating that
the generated images are closer to the real images and thus
more visually realistic. The calculation formula for FID is as
follows:

FID =
∥∥µr − µg

∥∥+ Tr

(
6
r

+ 6
g

−2
(

6
r

6
g

) 1
2
)

(16)

where µr , µg, 6r , and 6g represent the mean of real
image features, the mean of generated image features, the
covariance of real image features, and the covariance of
generated image features, respectively.

b: CLIPSCORE
CLIPScore [23] is an evaluation metric that does not require
inference and differs from methods that use a pre-trained
Inceptionv3 network to compute similarity scores between
image distributions. In contrast, this evaluation criterion
is more robust. It measures the alignment between text
and generated images by directly calculating the text-image
similarity:

CLIPScore (c, v) = w ∗ (cos (c, v) , 0) (17)

TABLE 3. FID-30K and zero-shot FID-30K on the MS-COCO 256×256
validation set.

where w is the scaling factor, c is the CLIP embedding
of the caption, and v is the CLIP embedding of the
image. CLIPScore requires no additional model inference
operations, can process 4k image-text pairs in 1 minute, and
has a high similarity to human evaluation results.

c: CSFID-LPIPS TRADE-OFF RATIO
CSFID [24] is a conditional FID metric designed to measure
the consistency between image authenticity and editing
prompts. LPIPS [25] is a perceptual distance metric that
quantifies the distance between the original image and
the generated image. When performing text-driven image
editing, it is essential not only to match the textual query but
also to ensure that the generated image closely resembles the
input image as much as possible.

B. QUANTITATIVE EVALUATION
In this study, 30,000 images were randomly generated on the
test sets of the COCO and CUB-200 datasets. The quality
and diversity of the generated samples were evaluated by
calculating the FID score, while the IS score was used to
measure the diversity of the generated images. These metrics
were compared with those of state-of-the-art text-to-image
generation models in the field. The experimental results are
presented in Table 3.

In Table 3, the Diff-KT model shows a 3.48% reduction
in zero-shot FID-30K scores on the MS-COCO dataset
compared to the RAPHAEL [32]. This indicates that the
Diff-KT model has improved the realism of generated
images and outperforms well-known image generators such
as Stable Diffusion, Imagen, ERNIE-ViLG 2.0 [31], and
DALL-E 2 [13], achieving the best performance in text-to-
image generation. The Diff-KT model’s advantage lies in
its combination of knowledge enhancement and the masked
Transformer mechanism, which helps preserve the details of
textual descriptions. This combination is likely a key factor

112956 VOLUME 12, 2024



H. Zhao et al.: Diff-KT: Text-Driven Image Editing by Knowledge Enhancement and Mask Transformer

TABLE 4. Quantitative evaluation of the COCO dataset.

in its superior performance, as the knowledge enhancement
strategy effectively supplements critical elements in the
scene, resulting in images that better align with the textual
descriptions.

To further validate the performance of the model,
we employed CLIPScore as an evaluation metric to measure
the alignment between images and text. We compared the
Diff-KT model with other advanced models in this field, and
the experimental results are presented in Table 4.

In Table 4, the Diff-KT model achieves outstanding
results on the MS-COCO dataset. Specifically, the Diff-KT
model achieves an FID score of 17.96, which is an 8.37%
improvement compared to the RQVAE [34] using an auto-
encoder approach. Additionally, the CLIPScore is 0.01 higher
than that of the CogView [35]. This success can be attributed
to the knowledge enhancement strategy, which improves the
understanding of fine-grained semantics, and the attention
of the CoCa pre-trained encoder to multimodal text-image
representations, resulting in a higher degree of alignment
between the text and generated images and improved text-
image correlation. Computational complexity results indicate
that our Diff-KT model maintains low parameter count and
computational cost while delivering efficient inference speed
and excellent performance. These results are detailed in
Appendix B.

C. QUALITATIVE EVALUATION
To provide a visual understanding of the model’s perfor-
mance, this paper presents examples comparing the images
generated by Diff-KT with those generated by DALLE [7]
and GLIGEN [1]. The comparative results are shown in Fig.6.

In Fig.6, we observe that the Diff-KT model exhibits a
precise understanding of the number of objects described
in the text. For instance, in the first and second columns
of the generated images, the Diff-KT model accurately
generates the specified number of objects (‘‘two cats’’ and
‘‘three giraffes’’), and these objects blend naturally into the
background, resulting in more realistic images compared
to other methods. The images in columns 3 to 5 highlight
the model’s ability to understand multi-object composition
and positional relationships while maintaining the spatial
relationships indicated in the text (e.g., up vs. down, left vs.
right, front vs. back). For example, when the text prompt is
‘‘A large present with a red ribbon to the left of a Christmas
tree,’’ the Diff-KT model successfully comprehends the

relative position of the gift and the Christmas tree, while also
accurately capturing the detailed feature of the gift having a
red ribbon.

In addition, the images generated by the Diff-KT model
excel in representing the integrity and realism of objects
compared to the other two methods. For instance, in the last
column of the generated images, the Diff-KT model more
comprehensively depicts the ‘‘bowl’’ and ‘‘fruits,’’ whereas
the other methods tend to selectively represent a specific
category of objects. This paper attributes the outstanding
performance of the Diff-KT model in object positioning,
scene understanding, and quantity representation to the
injection of knowledge. This knowledge endows the model
with the ability to perceive and understand various named
entities and detailed descriptions. Additionally, the use of the
multimodal pre-training model, CoCa, further enhances the
model’s capability for semantic and visual alignment.

To further validate the semantic editing capability of the
model, this paper compares the Diff-KT model with the
SDEDit [6] and the FlexIT [10] using the CSFID-LPIPS
trade-off ratio on the ILSVRC-2012 dataset, as shown in
Fig.7. Both SDEDit and Diff-KT are diffusion-based editing
methods, while FlexIT is a mask-free editing method based
on VQGAN and CLIP. Since the edited images better
match the text query, the CSFID score of the edited images
decreases. However, the edited images may deviate more
from the input image, leading to an increase in LPIPS
distance. Therefore, this paper uses the CSFID-LPIPS trade-
off ratio to evaluate the editing capability of the models.

To conduct a fair comparison with two other editing
methods, this paper excludes the use of image labels in the
experiments and employs empty text as a reference during the
inference of editing masks. A lower CSFID score indicates
that the model better adheres to the textual conditions.
Additionally, the desired outcome is to generate images that
are closer to the original image, thereby reducing the LPIPS
distance. The experimental results in Fig.7 demonstrate that
the Diff-KT model achieves the best trade-off between
CSFID and LPIPS compared to the other methods for the
same image editing task. Specifically, the Diff-KT model
achieves the lowest CSFID value while significantly lowering
the LPIPS score, indicating its strong editing capabilities.
The paper attributes the superior editing performance of the
Diff-KT model to the utilization of the masking mechanism,
which guides the denoising process and enables precise
localization of the image editing region. The effects of
using the Diff-KT model for text-guided image editing are
illustrated in Fig.8.

D. ABLATION EXPERIMENTS
To validate the performance enhancement of the model
components proposed in our study for text-guided image edit-
ing tasks, we evaluated the quality of reconstructed images
using various components on the CUB-200 dataset. The
experimental results are presented in Table 5. Furthermore,
to ensure the objectivity and accuracy of the evaluation
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FIGURE 6. The Diff-KT and DALLE, GLIGEN generated images.

TABLE 5. The image reconstruction quality of various methods was evaluated on the CUB-200 dataset.

FIGURE 7. Comparison of the Diff-KT model with other image editing
methods on the ILSVRC-2012 dataset.

criteria, we detailed the evaluation metrics used and their
rationale in Appendix D. In Table 5, ‘‘K’’ denotes the
knowledge enhancement module, ‘‘CoCa’’ represents the
pre-trained encoder module, and ‘‘M’’ stands for the mask
mechanism module. From the experimental results, it is
evident that the mask mechanism significantly improves the
LPIPS, PSNR, and CLIPScore metrics, leading to a notable
enhancement in image quality. This improvement is attributed
to the mask mechanism achieving semantic alignment
between text and image features in the reconstructed image

FIGURE 8. Example of image editing.

feature space, thereby further enhancing the controllability
of text-guided image editing tasks. Moreover, the CoCa
pre-trained encoder accurately captures subtle semantic
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FIGURE 9. Impact of different components on the model.

relationships between text descriptions and images, ensuring
a high semantic match between generated images and text,
thereby providing users with more expected editing results.
Lastly, the knowledge enhancement strategymakes generated
images closer to the original images in terms of brightness,
contrast, and structure, significantly increasing the realism
and credibility of the images. Therefore, by combining
the knowledge enhancement module, pre-trained encoder
module, andmaskmechanismmodule, our proposed Diff-KT
model demonstrates outstanding performance and extensive
application prospects in text-guided image editing tasks.

In this section, multiple variant models were designed
to test the impact of text knowledge and visual knowl-
edge enhancement strategies on model performance. The
convergence curves in Fig.9(a) show that introducing addi-
tional knowledge into the learning process of the diffusion
model leads to significant performance gains in terms of
image fidelity, image-text alignment, and convergence speed.
Specifically, the inclusion of text knowledge (w/ textual)
enables the model to have precise fine-grained semantic
control over the generated images, while the incorporation
of visual knowledge (w/ visual) allows for the natural

FIGURE 10. Effect of masking mechanisms and different coding ratios.

composition of objects and scenes, thereby stabilizing and
improving the model performance.

In experiments that incorporate intricate prompts, base-
line models encounter significant challenges, primarily
manifested as the omission of essential objects and the
misattribution of attributes. To delve deeper into these
issues, objects or incorrect allocation of attributes. Fig.9(b)
presents a meticulous comparison of various components,
explicitly showcasing the distinctive influence of each
individual strategy. Notably, the harmonious integration of
multiple strategies yields a remarkable improvement in
model performance, not only guaranteeing a high level of
fidelity in image generation but also significantly refining
the correspondence between image and text in intricate, fine-
grained visual landscapes.

To validate the ability of the mask mechanism and
encoding ratio in controlling image editing based on text, this
study employed the CSFID-LPIPS trade-off ratio to measure
their relative contributions. As shown in Fig.10, compared to
the SDEdit, the use of the mask mechanism better preserves
the image background, resulting in a lower CSFID-LPIPS
trade-off ratio and reduced average editing distance from
the input image. Additionally, a lower encoding ratio of
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FIGURE 11. Human evaluation of Diff-KT and DALL-E, GLIGEN.

0.25 leads to more image modifications and a poorer CSFID-
LPIPS trade-off, while a higher encoding ratio of 0.75 results
in overly restrictive masks, causing CSFID scores to plateau
around 38 even at larger encoding ratios. Therefore, the
encoding ratio used in the Diff-KT model is set to 0.5.

E. HUMAN EVALUATION
To validate the ability of the Diff-KT model to capture
the cross-modal mapping between text and image and
enhance the consistency between generated images and text,
this paper presented three sets of images generated by
the Diff-KT, DALLE, and GLIGEN models to 30 human
evaluators. During the evaluation process (in appendix c),
the evaluators were asked to compare each set of images
based on the alignment of image-text pairs and image fidelity.
The evaluators were unaware of which model generated the
images. They then selected the set of images they believed
performed the best or chose that there was no significant
difference in performance among the three sets of images.
This paper reports the evaluator preference rate with a 95%
confidence interval, as shown in Fig.11.

In Fig.11, it can be observed that the human evaluators
showed a preference for the generated images by the Diff-KT
model in terms of image fidelity (70.3%) and consistency
(79.1%), which were significantly higher than those of the
DALLE and GLIGEN models. The outstanding performance
of the Diff-KT model in image-text alignment and image
fidelity further confirms its ability to generate high-quality
images that align with the given text, aided by knowledge-
enhancement strategies. Additionally, the mask mechanism
and the use of a multimodal pre-training model contribute
significantly to capturing the features of both text and image,
enabling better alignment of semantic and visual information.

V. CONCLUSION
To alleviate the issues of low correlation between generated
images and text, as well as poor controllability of text
editing in text-to-image generation methods based on dif-
fusion models, the diffusion text-to-image generation model

based on Knowledge enhancement and masked Transformer
is proposed. The model utilizes knowledge enhancement
strategies to learn more important information about key
elements in the external world, which is then employed
as prior knowledge in the diffusion inference process to
enhance themodel’s fine-grained language control capability.
Additionally, a frozen-weight multimodal pre-training model
called CoCa is employed to extract multimodal joint repre-
sentations of complex and constructive language and visual
information, mitigating the semantic gap between text and
image. It is worth noting that the masking mechanism plays a
crucial role in accurately locating the image editing regions,
enabling the model to minimize edits in regions of lesser
interest. The experimental results in this paper demonstrate
that the Diff-KT model not only improves the correlation
between generated images and text but also enables more
precise localization of image editing regions using textual
prompts.

Although the text-to-image generation model proposed in
this paper demonstrates superior performance, it still faces
issues of insufficient details and semantic inconsistencies
in complex scenarios. These issues may be related to the
limitations of the training data and the model’s ability to
process complex textual descriptions. Future research should
incorporate more contextual information and multi-modal
data, as well as expand the diversity and scale of the
dataset, to enhance the model’s generative capabilities and
generalization performance. Additionally, further testing and
optimization in practical applications are necessary to ensure
the model’s robustness and reliability.

APPENDIX A
COCA PSEUDO-CODE FOR THE PRE-TRAINING
PROCEDURE
CoCa is built upon an encoder-decoder architecture, where
the text decoder is divided into two parts: the unimodal text
decoder and the multimodal text decoder. A cls token is
added at the end of the text, and the unimodal text decoder
does not engage in cross-attention with image features. This
configuration allows the cls token to capture the global
features of the entire sentence after passing through the
unimodal text decoder. Simultaneously, attention pooling is
used to extract global features from the image encoder for
image feature extraction. The two global features enable
contrastive learning between images and text, with attention
pooling functioning as a multi-head attention mechanism
where the key and value are features obtained from the image
encoder, and the query is a pre-defined trainable embedding.
Since only one global feature is needed, only one query is
defined.

The multimodal text decoder is used for generation tasks
and also employs attention pooling to extract features from
the image encoder. However, in this case, the number of
queries is set to 256, allowing attention pooling to obtain
256 features to serve as inputs for the cross-attention in
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the multimodal text decoder. The pseudocode for CoCa is
outlined below:

APPENDIX B
EVALUATING THE IMPACT OF USING COCA AND CLIP AS
PRE-TRAINED ENCODERS ON MODEL PERFORMANCE
CoCa (Conditional Combinatorial Attention): CoCa is an
image generation model designed to achieve more accurate
and diverse image generation. It employs a conditional
combinatorial attention mechanism by dynamically focusing
on local regions during image generation to better capture
relationships and contextual information between different
objects. This approach enhances the quality and diversity
of generated images. The key feature of CoCa is its
use of a conditional combinatorial attention mechanism,
resulting in more coherent and realistic generated images.
It performs well in image generation tasks, particularly in
scenarios that require consideration of relationships between
objects.

CLIP (Contrastive Language-Image Pre-training): CLIP
is a cross-modal learning method aimed at unifying image
understanding and semantic understanding through con-
trastive learning of images and text. It leverages large-scale
text and image data to train a universal visual-semantic
encoder through contrastive learning. The main feature of
CLIP is its ability to effectively integrate image and text
information for cross-modal semantic understanding. It can
be used for tasks such as image classification and text
description generation, achieving excellent performance on
some benchmark datasets.

Algorithm: Pseudocode of Contrastive Captioners Architec-
ture
# image, text.ids, text.labels, text.mask: paired image, text data
# con_query: 1 query token for constrastive embedding
# cap_query: N query tokens for captioning embedding
# els_token_id: a special cls_token_id in vocabulary
# vit_encoder: vision transformer based encoder
# Im_transformer: language-model transformers

def attentional_pooling(features, query):
out = multihead_attention(features,query)
return layer_norm (out)

img_feature = vit_encoder (image) # [batch, seq_len, dim]
con_feature= attentional_pooling (img_feature, con_query) # [batch, 1, dim]
cap_feature = attentional_pooling (img_feature, cap_query) # [batch, N,
dim]

ids = concat (text.ids, cls_token_id)
mask = concat(text.mask, zeros_like (cls_token_id)) # unpad cls_token_id
txt_embs = embedding_lookup (ids)
unimodal_out = lm_transformers (txt_embs, mask, cross_attn=None)
multimodal_out =1m_transformers (

unimodal_out[:, :−1, :], mask, cross_attn=cap_feature)
cls_token_feature = layer_norm (unimodal_out) [:, −1:, :]#[batch, 1, dim]

con_loss= contrastive_loss (con_feature, cls_token_feature)
cap_loss = softmax_cross_entropy _loss (

multimodal_out,labels=text.labels, mask=text.mask)

In summary, CoCa focuses on the conditional attention
mechanism in image generation, while CLIP emphasizes
unified encoding and understanding of image and text
information in cross-modal learning. They can be applied
in different scenarios, each with its own advantages and
characteristics.

APPENDIX C
SUPPLEMENTARY INFORMATION ON THE ENCODING
PROCESS
In Diff-KT, we employ DDIM to encode images before the
actual editing steps. In this section, we provide theoretical
insights into why this component produces better editing
results than adding random noise as in SDEdit [6]. Since xr
is the encoded version of x0, decoding xr unconditionally
with DDIM will yield the original image x0. In Diff-KT,
we use DDIM decoding conditioned on a text query Q,
but there is still a strong bias to maintain proximity to the
original image. This is because both the unconditional noise
estimation network ϵθ and the conditional noise estimation
network ϵθ (·,Q) often produce similar estimations, leading
to similar decoding behavior when initialized from the same
starting point xr . This means that the edited image will
have a smaller distance from the input image in terms of
key attributes in the context of image editing. We capture
this phenomenon with the following proposition, where we
compare DDIM encoder Er (x0) with the SDEDit encoder
Gr (x0, ϵ) :=

√
αrx0 +

√
1 − αr , which simply adds noise

to the image x0.

APPENDIX D
EVALUATION METRICS AND RATIONALE FOR ABLATION
EXPERIMENTS
A. MSE
Mean Squared Error, commonly used in statistics and
machine learning, is a metric that measures the degree of
difference between predicted values and actual values. It is
computed by averaging the sum of squares of differences
between predicted and actual values. The specific formula for
calculating MSE is:

MSE =
1
mn

m−1∑
i=0

n−1∑
j=0

[I (i, j) − K (i, j)]2 (18)

where 6 represents summation over all samples, I (i, j) and
K (i, j) are the pixel values at point (i, j) in the original image
and the processed image, respectively, m and n are the height
and width of the image. A smaller value of MSE indicates a
more accurate predictive capability of the model.

B. LPIPS
Learned Perceptual Image Patch Similarity is a deep
learning-based image quality assessment metric designed
to mimic human visual perception in measuring similarity
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between images. Compared to traditional image quality
assessment metrics such as PSNR and SSIM, LPIPS is closer
to human perception and can more accurately reflect human
evaluation of image quality. When scoring using LPIPS,
a pair of input images is first prepared, such as the original
image and the processed image. Then, a pre-trained CNN
is used to extract features from the input images, and the
distance between these feature vectors is calculated using
cosine distance to measure the similarity between images.
The feature distance calculation method used in this paper
employs cosine distance. A lower LPIPS score indicates a
greater visual perceptual difference between the processed
image and the original image; conversely, a higher LPIPS
score indicates a closer visual perceptual similarity between
the processed image and the original image.

C. SSIM
Structural Similarity Index is a metric used to assess image
quality by comparing the brightness, contrast, and structural
similarity of two images to evaluate their degree of similarity.
Specifically, SSIM calculates brightness estimation using
mean values, contrast estimation using variance, and struc-
tural similarity estimation using covariance. SSIM scores
have different implications across different ranges:

1) When SSIM is greater than 0.9, it indicates that
two images are very similar, with differences barely
perceptible, making it suitable for applications with
extremely high demands on image quality.

2) When SSIM is between 0.7 and 0.9, it indicates a
high degree of similarity between two images, where
differences are difficult for the human eye to detect.

3) When SSIM is between 0.5 and 0.7, it indicates a
moderate degree of similarity between two images,
where some subtle differences may be present.

D. PSNR
Peak Signal-to-Noise Ratio is a widely used metric for
evaluating image and video quality. It measures the difference
between the original image (or video frame) and the
processed image (or video frame), specifically in terms of
noise intensity. A higher PSNR value indicates better image
quality and less distortion. PSNR is calculated primarily
based on Mean Squared Error (MSE). First, the Mean
Squared Error (MSE) between the original image and the
processed image is computed, and then it is converted into
decibels (dB) to obtain the PSNR. The specific formula for
calculating PSNR is as follows:

PSNR = 20 · lg (MAXi) − 10 · lg (MSE) (19)

where MAXi represents the possible maximum pixel value
in the image. It is important to note that while PSNR is a
commonly used evaluation metric, it does not always align
perfectly with human visual perception. Sometimes, images
with higher PSNR values may not be visually more appealing
than images with slightly lower PSNR values. Therefore,
in practical applications, it may be necessary to combine

other evaluation metrics (such as SSIM, LPIPS, etc.) for a
comprehensive assessment.

APPENDIX E
DESIGN OF CROSS-MODAL TRANSFORMER MODULE
Since the number of text tokens α and image mased tokens β

may not be consistent at the same time, the two are filled with
0 vector to the same sequence length N as the two inputs Iα ∈

RN×dα and Iβ ∈ Rdβ×dα of the basic Transformer module.
There are 24 Transformer layers within the base Transformer
module. A Transformer layer includes: multi-head attention
module, residual and normalization layer, feedforward layer.
A multi-head attention module is composed of h Transformer
cross-attention modules to obtain the degree of matching
and correlation of multi-mode information under different
mappings. The individual cross-attention modules are shown
below.

For the two input modes Iα ∈ RN×dα and Iβ ∈ Rdβ×dα ,
dot multiply with the weight WQα ∈ Rdα×dk and WKβ ∈

Rdβ×dk matrix respectively to generate Query matrix Qα

and Key matrix Kβ ; meanwhile, dot multiply Iβ with the
weight WVβ ∈ Rdβ×dα matrix to generate Value matrix Vβ .
Formula (20) is used to calculate the attention score matrix
between the two modes, which represents the correlation
degree of the information sequence of the two modes under
a certain mapping. The dot product of attention score matrix
A and weight matrix Vβ reflects the potential adaptation of
mode Iβ to mode Iα .

A = softmax

(
QαKT

β
√
dk

)
(20)

The i-th cross-attention module can be expressed as for-
mula (21), where each attention module has different weights
W i
Qα

, W i
Kβ
, and W i

Vβ
to obtain different Qαi, Kβi, and Vβi

matrices. These matrices are used to obtain the output Oiα ∈

RN×dα of the fusion of the two modes. The outputs of h
single-cross attention modules are concatenated to obtain the
output Oα ∈ RhN×dα of the multi-head attention module,
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where h is the number of heads.

Oiα = AVβi

= softmax

(
QαKT

β
√
dk

)
Vβi

= softmax

 IαW i
Qα

(
W i
Kβ

)T
ITβ

√
dk

 IβW i
Vβ

,

i ∈ {1, 2, 3, . . . , h} (21)

The input mode Iα of the n-th Transformer layer is the
output I [n−1]

α of the n − 1 Transformer layer, and mode Iβ
is always the mode I [0]β of the initial layer. The multi-head
attention module in the n-th Transformer layer outputs
O[n−1]

α and input mode I [n−1]
α for residuals and normalization

operations. As shown in formula (22), the residuals and
normalization layers include residuals joining and layer
normalization operations.

Î [n]α = LayerNorm
(
O[n−1]

α + I [n−1]
α

)
(22)

Î [n]α through the Feed Forward layer and the Add & Norm
layer to add nonlinear changes, improve the learning ability
of the network. As shown in formula (23), the Feed Forward
layer consists of two fully connected layers and ReLU
functions.

I [n]α = LayerNorm
(
FeedForward

(
Î [n]α

)
+ Î [n]α

)
=LayerNorm

(
max

(
0, Î [n]α W [n]

1 +b[n]1

)
W [n]

2 +b[n]2 + Î [n]α

)
n ∈ {1, 2, 3, · · · ,D} (23)

where, W [n]
1 , b[n]1 and W [n]

2 and b[n]2 represent the weight W
and offset b of the two fully connected layers respectively,
and then output the output of the n-th Transformer layer.
In this paper, the cross-attention mechanism in the

Transformer can calculate the similarity between different
modal input information, thus achieving adaptive association
and fusion of image and text information based on the
similarity score. However, the cross-attention mechanism
also has some limitations. The calculation of cross-attention
is very complex, especially when processing high-resolution
images or long sequence of text, which may lead to a
large consumption of computing resources. The parameter
optimization of cross-attention model may be difficult, and
the weight of interaction between different modalities needs
to be carefully balanced.

To overcome these limitations, in the subsequent research
process, we will consider using more efficient attention
mechanisms, designing more robust loss functions, utilizing
unsupervised or semi-supervised learning methods to reduce
dependence on labeled data, or developing specialized
hardware to accelerate the calculation of cross-attention.

TABLE 6. The model size and inference speed are compared with recent
text-generated image methods.

APPENDIX F
COMPARISON OF MODEL TIME CONSUMPTION
To comprehensively compare the latest text-to-image gener-
ation methods, we analyzed them from three perspectives:
model type, parameter size, and inference speed. Although
there are huge differences in model structure, parameter
numbers, and training data, the results in Table 6 cannot
be directly compared. However, it is worth noting that
GAN-based methods are the most competitive in terms of
inference speed in current text-to-image models. Due to the
inherent advantage of generating images in one step, GAN
methods are faster than autoregressive or diffusion models.
Among diffusion-based text-to-image generation methods,
our model not only has the smallest number of parameters
but also has shorter inference time. Compared with the latest
LDM model, we used fewer total images during training.

The results show that compared to LDM, one of the
most important open source large-scale pre-trained models,
our Diff-KT achieves better performance even with smaller
model parameters and data volumes. In addition, our Diff-KT
only takes 4.63s to generate an image, which is 0.21s faster
than LDM. What’s more, the Diff-KT is able to perform fast
reasoning on the CPU without other acceleration Settings,
greatly reducing the user’s hardware requirements. At the
same time, the computational cost required to pre-train
our Diff-KT is also significantly lower than these large
pre-trained autoregressive and diffusion models.

APPENDIX G
HUMAN EVALUATION DESIGN
We designed twomain evaluation criteria: textual consistency
(how the image content relates to the input text) and visual
authenticity (whether the image looks real and natural).

1) Reviewer background:We invited 30 reviewers, includ-
ing experts in computer vision and image processing,
as well as graduate students with backgrounds in art
and design, to participate in the assessment to ensure
diversity and comprehensiveness.

2) Evaluation task: Reviewers were asked to vote on each
of the three sets of images generated by the Diff-KT,
DALLE, and GLIGEN models according to the above
criteria.
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3) Evaluation process:
a) 100 groups of images were randomly selected

from the image set we generated for evaluation
to ensure the representativeness of the evaluation
results.

b) Each reviewer independently votes for each
image, and the voting criteria are clear and
consistent.

c) Collect the number of votes of all reviewers for
the image generated by the Diff-KT, DALLE and
GLIGEN models.

4) Presentation and interpretation of evaluation results in
shown Fig. 11.

It can be observed that the preference degree of human
evaluators for the authenticity and consistency of the
generated images of the Diff-KT model is 70.3% and
79.1%, respectively, which is significantly higher than that of
DALLE and GLIGEN models. The excellent performance of
theDiff-KTmodel in image-text alignment and image fidelity
once again proves that the model can generate high-quality
images that conform to text with the help of knowledge
enhancement strategies. At the same time, mask mechanism
and multimodal pre-training model can better capture the
features of text and image, andmake great contributions to the
alignment of semantic information and visual information.
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