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ABSTRACT In clinical routine, the assessment of myocardial viability is based on visual analysis of late
gadolinium enhancement (LGE) sequences. This procedure remains subjective and insufficient, particularly
in cases of improbable viability, where scar transmurality spans 25% to 75% of the myocardial segment total
thickness. To address these challenges, this paper introduces a novel framework based on deep convolutional
neural network (CNN) for objective and quantitative assessment of myocardial viability. The proposed
method was validated on 73 patients with myocardial infarction and 10 healthy subjects. The initial stage
involves the automatic quantification of regional myocardial wall thickness (MWT) in multiple radial
directions to offer a detailed regional assessment compared to traditional techniques. This method is based on
automatic segmentation of the left ventricle contours using U-Net. Afterwards, we proposed a novel protocol
to automate the classification of myocardial segments into viable and nonviable classes. Additionally,
we introduced MWT as a new key parameter for studying peri-infarct areas. Comparative study of our
method to related works proves its superiority with an average mean absolute error (MAE) of 1.21 ± 1.00.
Accurate quantification of MWT allowed the detection of myocardial segments desynchronization and the
delimitation of infarction transmurality with an accuracy of 98.13%, a specificity of 99.09% and a sensitivity
of 97.52% with (p_value < 0.001). The obtained results proved that incorporating the proposed protocol in
clinical practicemay facilitate the differentiation between viable and non-viable segments, aiding in directing
patient care and minimizing intra and inter-observer variability.

INDEX TERMS Automatic segmentation, regional wall thickness, cine-MRI, automatic quantification,
myocardial viability, CNN.

I. INTRODUCTION
Over the last few decades, cardiovascular magnetic res-
onance imaging (CMR) has become widely utilized in
cardiac diagnostics, establishing itself as a cornerstone imag-
ing technique. Its exceptional precision and reliability have
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positioned it as the gold standard for evaluating left ven-
tricular (LV) function and structure [1]. Recently, there has
been increasing recognition of the efficacy of CMR also
in evaluating myocardial viability. In this context, CMR
offers two primary methods for assessing myocardial via-
bility: contractile reserve evaluation through dobutamine
stress and late gadolinium enhancement (LGE) imaging
using gadolinium-based contrast agents (GBCA). The latter
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method, LGE imaging, is more frequently used and pre-
ferred in clinical practice [2]. In this method, GBCAs are
administered intravenously, and due to their high affinity for
extracellular space, they accumulate in areas of disrupted
myocardium, such as scar tissue or areas with fibrosis. After
a delay, typically around 10-20 minutes, images are acquired
using LGE sequences that highlight the distribution of
gadolinium within the myocardium [3]. The regions display-
ing increased signal intensity in these images indicate areas
with changes in tissue composition, offering valuable infor-
mation on myocardial viability, scar characterization, and the
extent of myocardial damage. In clinical settings, evaluat-
ing myocardial viability requires careful visual examination
of LGE sequences, where the thickness of hyper-enhanced
regions is compared to the overall thickness of the myocar-
dial wall. Based on the percentage of hyper-enhanced zones,
myocardial segments are categorized into three main classes
as follows: if the area of the infarcted zone is less than
25% of the myocardial wall thickness (MWT), the major-
ity (87%) of the segments is viable and can recover their
contractile function after revascularization, while when this
area presents more than 75% of the MWT, the segment
is considered non-viable and revascularization is futile. For
peri-infarcted areas (between 25% and 75%), it is difficult to
identify hibernating and necrotic areas which still represents a
main challenge in all research involving myocardial viability
assessment in MRI [4]. Hence, despite the effectiveness of
this sequence in the identification and delimitation of the
infarcted zones and zones at risk, it has been demonstrated
that it represents irreversible myocardial injury-necrosis in
the acute stage and does not distinguish hibernating from
necrotic areas. Furthermore, previous research has shown
that differences in LGE location and pattern are associated
to patient clinical presentation and prognosis [5]. Moreover,
due to the fact that not all patients with viable myocardium
improved function after revascularization, viability tests may
have a poorer specificity and still a clinical challenge in
current practice. This is due to the lack of trustworthy
regional indices for quantitative assessment of cardiac con-
tractility. Consequently, it poses a significant barrier for
cardiac function analysis and directly impacts the accuracy
of myocardial viability assessment, which is crucial for
the proper use of invasive treatment strategies and patient
prognostication [6].
To address these challenges, this study aims to go beyond

traditional methods used in clinical routine that rely on visual
interpretation of hyper-enhanced zones in LGE sequences.
The novel model we have developed aims to propose an auto-
matic algorithm for objectivemyocardial viability assessment
using convolutional neural network (CNN). The proposed
method consists in classifying myocardial sub-segments into
viable and non-viable based on the quantification of regional
myocardial thickness and the transmurality of the scar area.
In this context, the main contribution of this research is
to offer a tool that aids in the diagnosis of patients with

myocardial infarction, as well as in clinical decision-making
regarding the necessity of revascularization procedures.

The rest of this paper is structured as follows: In section
two, we review previous research related to our study.
Section three outlines the dataset characteristics, details the
image preprocessing steps, and thoroughly explains the pro-
posed method for objective myocardial viability assessment.
Section four presents the experimental findings, followed by
a discussion of these results in section five. Finally, section
six offers the conclusion.

II. LITERATURE REVIEW
To tackle difficulties associated with the analysis of LGE
sequences, researchers have increasingly explored hybrid
imaging approaches, like PET-MRI, as described in [7],
to leverage both modalities’ unique strengths and uncover
complementary information while minimizing redundancies.
The findings indicated that when comparing scar locations,
MR imaging identified six additional infarcted areas com-
pared to PET imaging. Furthermore, the correlation between
hibernation and the extent of transmural scarring demon-
strated a moderate to weak association (r = 0.4), which
was further attenuated in the group with lower ejection frac-
tions. In addition, Jiang et al. [8] have used stress MRI to
obtain qualitative and quantitative parameters of segmental
myocardium. In this research, myocardial segments supplied
by coronary chronic total occlusion (CTO) target vessels
were grouped based on collateral circulation assessed by
angiography and categorized as negative, viable, or trans-
infarcted depending on stress perfusion and LGE extent.
In another clinical research [9], researchers analyzed MR
images to assess both anatomical and functional aspects of
the heart, including wall motion. On the LGE sequences,
segments exhibiting pathology were categorized into two
groups: those with less than 50% LGE (considered viable)
and those with greater than 50% LGE (deemed non-viable).
This methodology may lack precision and could potentially
influence clinical decisions.

Additionally, in 2021, the research work of Spath et al. [10]
presented a new method for the quantification of myocardial
viability in patients with acute myocardial infarction (AMI).
This method is based on the visualization of intracellular cal-
cium handling using manganese-enhanced MRI (MEMRI) to
distinguish between stunned and viablemyocardial segments.
Among the limitations of this study is that LGE and MEMRI
scans were conducted 48 hours apart, potentially resulting
in changes in contrast enhancement due to the dynamic
nature of infarct characteristics during the first week post-
revascularization.

Furthermore, a virtual native enhancement (VNE) tech-
nology, was used by Zhang et al. [14] to generate LGE-like
images without contrast, combining cine-MR images and
native T1 maps via artificial intelligence. While validated
in hypertrophic cardiomyopathy (HCM), further studies are
needed for myocardial scar assessment in post-MI patients.
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Recently, the research study of Lalande et al. [12] inves-
tigated whether deep learning techniques can differentiate
between non-infarct and pathological exams, with or with-
out hyper-enhanced areas, and automatically quantified the
extent of myocardial infarction. The obtained results proved
that improving the segmentation of diseased areas remains
a challenge due to their small size and lack of contrast with
surrounding structures. Other deep learning approaches have
been proposed to study myocardial infarction (MI) extent in
order to quantitatively assess myocardial viability such as
in [13], [14], [15], and [16].

While considerable advancements have been achieved in
aiding clinical experts to quantify MI damage and assess
myocardial viability, significant challenges persist in this crit-
ical area. For instance, manual segmentation of LV contours
remains subjective and susceptible to low reproducibility,
resulting in high intra and interobserver variability. This
stage directly impacts the accuracy of myocardial thickness
quantification, upon which myocardial viability assessment
relies. Furthermore, current semi-automatic methods are
compromised by biases introduced during LV boundary
extraction.

Motivated by the literature studies, this research work pro-
vides a novel automatic algorithm for objective myocardial
assessment based on deep learning. The main contributions
and objectives of this work are summarized as follows:

a) A fully automated method has been proposed for left
ventricular cavity segmentation according to AHA
standards. This approach provides regional assess-
ment of myocardial segments across basal, mid, and
apical slices, reducing errors associated with human
intervention.

b) The segmentation of the left ventricular cavity into
17 segments, further divided into three equal sub-
segments, allows for a more detailed analysis and
regional quantification of myocardial thickness and
thickening across all phases of the cardiac cycle. This
parameter is a key indicator of myocardial viability
and enables accurate quantification of the extent and
severity of MI damage.

c) The quantification of regional parameters is achieved
through automatic segmentation of left ventricular con-
tours using a modified U-Net architecture, which has
demonstrated superior accuracy compared to state-of-
the-art methods. This approach enables precise quan-
tification while reducing errors associated with manual
segmentation commonly used in clinical practice.

d) An automatic algorithm has been proposed to clas-
sify myocardial sub-segments as viable or non-viable
using a convolutional neural network (CNN) based on
quantitative parameters such as RWT and scar transmu-
rality. This approach enhances diagnostic objectivity
and minimizes inter and intra-observer variability.

e) The proposed protocol allows accurate classification of
sub-segment with improbable viability which remains
a challenge for radiologists. This avoids unneces-

sary revascularization procedures, thereby improving
patient outcomes and optimizing treatment strategies.

III. METHODOLOGY
A. METHOD OVERVIEW
The proposed framework comprises two main procedures as
illustrated in Figure.1.

We initiate with a data preprocessing step, where the
primary objective is to automatically segment the LV con-
tours. This segmentation is achieved leveraging a deep neural
network, developed as part of our previous research. Subse-
quently, we further segment the LV cavity into 17 segments,
adhering to the standards set forth by the American Heart
Association (AHA). This step facilitates the RWT quantifi-
cation, serving as the initial marker of myocardial viability.
In a second step, we introduce a novel objective protocol for
the assessment of myocardial viability. This protocol relies
on quantitative assessments using CNN. To assess the clinical
impact of our method, we conducted a comparison between
the diagnoses made by the radiologist using our protocol
and that established through visual interpretation of LGE
sequences.

B. PATIENT POPULATION AND CMR ACQUISITION
Database for our study was gathered from the Military Hos-
pital of Tunis. The study cohort comprises seventy-three
patients diagnosed with myocardial infarction, consisting of
35 males and 38 females, aged between 27 and 69 years and
ten healthy subjects. All CMR examinations were acquired
during end-expiration breath-hold using a 3 Tesla MRI
machine (Siemens Medical solution, Erlangen, Germany)
using steady-state free precession (SSFP) sequence with ret-
rospective synchronization to the electrocardiogram (ECG).
For each patient, referential segmentations of endocardial and
epicardial contours carried out by an expert radiologist as
well as additional information such as age, weight, height
and systolic and diastolic phases were provided. The primary
MRI parameters are listed as follows: slice thickness (8 mm),
gap (8 mm), image size (256 × 256 pixel) and FOV =

320× 320. Each patient included, in this study, is represented
by a series of 25 images with a number of slices varying
from 8 to 15 to entirely cover the LV from the base to the apex.
For the same patients, the LGE sequences were acquired
10 minutes after the injection of a small quantity of GBCA of
0.2 mmol/kg by applying a T1-weighted inversion recovery
gradient echo sequence (GRE-TI) to suppress normal tissue
signal in the short-axis (SAX) plane of the heart to assessmul-
tiple myocardial segments. The sequence parameters used are
as follows: TR (Repetition Time) = 4 ms, TE (Echo Time) =

2 ms, TI (Inversion Time) = 300 ms, size of matrix = 192 ×

192, Field of view (FOV), slice thickness = 8 mm. It is
worth noting that for this type of study formal consent is not
required. We did not use either names or identifiers it was
quite simply a collection of data relating to abnormalities that
affect the contractile function of the myocardium.
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FIGURE 1. Outline of the proposed approach for regional wall thickness quantification and myocardial viability assessment.

C. PREPROCESSING
1) AUTOMATIC LV BOUNDARIES EXTRACTION USING DEEP
NEURAL NETWORK
In cardiac MRI, it’s possible to derive quantitative measure-
ments directly without the need for LV contour segmentation.
However, these direct methods have yet to embrace the
approach of integrating segmentation for more intuitive
and accurate clinical judgments. Additionally, they haven’t
explored the utilization of predicted contours as inputs when
estimating clinical indices, despite discarding valuable back-
ground image information which plays a crucial role in data
optimization [17]. For these reasons, medical experts prefer to
rely on LV segmentation since it provides more accurate cal-
culation [18]. To overcome the limitations related to manual
segmentation, we employed the U-Net convolutional neural
network, a tool we had previously developed, to segment all
cine-MR images [19] (Figure.2)

Three changes were made to our architecture compared to
the original U-Net design: it is characterized by a reduced
number of blocks, average pooling operations have replaced
the max pooling operations, and zero padding has been
applied.

The final result of the segmentation step is a segmented
cine-MRI image. This is achieved by overlaying the mask
obtained from the neural network output onto the origi-
nal cine-MRI image, resulting in a cine-MRI image with
delineated contours. After applying histogram equalization to
enhance image contrast, the two contours are detected using

the ‘‘get_contour’’ function developed in Python. Finally, the
perimeters of the two contours are calculated to distinguish
the endocardial contour (narrow perimeter) from the epi-
cardial contour (wide perimeter). When displaying, red and
green colors are assigned to the two contours, respectively.

2) AUTOMATIC SEGMENTATION OF THE LV CAVITY
ACCORDING TO AHA STANDARDS
In clinical settings, segmentation of the heart into 17 seg-
ments according to American Heart Association (AHA)
standards [20] is typically conducted semi-automatically.
Radiologists manually identify key anatomical points: the
center of the LV cavity and the upper and lower intersec-
tion points between the LV and the right ventricle (RV).
Subsequently, software tools are used to obtain myocardial
segments. Nevertheless, this process is laborious and suscep-
tible to fatigue-induced errors. In this sub-section, we propose
an automatic method to divide the LV into 17 segments for
each segmented image. In our work, this step is crucial as
it allows RWT quantification for each myocardial segment.
AHA segmentation was performed using Python software
(version 3.7) in two main steps: heart sections characteriza-
tion and slices’ segmentation.

The characterization of cardiac sections is based on
myocardium division into 4 regions by referring to the
presence or not of papillarymuscles (PM): basal section, mid-
section, apical section and the apex. In effect, slices identified
as mid-cavity whenever PM are present. To identify basal
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FIGURE 2. The proposed neural network architecture for automatic LV contours extraction.

and apical slices, we compare the endocardial perimeter of
the studied section with that of the mid-section. Thus, if its
perimeter is larger, it is a basal slice otherwise, it belongs to
apical sections.

Regarding the apex, it is the part of the myocardium
characterized by the absence of the blood pool. After iden-
tifying myocardium sections, we segment them according to
AHA standards: basal and mid-sections are both divided into
6 segments separated by approximately 60◦, apical slices are
divided to 4 segments separated by approximately 90◦ and the
17th segment is the apex. To identify myocardial segments
(A: anterior, IS: Inferoseptal, I: Inferior, IL: Inferolateral,
AL: Anterolateral, AS: Anteroseptal, S: septal and the apex),
we need practically to locate three anatomical points: the
centroid ‘‘O’’ of the LV cavity and the upper and lower
intersection points of the LV and RV that we named P and
M respectively. The centroid is the point belonging to the
LV cavity equidistant with the majority of the endocardial
contour points. To locate the two other points on the seg-
mented MR images, we converted the pixel intensity from
cartesian coordinates (x, y) to polar coordinates (R, θ ). This
operation simplifies analyzes as the LV is characterized by an
approximately radial motion and a circular boundary of the
epicardium. Conversion between cartesian and polar coordi-
nates is given as [21]:

K (x, y) ⇐⇒ K1(R, θ) where x=R cos θ, y=R sin θ (1)

R =

√
x2 + y2 (2)

where (x,y) are the cartesian coordinates of the point K, (R,
θ ) are the polar coordinates, R is the radius of the circle
with the center ‘‘O’’ passing through K, and θ is the angle
that the radius makes with the abscissa axis. The limits of
the inter-ventricular septum represented by the two points
P and M are the intersection of the two straight lines (OP)
and (OM) with the epicardial contour. The AHA automatic
segmentation process is shown in Figure.3.

D. AUTOMATIC QUANTIFICATION OF REGIONAL
MYOCARDIAL WALL THICKNESS
As previously mentioned, myocardial wall thickness (MWT)
is the primary indicator of myocardial viability which pro-
vides an initial indication of the heart function. In clinical
routine, this parameter is usually assessed at the end-diastolic
(ED) and the end-systolic (ES) phases from the manually
segmented sequences. In this research, we offer an automated
approach for the quantification of RWT. In several radial
directions based on fully automatic LV contours’ extraction
and AHA segmentation results. Our method’s fundamental
idea is to divide cardiac segments of each of basal median
and apical sections into three sub-segments to accurately
delineate infarcted areas which makes a total number of
49 segments. Then, we calculate MWT and thickening over
the entire cardiac cycle for each sub-segment. Thus, basal and
median sections are segmented every 20 degrees and apical
section every 30 degrees while knowing that this method
has been validated by an expert radiologist. This allows to
accurately localize the infarcted area as well as its trans-
murality. Then, the distance between the endocardial and
epicardial contours and the crossing sites of the rays emanat-
ing from the center of the LV cavity ‘‘O’’ is estimated using
Python software in order to quantify MWT values. Conse-
quently, we propose calculatingMWTat 18 locations for each
acquisition (image). This results in more than 360 thickness
values since each patient is represented by 25-30 acquisitions,
as illustrated in Figure. 4.

From RWT values quantified automatically at each instant,
we calculate myocardial thickening between acquisitions by
subtracting the two thickness values related to the corre-
sponding acquisitions. From ED and ES thickness, it is
possible to deduce by difference, the absolute thickening
(ATh) and finally, the relative thickening (RTh) as fol-
lows [22]:

ATh = Diastolic thickening− Systolic thickening (3)
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FIGURE 3. Automatic left ventricle segmentation into 17 segments according to AHA standards.

FIGURE 4. Example of myocardial segmentation for every 20◦ for basal (a) and median (b) sections and for every 30◦ for apical section
(c) for MWT quantification (quantified distances are represented by the yellow arrows).

RTh (%) =
Absolute thickening
Diastolic thickening

∗ 100 (4)

To evaluate the performance of the proposed method for
RWT quantification, we compare them with the reference
values provided by the Circle cvi42 software used in clinical
practice.

E. MYOCARDIAL VIABILITY ASSESSMENT BASED ON
CONVOLUTIONAL NEURAL NETWORK
In cardiac MRI, studying the viability of myocardial seg-
ments in peri-infarct zones, where scar transmurality rep-
resents between 25 and 75% of the myocardial segments
total thickness, poses a significant challenge for the radiol-
ogist. The challenge arises from the diverse composition of
these areas, where a combination of viable and scarred tissue
creates overlapping signal intensities on MRI images. This
overlap complicates the distinction between the two types
of tissue. Furthermore, motion artifacts caused by cardiac

movement further complicate the assessment of myocardial
viability in these areas.

After a long discussion with the two radiologists who
participated in this study, we introduce, in this paper, a novel
protocol for objective myocardial viability assessment. In this
protocol, we automated the classification of segments with
known response to revascularization as follows:

• Segments with transmurality less than 25% are consid-
ered as viable as approved in clinical routine.

• Segments with transmurality greater than 75% are con-
sidered non-viable as approved in clinical routine.

• For peri-infarcted areas (25% < transmurality < 75%),
where conventional assessments may be uncertain, pri-
ority is given to MWT with a threshold of 5.5 mm as
described in Figure 5. This means that if myocardial
segment is too much thinned (MWT < 5.5 mm), a large
part of myocytes is definitively lost so the segment is
considered as non-viable.
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FIGURE 5. Explanatory diagram of the proposed protocol for objective myocardial viability assessment.

FIGURE 6. Proposed CNN for myocardial segments classification according to viability.

Regarding transmurality computation, radiologists initially
performed a visual analysis of the LGE sequences to esti-
mate the transmurality of the scar area for each sub-segment
as approved in clinical routine. This visual estimation
serves as a reference for our quantitative method. Our
approach involves applying thresholding technique to the
LGE sequences to isolate the hyper-enhanced regions,
representing scar tissue. Then, we calculated the per-
centage of the extracted area compared to the myocar-
dial sub-segment total thickness. The quantitative results

were reviewed and validated by the radiologists to ensure
accuracy.

The algorithm, used in our work, for the classification of
sub-segments into viable and non-viable and assistance in
making therapeutic decision is presented in Algorithm 1.

The CNN architecture proposed for the classification of
the myocardial sub-segments into viable and non-viable is
composed of 10 layers as shown in Figure.6:

L1: input layer which is a convolution layer with 6 kernels
of size 3∗3
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Algorithm 1 The Classification Algorithm
N: total number of sub-segments = 49
V: number of viable sub-segments
NV: number of non-viable sub-segments
WT: wall thickness
for i = 1 : N do

Transmurality computation (T)
if T < 25%
Increment the number of viable segments: (V V+1)
else if T > 75%
Increment the number of non-viable segments: (NV NV+1)
else if 25% < T < 75%

if WT < 5,5 mm
Increment the number of non-viable segments: (NV NV+1)
else
Increment the number of viable segments: (V V+1)

end
if V > 15
revascularization operation is recommended
else
revascularization operation is not recommended

L2, L5 and L8: ReLU activation layers.
L3, L6 and L9: Max-pooling layers.
L4: Convolution layer with 12 kernels of size 3∗3.
L7: Convolution layer with 24 kernels of size 3∗3.
L10: output layer which is a fully convolution layer with

48 kernels of size 3∗3.
The input images for our neural network undergone three

types of segmentation: automatic delineation of LV contours,
automatic segmentation according toAHA standards and seg-
mentation of each segment into three equal parts. Quantitative
measurements of RWT were provided and each sub-segment
was manually classified according to wall thickness. These
images serve as the ground truth for the CNN. Short-axis
MR images from 35 patients with myocardial infarction and
10 healthy subjects were used to train the neural network over
50 epochs using Adam optimizer. The training process lasted
approximately 2 hours and 23 minutes using Python software
(version 3.7) running on a 64-bit Intel(R) Xeon (R) central
processing unit (CPU) E5–1607 v4 @ 3.10 GHz. Validation
was conducted on 15 patients, while the neural network’s per-
formance was assessed using data from 23 patients. The time
required for the prediction was estimated to be around two
seconds. Once the classification of segments is completed,
computation of viable segments and non-viable segments is
important for the prediction of contractile function recover
and help doctors to make the appropriate therapeutic decision
in these cases. In our study, we calculate the viable and the
non-viable segments percentage as follows:

viable segments percentage (%)

=
Total number of viable segments

(18 + 18 + 12 + 1)
∗ 100 (5)

non− viable segments percentage (%)

=
Total number of non− viable segments

(18 + 18 + 12 + 1)
∗ 100 (6)

In this context, it has been demonstrated in previous
clinical studies [23] that a number greater than 5/17
dysfunctional-but-viable segments is recommended to con-
sider the myocardium as hibernating and able to recover its
contractile function after revascularization. Thus, we need
about 15 viable sub-segments to consider that revasculariza-
tion is useful.

F. STATISTICAL ANALYSIS
The effectiveness of the proposed framework was assessed
on several levels. We start by evaluating the performance of
left ventricular contour segmentation through the calculation
of the Dice Similarity Coefficient (DSC) and the Hausdorff
Distance (HD) as follows [24]:

DSC =
2TP

2TP+ FP+ FN
∗ 100 (7)

HD = max(max p ⊂ CA d(p,CB),max q ⊂ CB d(q,CA)

(8)

In the context of automatic segmentation, a true positive (TP)
occurs when the model accurately identifies a positive class,
while a true negative (TN) occurs when the model correctly
identifies a negative class. A false positive (FP) refers to cases
where the model incorrectly classifies a negative class as
positive, and a false negative (FN) occurs when the model
incorrectly classifies a positive class as negative. CA and CB
are the automatic and referential contours, respectively and d
(p, C) is the minimum distance which separates the point p of
contour C.
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TABLE 1. Performance of the proposed architecture for LV endocardial (Endo) and epicardial (Epi) segmentation in terms of DSC and HD.

In addition, we examined the precision of regional wall
thickness (RWT) quantification and assessed the effective-
ness of the myocardial viability assessment protocol.

Regarding quantification, the mean absolute error (MAE)
between the ground truth values (y) and the quantified ones ŷ
is calculated with standard deviation (SD) for all frames as:

MAE(y, ŷ) =
1
N

∑N

i=1
|yi − ŷi| (9)

Continuous variables were expressed as a mean ± standard
deviations (SD).

To evaluate the impact of the proposed protocol, we used
several common performance measures such as inter and
intra-observer variability and calculate sensitivity, specificity
and accuracy as follows:

sensitivity (%) =
TP

(TP+ FN )
∗ 100 (10)

specificity (%) =
TN

(TN + FP)
∗ 100 (11)

accuracy (%) =
(TP+ TN )

(TP+ TN + FP+ FN )
∗ 100 (12)

In the context of myocardial viability assessment, true posi-
tive (TP) refers to the number of segments correctly identified
as non-viable, true negative (TN) refers to the number of
segments correctly identified as viable, false positive (FP)
refers to the number of segments incorrectly identified as
non-viable and false negatives (FN) refers to the number of
segments incorrectly identified as viable.

G. CLINICAL VALIDATION
To evaluate and validate the effectiveness of the proposed
protocol, we used the test database composed of cine-MRI
images of 23 patients. Two cardiac MRI specialists, one with
three years and the other with seven years of experience,
were involved in this study to appraise how our method
influences the accuracy of myocardial viability assessment.
As a first step, radiologists make their therapeutic deci-
sions separately, then collectively based on visual analysis
of Cine-MRI sequences and hyper-enhanced regions on the
LGE sequences. Two months later, radiologists examine the
Cine-MRI images along with quantitative measurements of
MWT and thickening of the same patients. For each patient,
we conducted a follow-up on the therapeutic decisions made
by the radiologists after interpreting the LGE sequences to
assess improvement in contractile function after revascular-
ization. During this protocol, radiologists examine, for each
patient, a number of myocardial segments depending on the

acquisitions’ number. Then, the segments were classified in
two classes: normal and pathological segments.

The pathological class is divided into two sub-classes:
viable and non-viable segments according to the scare area
which represents the percentage of the infarcted area of the
entire thickness of the myocardial segment at the ED phase.
This manual classification carried out by the expert radiol-
ogists represents the reference for automatic classification
using CNN.

IV. EXPERIMENTAL RESULTS
A. RESULTS OF AUTOMATIC SEGMENTATION OF LEFT
VENTRICLE CONTOURS USING U-NET
In this sub-section, we will study through Table 1 the perfor-
mance of the proposed neural network for the segmentation
of the LV contours in terms of DSC and HD. The obtained
results presented in Table 1 demonstrate a strong correlation
between manual and automated segmentation that reached
98.7% and 5.212 mm in terms of DSC and HD respectively.

By comparing the endocardial and epicardial segmenta-
tion results, we notice that, the accuracy of endocardial
segmentation appears to be lower than that of epicardial seg-
mentation for healthy subjects and patients with myocardial
infarction. This discrepancy can be attributed to the presence
of trabeculae and papillary muscles in the left ventricular
cavity, particularly in the mid-sections. These structures are
closely associated with the endocardium, which complicates
the segmentation process and reduces its precision. A com-
parative analysis demonstrated the superior performance of
our method over the most advanced segmentation techniques
proposed in the literature.

B. RESULTS OF AUTOMATIC QUANTIFICATION OF
REGIONAL WALL THICKNESS
Figure.7 shows a comparison between the mean wall thick-
ness of a healthy subject’s 17 myocardial segments over a
whole cardiac cycle and a patient with transmural MI in the
basal, middle and apical segments.

By comparing the quantification results in the left col-
umn (healthy subject) with the right column (patient with
MI), we notice that the curves related to the healthy subject
Figure.7 (a,b,c,d) have a bell shape distorted to the right
and a peak at the systolic phase, which corresponds to the
seventh acquisition. In addition, all cardiac segments reach
their maximum thickness together around acquisitions 6-9.
However, for the patient with MI, Figure.7 (e,f,g,h), curves
are characterized by an aspect of asynchronization and some
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FIGURE 7. Comparison of mean segmental wall thickness across cardiac cycle: healthy subject (a,b,c,d) vs patient with transmural MI (e,f,g,h)
for basal, mid, and apical segments.

segments have lost the general bell shape: (segments 1 and
2) of the basal slice, (segments 7 and 12) of the middle
slice and the 14th segment of the apical slice. This allows to
easily locate myocardial segments affected by MI and iden-
tify the occluded coronary artery which are the left anterior

descending artery (LAD) and the left circumflex artery (LCX)
in this case.

For the same patients, we track myocardial thickening over
the entire cardiac cycle at basal, middle and apical slices using
our automatic method as illustrated in Figure.8.
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FIGURE 8. Mean myocardial thickening in basal, median and apical slices for healthy subject (a) and patient with MI (b).

TABLE 2. Performance of the proposed method for RWT quantification in terms of MAE for healthy subject and patient with MI.

Myocardial thickening curves for the healthy subject indi-
cate a synchronization of movement between myocardium
segments and a dyssynchronization between them for the
patient with MI. Moreover, the maximum contraction is
delayed from the 7th to the 9th acquisition and the thickening
is reduced over the entire cardiac cycle. The quantification
outcomes show the efficiency of the proposed method in
quantifying RWT for each segment at each instant of the
cardiac cycle. This allows the identification of pathological
segments affected by MI or synchronization pathologies.
Corresponding quantitative analysis for these patients is pre-
sented in Table 2.

The ground truth and the RWT values measured using the
proposed method correspond well, according to an overall
analysis of the Table 2. However, we noted that apical seg-
ments are characterized by the highestMAE values compared
to basal and mid-sections due to the insufficient MRI resolu-
tion. This had directly impacted the segmentation accuracy
and consequently the quantification performance.

C. CLINICAL IMPACT OF THE PROPOSED MYOCARDIAL
VIABILITY PROTOCOL

Visual analysis of cine-MRI images combined with the
LGE sequences and analysis performed two months later
combining cine-MRI images with quantitative results led to
the following therapeutic decisions (Table 3):
During the proposed protocol, quantitative analysis was

provided to radiologists to study the viability of 49 myocar-
dial segments for 23 patients at the ED phase (1127 segments
in total). Healthy and pathological segments were identified
with an accuracy of 98.4%, sensitivity of 97.77% and a
specificity of 96.8% (p < 0.0017).

After visual interpretation the radiologist with 3 years
of experience decided that 19 patients from 23 patients
(82.6%) with MI undergo revascularization. However,
the radiologist with 7 years of experience decided that
only 16 patients (69.6%) need to undergo this opera-
tion. The inter-observer variability was 13% for these first
analyzes.
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TABLE 3. Therapeutic decision with visual and quantitative analysis.

TABLE 4. Classification results of myocardial segments based on visual and quantitative analysis for a patient with MI.

After quantitative analysis, radiologists with 3 and 7 years
of experience decided that 17 and 19 patients undergo reoxy-
genation operation respectively. For these second analyzes,
inter-observer variability decreases by 8.64% and becomes
4.36%.

To assess the clinical impact of our method, we followed
the improvement of contractile function in patients who
underwent revascularization. It turned out that three patients
did not register any improvement in myocardial contractility.
This corresponds perfectly to the number of patients elimi-
nated by the two radiologists after quantitative analyzes. This
proves that the integration of our protocol in clinical practice
allowed to avoid unnecessary revascularization operations.

Myocardial viability was assessed using CNN for 1127 seg-
ments and we had (TP = 670, TN = 436, FP = 4, FN =

17). The obtained results are confirmed by clinical analyzes
and confirm the effectiveness of the proposed protocol in
the objective study of myocardial viability which achieves
a performance of 98.13% in terms of accuracy, 97.52% in
terms of sensitivity and 99.09% in terms of specificity with
p-value < 0.0001.
To thoroughly assess the clinical implications of the pro-

posed protocol, we examined classification outcomes derived
from both visual interpretation of LGE sequences and quan-
titative analysis methods for a patient with acute myocardial
infarction affecting the median and apical slices. In Table 4,
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TABLE 5. Performance of the proposed automatic method for RWT quantification compared to state-of-the-art methods in terms of MAE ± SD.

we present the cine-MRI images and their corresponding
obtained from the LGE sequences where the hyper-enhanced
pathological zones are delimited by the red arrows.

For the basal slice, both diagnoses indicate that all myocar-
dial segments are viable.

Regarding mid-cavity slice, diagnosis based on visual
interpretation of LGE sequences identifies a single
non-viable myocardial segment (the anterior segment) while
the diagnosis based on quantitative analysis identified 5 non-
viable sub-segments (the anterior segment, a sub-segment of
the anterolateral segment and a sub-segment of the anterosep-
tal segment).

For this slice, the visual analysis highlights 5 viables seg-
ments. However, the quantitative analysis reveals 13 viable
sub-segments. This shows that two sub-segments belonging
to the anteroseptal and the anterolateral segments which are
adjacent were incorrectly identified as viable during visual
analysis.

Similarly, for the apical slice, the initial qualitative analysis
identified 3 viable segments. However, the regional quanti-
tative analysis revealed that two sub-segments, belonging to
the lateral and septal segments, were incorrectly identified as
viable in the qualitative analysis. This led to a total identifi-
cation of 7 viable sub-segments. The obtained results proved
that integrating our protocol into clinical practice enables
the objective assessment of myocardial viability mainly for
segments with improbable viability. Additionally, it allows
accurate delimitation of myocardial infarction’ extent. This
approach effectively guides clinical decisions, thereby reduc-
ing the need for unnecessary revascularization procedures.

V. DISCUSSION
In this study, we proposed an automatic framework for
objective myocardial viability assessment based on RWT
quantification. As a first step, the effectiveness of the pro-
posed method for regional wall thickness quantification

was assessed by calculating MAE for 73 patients with MI
and 10 healthy subjects and made comparison with the
state-of-the-art methods including Max flow model [25],
Multi-features + RF [26], SDL + AKRF [27], MCDBN +

RF [28], ResRNN [29], CSRNet [30] and end-to-endmethods
such as Indices-Net [31], FullLVNet [32] and DMTRL [33].
Results are summarized in Table 5.
Table 5 clearly illustrates that our proposed method

achieves accurate RWT quantification compared to other
approaches. Specifically, it outperforms the Max Flow
method, exhibiting a MAE of 1.21 ± 1.00 versus 3.21 ±

1.98. This discrepancy can be attributed to the Max Flow
method’s dependency on manual segmentation of the ini-
tial frame, leading to increased estimation errors. In our
study, LV boundaries were automatically extracted using
U-Net, surpassing prior methods with a DSC of 98.7%
and an HD of 5.512 mm. Our method also surpasses the
top-performing direct method (MCDBN + RF), particularly
in regional MWT quantification, with a notable difference of
0.44 in terms of MAE. Moreover, for the inferior (I), infer-
olateral (IL), anterolateral (AL) and anterior (A) segments,
our method is characterized by the lowest MAE (1.12 ±

1.00, 1.27.100, 1.131 ± 0.98 and 0.98 ± 0.78) respectively.
However, for the quantification of RWT of the inferoseptal
(IS) and anteroseptal (AS) segments, we note that CSR-
Net method yields the lowest MAE of 1.06 ± 0.87 and
0.97 ± 0.80 respectively. Comparison with state-of the art
methods shows that the proposed automatic method has a
great potential to achieve more accurate quantification results
of RWT.

In other study [34], MWT quantification was carried out,
similarly to our work from automatically segmented contours
using a combination of two CNNs. This method achieved
an accuracy of 94% for both endocardial and epicardial
segmentation. Since the quantification accuracy relies on
the segmentation quality, our method appears more accurate
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compared to this method because U-net is more appropriate
for medical image segmentation and provides more accurate
results [24]. In the same work, RWT was quantified in six
radial directions according to AHA compared to 18 radial
directions for our work which results in the study of 49 seg-
ments instead of 17 segments.

The obtained results prove the usefulness of our method
for the diagnosis of synchronization pathologies by eval-
uating myocardial thickening overall the entire cardiac
cycle. Moreover, sub-segmental regional analysis allowed the
quantification of MI transmurality with high performance.
In addition, our method highlights myocardial segments
that have been misclassified as healthy which may hide
myocardial abnormality with an accuracy of 98.13%, a sen-
sitivity of 97.52% and a specificity 99.09% with p-value
< 0.0001. Based on quantification results of clinical param-
eters (thickness, thickening and scar area) which represent
a predictors of contractile function recovery in myocar-
dial hibernation, we studied the myocardial viability of
49 segments for 23 patients with AMI. The involvement
of quantified parameters in the diagnostic process reduced
inter-observer variability by 8.64% and intra-observer vari-
ability. The study of myocardial segments viability shows a
strong correlation between decisions taken after quantitative
analysis and whether or not contractile function improves
in patients who have undergone reoxygenation surgery. This
proves the usefulness of the decision support protocol in
avoiding unnecessary revascularization operations. Among
the limitations of this study, we cite that it has been validated
only on a 2D database. It is therefore preferable to test its
effectiveness using a 3D and 4D database. Another potential
disadvantage of the proposed method is that it was only
evaluated on MR images acquired in short-axis view. How-
ever, long-axis images give additional information that might
be useful in RWT measurement and myocardial viability
evaluation.

VI. CONCLUSION
In clinical practice, assessing myocardial viability relies
heavily on visually interpreting LGE sequences, a process
prone to subjectivity. This can introduce variability in diag-
noses and treatment decisions, highlighting the need for
more objective and quantitative methods to enhance diag-
nostic accuracy and improve patient outcomes. This paper
introduces an automated framework for objective myocar-
dial viability assessment, leveraging deep neural networks
and focusing on RWT quantification. The findings affirm
the effectiveness of our method in detecting and quantifying
LV abnormalities, such as synchronization pathologies and
hypokinesia. The quantified parameters were useful for accu-
rate classification ofmyocardial sub-segments into viable and
non-viable categories and the delimitation of MI extent. The
comparison between the obtained results with and without
involvement of the proposedmethod in the diagnostic process
proves that it can be used as a promising diagnostic aid tool
to guide patient management.
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