
Received 1 June 2024, accepted 28 July 2024, date of publication 12 August 2024, date of current version 10 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3441757

Semantic Quality Assurance of Industrial
Maintenance Procedures
CAITLIN WOODS 1, MELINDA HODKIEWICZ 2, (Member, IEEE), AND TIM FRENCH 1
1Department of Computer Science and Software Engineering, The University of Western Australia, Crawley, WA 6009, Australia
2School of Engineering, The University of Western Australia, Crawley, WA 6009, Australia

Corresponding author: Caitlin Woods (caitlin.woods@uwa.edu.au)

This work was supported by Australian Government Research Training Program (RTP) Scholarship.

ABSTRACT Maintenance technicians in industry follow procedures that guide them through inspection,
repair, and service tasks. Organisations seek to convert procedure documentation to machine-readable
formats as their digital capabilities improve and regulatory requirements tighten. In this paper, we consider
the opportunity for semantic quality assurance of digital procedures. We demonstrate a configurable and
repeatable workflow containing three modules. The completeness module makes implicit information in
procedures explicit using OpenAI’s Generative Pre-trained Transformer (GPT) model. The consistency
module creates Resource Description Framework (RDF) triples that are aligned with, and checked against,
the axioms of the open-source Ontology for Maintenance Procedure Documentation (OMPD). Finally, the
correctness module performs closed-world checks on the RDF triples using the Shapes Constraints Language
(SHACL). Each module can be used in isolation, or together, to realise an end-to-end semi-automated quality
assurance workflow. Pre-processing of the raw maintenance procedure documents to extract entities (tools,
materials and activities) and relations is achieved in a novel manner using prompt engineering with OpenAI’s
GPT-3.5 Turbo model and few-shot learning. This end-to-end workflow enables organisations to perform
quality assurance such as assessing the correct order for task sequences, and checking that all maintenance
procedures have at least one maintenance task. We demonstrate this workflow on six procedures from the
iFixit repository. The outputs of this workflow support maintenance technicians, planners and engineers by
realising high-quality procedure documentation and automated procedure management update processes.
The code and data used in this work is publicly available at https://github.com/equonto/quokka/.

INDEX TERMS Industrial ontology, ontology templates, OpenAI GPT, OTTR, SHACL, technical language
processing.

I. INTRODUCTION
Maintenance procedures are a crucial part of a maintenance
technician’s safe work practices. Maintenance work can be
planned (i.e. inspections, services and equipment overhauls)
or unplanned (i.e. repair following equipment failure).
Transforming procedure documentation to digital formats
is a topic of interest for many industrial organisations.
The opportunity in this digital transformation is to cre-
ate machine-readable artifacts. Machine-readable, semantic
maintenance procedures using the Resource Description
Framework (RDF) and the Web Ontology Language (OWL)
enable data quality improvement via reasoning and constraint
checking.

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

In this paper, we demonstrate the use of an open-source
Ontology for Maintenance Procedure Documentation
(OMPD), along with a semi-automated workflow, to trans-
form maintenance procedure documentation into a machine-
readable format for data quality checking. Our workflow,
titled Quokka1, is implemented as a Python-based console
application. Our implementation is publicly under a Creative
Commons License2 at https://github.com/equonto/quokka/.
The purpose of Quokka is to provide support for organisa-
tions wishing to implement machine-readable maintenance

1A Quokka is a marsupial commonly found on the offshore islands of
Western Australia. We chose this name for our workflow to align with the
naming conventions of the tools from our research group (the UWA NLP
TLP Group), where we name tools after Australian animals.

2CC BY-NC-SA 3.0 DEED: https://creativecommons.org/licenses/by-nc-
sa/3.0/deed.en
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procedures. Quokka achieves this by supporting technical
writers (i.e. maintenance engineers) in improving the
completeness, consistency and correctness of maintenance
procedures that conform to the OMPD data model.
We improve the completeness of the dataset by extracting
intrinsic knowledge from the unstructured text in procedures.
We check the consistency of the data by mapping it to
an OWL ontology for reasoning. Finally, we check the
correctness of the data according to a set of Shapes Constraint
Language (SHACL) shapes. The novelty of this paper is
the cumulative effects of its parts. We use a combination
of Semantic Web Technologies (SWTs) (i.e. information
extraction, ontology templates, OWL reasoning and SHACL
shapes) to create a technical solution to a real-world data
quality use case. The original work was done on real industry
maintenance procedures. These cannot be published due
to commercial in confidence considerations. As a result
of this constraint we demonstrate the workflow using the
maintenance procedures publicly available on the iFixit
website.3 Specifically, we use six procedures from the
MyFixit dataset [1] - a preprocessed set of iFixit procedures
available under a Creative Commons Licence.4

In Section II of this paper, we discuss how maintenance
procedures fit into a maintenance technician andmaintenance
engineer’s work system and recent works in semantic quality
assurance for industrial applications. Section III describes
OMPD, the target data model for this work. In Section IV
we give give an of the Quokka workflow and describe our
Python-based implementation as three modules (completion
module, consistency module and correctness module) in
Section V. We demonstrate the Quokka workflow using six
procedures in Section VI. Finally, in Section VII, we detail
our contributions, and reflect on remaining opportunities for
future research.

II. BACKGROUND
A. PROCEDURE DOCUMENTATION IN MAINTENANCE
In industry, maintenance procedures are historically devel-
oped by maintenance engineers and maintenance planners
using Microsoft Word or Excel and stored in PDF or related
formats in the Computerised Maintenance Management
System (CMMS). For maintenance technicians, common
practice involves finding a procedure document for a work
order in the CMMS, downloading and printing the document
for use during the task, and sending the hand-annotated
document back to the maintenance planner once the task is
complete [2]. There is increasing use of digital tablets and
phones in the workplace. Many companies are transitioning
away from paper and read-only formats to digital formats
that enable data capture by the field technicians using
their portable devices. This transition to digital maintenance

3Content from iFixit website (https://www.ifixit.com/) used in this paper
is available under a creative commons license: (https://creativecommons.
org/licenses/by-nc-sa/3.0/)

4MyFixit Dataset License: https://github.com/rub-ksv/MyFixit-
Dataset?tab=License-1-ov-file#readme

procedures raises several opportunities for maintenance tech-
nicians. For example, the ability to use different presentation
formats (i.e. text, photos, and video), and suggest updates
and improvements about to procedures while on the job [3].
This digital transition is also a challenge for the maintenance
engineers responsible for creating and updating procedures.
In many organisations procedures have been developed over
the years with some inconsistency in vocabulary, syntax and
format. This transition is an opportunity to standardise main-
tenance procedures and implement quality control processes.
However to do this manually, procedure by procedure, is very
costly and a degree of automation is required.

B. SEMANTIC QUALITY ASSURANCE FOR INDUSTRIAL
APPLICATIONS
The development of Transformer Language Models (TLM),
Large Language Models (LLM) and the release in November
2022 of OpenAI’s ChatGPT5 has fundamentally changed
expectations about how structured and unstructured text held
in organisational databases can be located, manipulated and
queried. The opportunities provided by these new tools and
models is driving changes in enterprise architectures and a
growing interest in knowledge graphs to augment traditional
relational database structures. As the desire by management
to query data across different databases increases, semantic
interoperability is emerging as a key barrier. To manage this
organisations are turning to the semantic web technologies
(SWT) that underpin the design of the World Wide Web and
are documented by the W3C standards.6 Semantic languages
such as RDF and OWL are gaining popularity, for example
in the IoT domain [4], [5] and some organisations now
consider RDF as a ‘‘protocol’’ for data exchange. In addition
to data integration opportunities, SWTs support data quality
assurance. Users of ontologies written in OWL can utilise
open-source reasoners such as HermiT [6] or Pellet [7],
or commercial reasoners such as Stardog7 or RDFox [8] to
perform inference and consistency checking over their RDF
graphs. In addition, the SHACL language8 (that became a
W3C recommendation in 2017) allows further validation of
RDF and OWL datasets against a set of conditions.

Engineering organisations using SWTs are demonstrating
success in data quality assurance projects. One example is
Aibel’sMaterialMaster Data Ontology used to check the con-
sistency of flange designs in their products, citing potential
savings of over 100 million euros [9]. In maintenance, SWTs
have been used for data quality checking of maintenance
work orders (or repair reports). In 2018, Abramovici et al.
used SWTs to improve the quality of maintenance repair
reports. To do this, they recognise entities in the repair reports,
check for missing information in the pipeline, and check the
data against a structural product breakdown [10]. In other
recent work, natural language processing and an ontology

5https://openai.com/chatgpt/
6https://www.w3.org/2001/sw/wiki/Main_Page
7https://www.stardog.com/
8https://www.w3.org/TR/shacl/
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for maintenance activities was used to perform checks on the
activities recorded in maintenance work orders as this check
is crucial for reliability calculations [11].

C. MAINTENANCE TECHNICIANS AND DATA QUALITY
For a maintenance technician, procedures are an integral part
of day-to-day work. Maintenance of industrial equipment
involves technical, manual work and requires formal quali-
fications and years of training. Since maintenance work is
hazardous, maintenance technicians should think carefully
about the potential implications of each step in a procedure.
Since maintenance technicians are the actualisation of pro-
cedure documentation, it is important to consider the factors
that motivate maintenance technicians to think carefully and
critically about the procedures that they are following.

Previous studies demonstrate that an organisation’s main-
tenance procedure management process influences procedure
compliance. Factors affecting compliance behaviour include
perceived usefulness of the procedure [12], a technician’s
involvement in the design and implementation of procedures,
as well as when procedures are perceived as logical, to the
point, at the right technical level and user friendly [13].
Here is an example of the frustrations often experienced by
maintainers captured in interviews by Kanse et al. [13], ‘‘If
a procedure is incorrect the expectation is that they will
red pen the procedure and hand it back to the document
writer and have it amended. That amendment part is where
it gets stuck. The maintainer can sit there and red pen it and
hand the document in, then all he sees is the next time the
procedure comes out that nothing has changed so he says
‘‘why do I bother?’’ And that’s when the maintainers switch
off’’. This quote is an example of the motivational impacts
on maintenance technicians if their requests for procedure
corrections are ignored.

The reality of these experiences are confirmed in our
recent work [3], [14] in which we examine the perceived
impacts digital maintenance procedures on the work of
maintenance technicians.We propose that digital tools should
allow technicians to provide feedback about procedures
as they are executing them. This feedback then needs to
be reviewed and actioned in an agreed time frame with
feedback to themaintenance technician. These quality control
steps are important to technicians in supporting their sense
of autonomy and task identity, thus contributing to the
motivational aspects of their work.

III. THE OMPD MAINTENANCE PROCEDURE
DOCUMENTATION ONTOLOGY
The OMPD Maintenance Procedure Documentation Ontol-
ogy [15] is an OWL ontology that uses the ISO CD/TR
15926 Part 14 [16]9 as an upper ontology. OMPD has
three design goals. First, OMPD is designed to be generic,

9ISO CD/TR 15926 Part 14 has been renamed to the Industrial
Data Ontology (IDO), this upper ontology has commenced the pro-
cess of ISO Standardisation as of 2023 and is available online at:
https://rds.posccaesar.org/ontology/lis14/ont/core/

with a minimal set of axioms to support a wide range of
industrial organisations. Second, OMPD models information
that organisations typically have in their current procedure
documentation. Finally, OMPD is designed to answer a series
of competency questions for different professional roles that
typically use procedure data in their work (i.e. engineers,
schedulers and technicians).

In this paper, we use the Static Procedure Ontology
(SPO) module of OMPD as a target ontology. The 23 core
classes in SPO are shown in Figure 1. This module includes
classes and axioms for maintenance procedure documents,
procedure processes, tasks, resources and hazards. Since
its initial publication, SPO has been extended to also
capture task description formations (such as Image, Text
and 3D Models) and the implicit information found
in procedure texts (such as MaintenanceAction and
ItemInMaintenanceProcess entities). Full documen-
tation for the ontology is available on the Ontocommons
Industrial Ontology Repository.10 In line with standard
ontology practice, each module is identified by use of
a prefix. We use the prefixes ompd: to refer to SPO,
iso: to refer to the ISO CD/TR 15926 Part 14 upper
ontology (which SPO imports) and proc: to refer to specific
application-level instances developed in this paper.

IV. OVERVIEW OF THE QUOKKA WORKFLOW
The Quokka workflow (pictured in Figure 2) consists of
three modules. These are the completion, consistency and the
correctness modules. Each module can be used in isolation
or all three to realise an end-to-end semi-automated quality
assurance pipeline for semi-structured data. This choice will
depend on the current data maturity and procedure authoring
practices in an organisation.

The first module is the completion module, designed
for ‘‘completing’’ the structured representation of the data.
When we say ‘‘completing’’, it means that we take implicit
knowledge (i.e. knowledge hidden in unstructured texts) and
make it explicit (i.e. thus the structured knowledge base more
complete). Specifically, we perform information extraction
(IE) to map entities and relationships from unstructured text
in the documentation to a set of structured CSV files (suitable
for serializing as OMPD-aligned OWL triples). The language
model(s) to be used, the entities and relations be extracted,
and the structure of the CSV output files are all determined by
a configuration file (described in Section V). This means that
users can choose how the completion module behaves, thus
future proofing the implementation against a fast-changing
natural language landscape. The completion module outputs
a set of CSV documents containing structured data, extracted
entities, and unique Internationalised Resource Identifiers
(IRIs) applied to each datapoint. This output becomes the
input to to the consistency module, where the data is used to
generate an OWL serialization of an ontology.

10Public documentation of SPO module of OMPD: https://industryportal.
enit.fr/ontologies/OMPD-SPO/
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FIGURE 1. The static procedure ontology (SPO) module of the OMPD data model [15].

FIGURE 2. Flow diagram of the quokka workflow.

The consistency module uses Reasonable Ontology Tem-
plates (OTTR) [17] to convert the structured CSV files from
the completion module into an OWL ontology, conforming
with OMPD. Themodule uses OTTR’s Lutra tool11 to expand
instance data from a CSV format into its OWL serialization.
After this extraction is performed, a reasoner can be used
to check the consistency of the generated ontology against
the axioms of the ontology that it is aligned to. For example,
using the OMPDdatamodel (described in Section III) a Pellet
reasoner (described in Section V) can check the ontology
against the axioms of OMPD. An example consistency check
performed in OMPD ensures that the steps in a procedure

11The Lutra tool is provided as part of the OTTR implementation and is
available at: https://gitlab.com/ottr/lutra

document align correctly in a sequence to ensure that there
are no branching task sequences.

The final module in the Quokka workflow, the correctness
module, takes the OWL ontology from the consistency
module as input. This module contains two steps. First,
existing RDF ontologies are imported into the ontology.
These can be existing open-source models or proprietary
models owned by an organisation. Second, a set of pre-
configured SHACL [18] shapes are used to check the
correctness of the OWL ontology (both as a standalone model
and against the existing ontologies that are imported in the
first step). This module is separated from the consistency
module so that users can control their corrections to the data
without generating reasoning errors. This control is important
where language ambiguity in technical texts could cause
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natural language models to produce incorrect predictions for
the entity and relation annotations. Based on the outcomes of
validating the ontology against a set of SHACL shapes, the
correctness modulewill suggest potential data improvements
to the user. Users can then update their data and re-run the
consistency module to produce a corrected ontology.
In designing this workflow,we consider two non-functional

requirements (NFR). The Quokka workflow is configurable
(NFR 1) and flexible (NFR 2) to meet the needs of various
organisations. These are:

• NFR 1 - Configurability: Users should be able to swap
out the pre-configured natural language models, data
models and rule sets based on their technical capability
and strategic goals.

• NFR 2 - Flexibility: Users should be able to choose
which modules of the Quokka workflow that they would
like to use based on their data maturity and current
procedure authoring practices.

These NFRs allow the Quokka workflow to be
re-configured to use an entirely different natural language
model, OTTR templates, RDF/OWL model and SHACL
shapes. We implemented these NFRs to adapt the workflow
to suit different industrial organisations and keep up with a
fast-advancing natural language landscape into the future.
The larger significance of these design choices is that
our implementation of the Quokka workflow is a resource
contribution for the wider semantic web community beyond
maintenance procedures or technical texts. Anyone wishing
to apply an information extraction model to their text-based
data, align the extracted data to an ontology or validate their
RDF/OWL model against existing ontologies with a set of
SHACL rules can use our Python-based implementation of
this workflow to accelerate their work.

V. IMPLEMENTATION
In this section, we describe how we implement each of the
modules of the Quokka workflow to support semantic quality
assurance of industrial maintenance procedures. Our imple-
mentation is available at: https://github.com/equonto/quokka.

A. MODULE 1: COMPLETION MODULE
Technical Language Processing (TLP) is a rapidly evolving
space in the light of new Large LanguageModels (LLMs) and
there is a growing body of research in extracting technical
language, in particular from maintenance work orders [19].
In addition, [1] uses a technical language processing approach
to extract entities from iFixit data in their work. Given recent
developments in LLMs, we demonstrate how to leverage
newly emerging models to extract implicit information from
procedure documentation, in a tailored manner that meets
users’ requirements and strategic goals.

The completion module performs the process of ‘‘com-
pleting’’ the input dataset by making implicit information
explicit. In industrial maintenance procedures, useful knowl-
edge about the work performed is often locked away in
unstructured texts. For example, an oil replacement procedure

may contain the step: ‘‘Use a 17mmbox endwrench to loosen
the drain plug 3/4 of a turn’’.12 The text in this step tells us
the activity performed (loosen), the item being worked on
(drain plug) and a tool that will be required for executing
a procedure (17mm box end wrench). This information is
useful for planning work (i.e. what tools need to be available)
and developing maintenance strategies (i.e. what types of
work has been performed on this component in the past).
Note that some implicit information, such as ‘‘3/4 turn’’ is
not captured within the scope of this work. Future work
can extend our annotation schema to capture further implicit
information from the step texts depending on organizational
requirements.

The input to the completion module is a set of CSVs
describing the contents of a set of maintenance procedure
documents. The input CSVs can be in any structure as
long as this structure is reflected in the completion module
configuration file. For evaluating the Quokka workflow,
we use a set of four input CSVs that capture information in
six iFixit13 procedures. iFixit is a crowd-sourced repository
of repair manuals [20]. Specifically, we make use of the
JSON representation of preprocessed iFixit data that is
publicly available [1]. We are not able to use industrial
maintenance procedures as a dataset for this publication
for two reasons. First, we are not able to publish the data
or the produced ontology due to commercial in confidence
constraints. Second, industrial organisations remain wary
of using externally hosted LLMs on their own data for
data privacy reasons. iFixit procedures are emblematic of
procedures that are found in industry as they contain a similar
style of instruction involving technical language. An example
iFixit procedure that we use in this work is given in Figure 3.
This procedure describes a stator replacement for a Honda
CSC29 vehicle. The procedure contains a brief introduction,
a structured set of tools that are required for the procedure and
a set of steps (with text-based and image-based descriptions).

Maintenance procedures in industry are often stored as
PDFs. While automated extraction of procedure data (from
PDF into CSV format) is not the focus of this work, there is
a large active body of research in this area [21], [22], [23].
Instead, the Quokka workflow uses CSVs as an input so that
organisations who currently store procedure documentation
in JSON, CSVs or in relational databases are supported. Users
with input data in PDF or other text-based formats first need
to extract their data into CSVfiles in a structure that is suitable
for their dataset (and reflect that structure in the completion
module configuration file). A summary of the input CSVs that
we use in this work is given in Table 1.
The algorithm performed by the completion module is

shown in Algorithm 1. The completion module iterates
through each configuration file and transforms the input
CSV specified in the configuration file into an output

12This procedure step text is taken from the iFixit website at
https://www.ifixit.com/Guide/John+Deere+870+Oil+Change/6471

13iFixit: https://www.ifixit.com/
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FIGURE 3. Screenshot from Honda CSC29 Stator Replacement Procedure (sourced from iFixit website at
https://www.ifixit.com/Guide/Honda+CSC29+Stator+Replacement/62800).

TABLE 1. Format of input CSVs used in the completion module.

schema. If there is a text field in the input file, information
can be extracted from that text field. Example extracted
information is shown in Figure 4 (where a number (n) has
been assigned to each information extraction step). First (1),
raw entities are extracted using a Named Entity Recognition
Model. Second (2), relations are determined between the
entities found in the text using some Relation Extraction
model. For procedures, information extraction is performed
on text-based task descriptions. Valuable information in these
task description include activities that are performed,
the items they are performed on and the tools required
to do the work. The relations that we consider in this work
are hasPatient and hasAgent. This is informed by the
MaintIE schema for maintenance texts [24]. These are both

sub-properties of iso:hasParticipant in OMPD. The
hasPatient relation is used to determine what items are
being worked on in what activity (i.e. lift hasPatient
hood). The hasAgent relation is used to determine what
tools or materials are used to perform what activity (i.e. twist
hasAgent wrench).

The extracted information, as well as the structured data
from the input CSVs, is mapped to an output schema
(represented also as a set of CSVs). In addition, entities
that will form classes or instances in the ontology (produced
in the next module), are given a prefix (that are used to
form an IRI of the form prefix + entity ID). The
expected structure of the input CSV and output CSVs, and
the information extraction models used by the completion
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Algorithm 1 Algorithm Performed by completion module
Data: Input CSV set
Result: Output CSV set
prepare output_folder ;
for input CSV in input CSV set do

find configuration file ;
if configuration file contains a information_extraction definition then

for row in input CSV do
prepossess text_field ;
get entities with ner_model (if configured) ;
relate entities with relations_model (if configured) ;

end for
end if
for output_schema object in configuration file do

serialize output ;
write new CSV file to output_folder ;

end for
end for

FIGURE 4. Example of information extraction performed in the completion module (images and text adapted from iFixit at
https://www.ifixit.com/Guide/1999+2000+2001+2002+2003+2004+Volkswagen+

Golf+Automatic+Transmission+Control+Unit+Replacement/2965).

module is determined according to a set of configuration
files.

Example output CSVs containing one task description
from Figure 4 is shown in Figure 5 (where a number (n) is
assigned to the key features of the figure). Figure 5 shows one
maintenance task (proc:Task_14479) where one main-
tenance task can have many maintenance task descriptions
(denoted by the 0..* multiplicity). For example, the main-
tenance task can be described in both a text-based description
and in an image. This task has one description with the text
‘‘lift up the plastic cover’’ that has been assigned a unique IRI
(proc:Task_14479_description) (1) and mapped
to the ompd:MaintenanceTaskDescription class
in the OMPD ontology. As well as assigning IRIs to the
input data, implicit information has also been made explicit
for this maintenance task. A ompd:MaintenanceTask
can involve many ompd:MaintenanceAction entities
have many ompd:ItemInMaintenanceProcess par-
ticipants. In this case, the task involves a ‘‘lift’’ (2) that
is performed on a ‘‘plastic cover’’ (3). This relationship

between the ‘‘lift’’ action and the ‘‘plastic cover’’ is given
in via a ompd:hasPatient relation (4) given in the
‘‘Action - Item Relaction’’ table. These output CSVs contain
the explicit information that we need for mapping our data
to RDF triples. In addition to this extracted information,
structured information about the position of the task in the
procedure is provided (5). The output of the completion
module is the input to the consistency module described in
Section V-B.

1) INFORMATION EXTRACTION APPROACH
In November 2022, OpenAI released ChatGPT for public
use. This development brought LLMs to the forefront of
both research and industrial interest in 2023 and into 2024
(the time of writing this paper). Our implementation of
the Quokka workflow supports information extraction using
any currently available Open AI Chat Completion Model.14

14Available models found at https://platform.openai.com/docs/models
(Retrieved April 2024)
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FIGURE 5. Example output data generated by the completion module for a single step in iFixit procedure.

OpenAI’s Chat Completion models use GPT (or Generative
Pre-trained Transformers) to generate text given a user’s
prompt. Task training on OpenAI GPT models can be
performed using fine-tuning or few-shot learning. Few-shot
learning is a generalised learning approach that uses only
a few (often less than 10) input-output examples to train a
model of its intended task. In this work, we use a few-shot
learning approach. This gives organisations a mechanism to
create suitable models for their data, without the need for
large, curated training datasets that may not be available to
the organisation. The prompts that we use for named entity
recognition and relation extraction are further described in
Section VI.

B. MODULE 2: CONSISTENCY MODULE
The consistency module maps the output CSVs from the
completion module (Section V-A) to an OMPD-conforming
OWL ontology. Once mapped to an ontology, an automated
OWL reasoner checks the consistency of the data according
to OMPD’s axioms. For this work, we use the Pellet
reasoner [7]. The Pellet reasoner is an OWL-DL reasoner
based on tableaux algorithms and is available in popular
ontology authoring tools such as Protégé.

Our goal in this module is to make this OWL mapping
practical, configurable and repeatable (see non-functional
requirements given in Section IV). For this, we use Reason-
able Ontology Template (OTTR) [17]. OTTR is a language

for generating OWL ontologies (and populating them with
instance data) using declarative programming principles.
OTTR puts data owners in control of their ontology’s data,
without constant involvement from a ontology expert who
is proficient in Protégé or other ontology design tools.
Instead, an ontology expert can setup OTTR templates,
and data owners can manipulate the input data without
needing to understand the details of the underlying ontology.
In addition, OTTR supports ontology design pattern re-use
by exposing a public template library for practitioners to re-
use [17]. For these reasons, OTTR improves the efficiency
and repeatability of ontology development, without the need
for ad-hoc ontology population scripts that are tailored
for different applications. A demonstration of the use of
OTTR templates in industrial applications has been given by
Lupp et al. [25].

The OTTR language provides several template formats
for different expansion tasks (i.e. bOTTR,15 stOTTR,16

wOTTR17). To expand our CSV format to OWL triples
we use the bOTTR and stOTTR template formats. OTTR’s
reference implementation, titled Lutra,18 interprets these

15bOTTR (to transform tabular data to instance data in the stOTTR or
wOTTR syntax): https://spec.ottr.xyz/bOTTR/0.1.2/

16stOTTR (syntax for defining OTTR templates - based on Turtle syntax):
https://spec.ottr.xyz/stOTTR/0.1.4/

17wOTTR (syntax for defining OTTR templates - based on OWL syntax):
https://spec.ottr.xyz/wOTTR/0.4.5/

18Lutra implementation: https://gitlab.com/ottr/lutra
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FIGURE 6. Illustration of the flow of data in the completion module (via Lutra).

templates and performs the data expansion (from CSV
to OWL). The logical flow of Quokka’s use of Lutra is
shown in Figure 6. A set of bOTTR templates provide a
mapping between the CSV files generated in the completion
module to OTTR instances. The stOTTR templates then
provide the mapping from the OTTR language to a
set of OWL triples. Users of this implementation can
replace the templates with their own templates without
needing to change the source code. An example of the
bOTTR and stOTTR templates that we use in this work
are shown in Figure 7. These templates expand rows
from the maintenance_action_extracted.csv
table (i.e. the extracted ACTIVITY entities from the
the task descriptions) and generates OWL individuals
of rdf:type ompd:MaintenanceAction. The tem-
plates also relate the ompd:MaintenanceActivity
with ompd:MainteanceTask individuals with the
iso:activityPartOf object property. The templates
that we pre-configured for this work are publicly available
at https://github.com/equonto/
quokka/tree/main/config/consistency/templates. In addition
to the CSV data that is expanded to OWL triples, the
consistency module imports the OMPD ontology for
consistency checking against OMPD.

Once RDF triples are generated, and OMPD is imported,
we use the Pellet reasoner implemented in OwlReady2
[26] to perform an automatic consistency check on
the data. For example, in the OMPD ontology, the
axiom MaintenanceTask ⊑ MaintenanceProcess ∧ (≤
1 directlyBefore.MaintenanceTask) ensures that maintenance
tasks occur in a linear sequence. Figure 8 shows both
a task sequence consistent with OMPD, and a task

FIGURE 7. OTTR templates used to transform maintenance actions from a
CSV into OWL instances.

sequence inconsistent with OMPD. Other consistency
issues considered in OMPD include tasks that appear in
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FIGURE 8. Example consistency check for task sequences using the OMPD ontology.

TABLE 2. SHACL-SPARQL shapes pre-configured in the correctness module for validating maintenance procedure documentation.

multiple procedures, and ompd:Resource entities (that
are not of type iso:Object) incorrectly being assigned
to a procedures. We provide a demonstration of typical
consistency checks in Section VI.
If there are consistency issues in the ontology, users

should update their input data and re-run the completion
module to produce a consistent dataset. Using axioms
in OMPD, we check the structural data quality of a

set of maintenance procedures For example, we check
that all ompd:MaintenanceTask entities are an
iso:activityPartOf only one
ompd:MaintenanceProcedureProcess. However,
we cannot check the content of the procedure. For example,
if the named entity recognition model used in the completion
module (Section V-A) incorrectly tags a ‘‘engine’’ as an
ACTIVITY then we cannot check for this issue. Such checks
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FIGURE 9. SHACL-SPARQL shape to check for instances where there is No Tasks In Procedure.

are, instead, performed in the correctness module (described
in Section V-C) where closed-world constraints are applied
to the data and suggestions for corrections are returned to the
user.

C. MODULE 3: CORRECTNESS MODULE
In the correctness module, we use SHACL shapes [18]
to perform closed-world constraint checking. SHACL
(or the Shapes Constraint Language) is a language for
validating RDF and OWL graphs that became the W3C
recommendation for ontology validation in 2017. An example
of a SHACL shape that we use in this work is given
in Figure 9. As shown in the figure, SHACL works by
first selecting entities specified in a sh:targetClass.
In this case, the shape is selecting entities of type
ompd:MaintenanceProcedureProcess. The shape
then uses a sh:property definition to check the properties
in the selected graph. In this case, the shape is checking if
all entities have at least one hasDirectActivityPart
relation to another entity. This is the case for Procedure
Process 1, but not for Procedure Process 2.

Therefore, a validation result will be returned to the user
indicating there is a data quality issue in Procedure
Process 2.

We use a SHACL extension (included in the 2017 W3C
recommendation) in this work that allows the use of
SPARQL in shape definitions (SHACL-SPARQL). This
extension gives further expressive power to the shapes that
we define. A description the SHACL-SPARQL shapes that
we use to check the correctness of maintenance procedure
documentation is given in Table 2. The corresponding shapes
are online at https://github.com/equonto
/quokka/tree/main/config/correction/shacl. Of course, it is
possible to implement additional SHACL-SPARQL shapes
in the correctness module. We have chosen to use
SHACL-SPARQL so that the implementation of the Quokka
workflow is configurable (NFR1, Section IV). This means
that implementers of the Quokka workflow can expand this
set of shapes to meet their technical requirements without
modifying the source code. We have selected the presented
shapes for this work to demonstrate the current capabilities
of the OMPD ontology.
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VI. USE AND EVALUATION
In this section, we provide a proof-of-concept demonstration
of the Quokka workflow. We use this demonstration to assess
OMPD’s suitability for improving the semantic quality of
industrial maintenance procedures. The iFixit procedures that
we use in this proof of concept are listed in Table 3.

TABLE 3. Summary of Procedures Used in Evaluation.

A. SEMANTIC DATA VALIDATION AND REASONING
In this section, we demonstrate how the consistency module
and correctness module perform semantic validation over
procedure structure and contents. The consistency module
maps data to RDF triples aligned with the OMPD ontology
and uses a Pellet reasoner to test for consistency issues.
The resulting ontology can be found at https://github.com/
equonto/quokka/tree/main/data/output/ontology. The con-
sistency module yields no consistency issues with our
current configuration and input dataset containing six
iFixit procedures. Therefore, to test for typical con-
sistency errors that we expect to be detected in this
module, we create 5 example datasets (and corresponding
Quokka configurations) containing typical consistency
issues that can be detected using OMPD’s axioms. These
datasets are described in Table 4 and can be found
at https://github.com/equonto/quokka/tree/main/0_testdata.
An example case is a maintenance engineer adding a
branching task sequence to the dataset. This is inconsistent
with OMPD that expects task sequences to be linear.
In addition, the consistency module can check for issues with
Quokka’s configuration. For example, if an ontology expert
(who is responsible for creating OTTR templates used in
Quokka) incorrectly asserts that an instance of a tool is a
iso:Activity.

Once the dataset mapped to RDF triples and checked for
consistency, we now use the correctness module to perform
closed-world constraint checking. In Table 5, we compare
the results of the correctness module with an expected
result determined by an SME. Shapes 1 - 3 (Table 5) that
ompd:MaintenanceTask entities correctly sit within
a procedure and have a valid sequence using closed-
world constraints. For example, Shape 1 checks if there
are any procedures in the dataset that contain no tasks.
The completion module raised no correctness issues for
Shape 1 - 3. These shapes correctly identify no issues in the
structured information captured in the populated ontology.

Shapes 4, 5, 6 and 7 perform checks on the unstructured
information in the procedure. Therefore, the results of these
checks are dependant on the output of the information
extraction model used in the completion module. The
successes and limitations of this information extraction
are discussed in Section VI-B. Shape 4 checks for
ompd:MaintenanceTask entities that do not have
a ompd:MaintenanceAction as an activity part.
Quokka correctly identified one task where this is the
case. In this case, the task is only described with
ompd:AuxilliaryMaintenanceTaskDescription
texts where no entities are extracted in the completion mod-
ule. Therefore, there is no ompd:MaintenanceAction
for this task in the ontology. This correctness issue can
also occur if none of the maintenance task descrip-
tions for a task have an activity term in them. When
this correctness issue is raised, the task should not
be considered an ompd:MaintenanceTask entity the
maintenance engineer should consider refactoring their
tasks.

Shapes 5 and 6 check for correctness issues in
the procedure’s unstructured text. Shape 6 checks for
ompd:MaintenanceAction entities in the populated
ontology that do not have a ompd:hasPatient relation
to some iso:Object (i.e. a tool, material or item).
On inspection of our human-annotated dataset, we found
one row that says ‘‘look for scoring mark or cut piece of
winding’’. Since ‘‘scoring mark’’ and ‘‘cut piece of winding’’
are tagged as OBSERVATION entities, there is no ITEM,
TOOL or MATERIAL that is the patient of the ‘‘look for’’
activity. When the check is performed on LLM tagged dataset
however, there are several cases where ITEM entities have
been incorrectly identified and no hasPatient relation
is tagged. In addition, the task that we identified was
not identified as an error. This is because ‘‘cut piece of
winding’’ was tagged as an ITEM by the LLM (where ‘‘look
for’’ hasPatient ‘‘cut piece of winding’’). Shape 7 is
checks if there are any TOOL entities that do not have a
agentOf relation to some ACTIVITY. On checking the
human-annotated data (that we describe in Section VI-B),
we found that there is one step text that reads ‘‘use a ratcheting
socket wrench with an extender and a 5/8 spark plug socket
to remove the existing spark plug’’. In the human-annotated
text, the word ‘‘extender’’ is considered a ‘‘partOf’’ the
ratcheting socket. In our LLM prompt, however, we do not
use the partOf relation. Therefore, extender is incorrectly
tagged as the agent of the remove activity (thus this issue
is not identified by the SHACL shape). Instead, four cases
were detected where the LLM used in the completion module
fails to detect a hasAgent relation between a tool and an
activity. These results are useful in checking the results of the
information extraction model used in the completion module.
However, due to issues in the information extraction model,
these checks have failed to find the same correctness issues
in the dataset identified by a human. For these checks to
be effective, further work is required to improve the ITEM
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TABLE 4. Checks completed for typical consistency errors detected in the consistency module.

TABLE 5. Suggestions made by the correction module.

identification in the step texts (discussed in the following
section).

Shape 7 checks for ompd:MaintenanceAction enti-
ties that do not match a terms list of accepted actions. For
this check, we use our existing ontology for maintenance
activities. Since the Maintenance Activity Ontology [11]
is designed to capture the most frequently found activities
in maintenance work orders, some terms are at a more
atomic level. Therefore, to limit the number of false positives
produced by this SHACL shape when used on iFixit data,
we inspected the human-annotated texts and added terms that
we consider correct but do not appear in the maintenance
activity ontology to the accepted terms list. Shape 7 detected
many of the issues that we found in the human-annotated
text. Namely, cases where the step text is un-lemmatised,
i.e. ‘‘pulling’’ should be standardised to ‘‘pull’’. In addition,
it detected cases where texts are incorrectly tagged by our

19For this test, we add a new file configuration to populate entities of type
OMPD:Hazard

information extraction model. For example, we do not wish
for the word ‘‘use’’ to be tagged by the information extraction
model. However, this shape is able to detect cases where
‘‘use’’ has been erroneously added to the ontology. In the
following section, we describe the successes and limitation
of the information extraction that powers the analysis that we
have described.

In summation, the consistency module and the correctness
module perform data quality checks to improve the data
quality of maintenance procedure documentation. These
data quality improvements include structural improvements
(i.e. ensuring that steps are correctly ordered and mapped
to procedure documents) and content improvements (i.e.
checking that maintenance tools are correctly mapped to
actions that they are used to perform).

B. INFORMATION EXTRACTION
In this work, we make implicit information in the
maintenance procedure texts explicit using Named Entity
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Recognition and Relation Extraction in this work. For these
experiments we use OpenAI’s GPT-3.5 Turbo model. While
it is not the fastest and most capable model on the market in
2024, it is a low-cost solution for experimentation. We first
considered using an existing Flair model [27], however,
preliminary experiments yielded poor results as the training
data (maintenance work orders) document a different level of
atomicity than the iFixit data. In addition, it was not possible
to tag the desired TOOL, MATERIAL entities and relations
with the Flair model.

For evaluation, two subject matter experts (SMEs) tagged
the six procedures manually using the QuickGraph anno-
tation tool [28]. This human-annotated dataset is publicly
available and is an additional resource contribution for this
work and can be accessed at https://github.com/equonto/
quokka/tree/main/annotated_dataset. In the following sec-
tions, we compare the predicted results with this human-
annotated data. The results for each entity type and relation
type are given in Table 6. For evaluation, we give results for
exact entity matching, and partial entity matching (i.e, where
the entity is identified but the start and end indices of the
entity do not match).

a: NAMED ENTITY RECOGNITION
We perform named entity recognition using few-shot learn-
ing. Few-shot learning is an approach where a model
learns the task from few examples, and these examples are
included in a prompt supplied to an LLM. The prompt
that we use includes a role (i.e. ‘‘you are a text tagging
assistant for maintenance procedures’’) and specifies tags
that the model can use (i.e. ACTIVITY, ITEM, TOOL,
MATERIAL OBSERVATION, LOCATION, SPECIFIER,
CARDINALITY, NOISE). The tags used in this prompt
tags are labelled according to existing research in technical
language processing [27]. While we only use ACTIVITY,
ITEM, TOOL and MATERIAL tags within the scope of this
work, we found that the model performed better when it
could find an appropriate tag for entities such as ‘‘corrosion’’,
‘‘damage’’ and ‘‘left side’’. In earlier iterations of the prompt
(where these additional tags were not used), the model
would incorrectly tag these entities as ITEM or ACTIVITY.
The prompt also contains 7 prompt-completion examples.
We believe these prompt-completion pairs capture the intent
of the given tags, while keeping the number of tokens in the
prompt small. The prompt that we use (with completion pair
examples omitted) is given in Listing 1 the full prompt can be
found at https://github.com/equonto
/quokka/blob/main/
config/completion/prompt_template_ner.json.

Examples of correctly and incorrectly tagged items are
given in Tables 7 and 8 respectively. ACTIVITY entities
are tagged with 80% precision. However, in some cases
the word ‘‘use’’, is tagged as an ACTIVITY (as shown
in Example 1, Table 8). This is occurring despite the
prompt indicating to tag it as NOISE and other texts
containing the word ‘‘use’’ being successfully. The word

LISTING 1. Prompt used for entity extraction using the GPT-3.5 Turbo
model.

‘‘use’’ should not be tagged because it does not describe
the work performed in the maintenance performed in the
maintenance task, thus should not be added to the resulting
ontology as a ompd:MaintenanceAction. The model
(using the prompt provided) tagged TOOL entities with
83% precision and MATERIAL entities with 78% precision.
Notice, however, when we calculate the partial entity match
for these entities, both achieve greater than 90% precision.
This implies that while the model can correctly identify
the occurrence of a TOOL or MATERIAL it sometimes
includes too many (or too little) words in the tagged n-gram.
An example is given in Example 2, Table 8 where ‘‘another
fixture’’ is tagged as a TOOL. In the human-annotated set,
however, only ‘‘fixture’’ is tagged as a TOOL.

The model, however, struggled to tag ITEM entities
sufficiently (57% precision for exact entity matches, 74%
precision for partial entity matches). This is occurring for two
reasons. First, in the human-annotated set, we tag items as
their atomic parts where possible. This choice is consistent
with existing TLP research [24]. However, the model tends
to tag these as a single item. An example of such case is a
‘‘hood latch’’ where ‘‘hood’’ and ‘‘latch’’ should be tagged as
separate items (Example 3, Table 8). Second, in the human-
annotated set we do not tag parts of the sentence that are not
related to the instruction (and in the prompt we tag these as
NOISE). An example of such a text is ‘‘once the nut is off,
you can then remove the pulley’’. The part of the sentence
that reads ‘‘once the nut is off’’ is considered NOISE because
it does not describe the activity occurring in the step text
(i.e. ’’remove the pulley). However, we found that the model
tended to over-tag ITEM entities that should, instead, fall into
the noisy part of a sentence. These results are consistent with
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TABLE 6. Comparison of six SME tagged iFixit procedures against procedures tagged by GPT-3.5 Turbo.

TABLE 7. Examples of correctly tagged procedure step texts.

TABLE 8. Examples of incorrectly tagged procedure step texts.

existing TLP research that has struggled to tag ITEM entities
with a high accuracy [27].

b: RELATION EXTRACTION
The prompt that we use Relation Extraction is
given at https://github.com/equonto/quokka/blob/main/config/
completion/prompt_template_relations.json. We use this
prompt to find HAS_AGENT and HAS_PATIENT relations
between entities and the step texts. The prompt also includes
a HAS_PARTICIPANT relation. While we do not use this
relation in the produced ontology, we found that its inclusion
prevented the model from over-tagging HAS_PATIENT.
Examples of correctly tagged texts are given in Table 9.
While on visual inspection of the results, the model appears to
be able use the HAS_AGENT and HAS_PATIENT relations
effectively, the qualitative results that we give in Table 6
remain low. This is occurring because tagging of ITEM
entities has a low precision. We use a strict evaluation
method (where both entities and relations need to be correct
for the result to be considered a true positive) thus results
are detrimentally impacted by incorrectly tagged ITEM
entities.

c: SUMMARY
These experiments signal a promising future for LLMs
for information extraction for maintenance procedures and
perhaps other TLP applications. However, there several
opportunities for future work. An avenue for future work is to
further examine the effects of prompt-engineering and fine-
tuning on the use of LLMs for procedure texts. Future work
includes performing experiments with alternative (including
open-source) models, and assessing the impacts of using a
fine-tuned model over a base LLM. There are two known
limitations in our information extraction. The first limitation
is that while we use a low temperature value (of 0.1) as
a parameter of the models, the results of OpenAI’s LLMs
are inherently non-deterministic. This means that in the case
of some step texts where the tagging is ambiguous (i.e.
a decision to be made about whether to tag ‘‘from the rain
tray’’ as an item or a location), the model tags the record
slightly differently on each run. A possible resolution in
future work is to test if fine-tuning the LLM has an impact
on the deterministic nature of the results. Currently, it is
possible that the base LLM is undecided between multiple
interpretations of a step text and this could be improved
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TABLE 9. Examples of correctly extracted relations in procedure step texts.

with a fine-tuning process. The second limitation is in our
handling of plurals. The named entity recognition prompt that
we use is designed such that all entities are collected once.
Therefore, if the word ‘‘engine’’ appears multiple times in the
text, then Quokka treats it as one engine when performing the
ontological conversion. However, if the next says ‘‘remove
all four bolts’’, there will still only be one ‘‘bolt’’ entity in the
resulting tagged set (thus ontology). To improve this in future
work, our prompts could be re-designed to return a cardinality
of each entity in the text (i.e. bolt x4). Using this approach,
the correct instances could be created in the ontology.

VII. DISCUSSION
In this section, we discuss what the impacts of the work
presented in this paper on the ontology community, main-
tenance technicians and maintenance engineers. We also
discuss several opportunities for future work.

A. WHAT ARE THE CONTRIBUTIONS FOR THE ONTOLOGY
COMMUNITY?
In this work, we demonstrate the application of existing
semantic quality assurance tools on a real-world industrial use
case in a workflow that involves both structured information
and unstructured texts. Procedures are a general concept,
applying to many different domains including medicine and
process engineering. The Quokka workflow is configurable
(NFR1) so that other domains can use concepts from OMPD
with only small configuration changes. We perform OWL
reasoning and SHACL validation over both the structured
information (i.e. task sequences) and unstructured informa-
tion (i.e. contents of the step texts). This demonstration is
made possible thanks to recent advancements in TLM and
LLMs that allow for implicit knowledge to be extracted
from the unstructured text found in maintenance procedures
without the need for pre-annotated training data. Pre-
annotated training data is time intensive and costly to create,
therefore this feature is useful for practitioners who need to
quickly demonstrate a proof-of-concept of their workflow.
Further, the configurability of the Quokka workflow ensures
that LLMs continue to be supported as the models evolve.
While the information extraction presented in this paper has
limitations, particularly in ITEM identification using few-
shot learning, this demonstration is a useful starting point for
organisations wishing to apply semantic technology to their
industrial data.

B. HOW DOES THIS WORK HELP MAINTENANCE
TECHNICIANS?
This work supports maintenance technicians in providing
an extensible and repeatable quality assurance process

for maintenance procedure documentation. As mentioned
in Section II-B, a technician’s motivational aspects of
work are affected by delayed or ineffective procedure
updates. In organisations where procedure documentation
is paper-based and exists in non-uniform PDF templates,
it is difficult to update procedures consistently. For example,
if a technician points raises an issue with a documented
item of tooling in a procedure document, it is difficult
to find all procedures that might require the same change
of tooling. While an existing procedure document can be
updated, the technician is likely to see that same issue
come up multiple times. This work focuses specifically on
machine-readable maintenance documentation that allows
for improved data quality checking. By validating the
contents of the step texts (such as all maintenance task must
have one maintenance action), we validate the form and
content of the maintenance procedure. For technicians, this
means that procedures are described in a uniformway and the
document style is not dependant on the original author of the
procedure.

C. HOW DOES THIS WORK HELP MAINTENANCE
ENGINEERS?
Machine-readable maintenance procedures presents further
opportunities for a maintenance engineer’s work. In this work
we extract ompd:MaintenanceAction from the step
texts in maintenance procedure documentation for populating
an ontology. We also present a SHACL shapes to validate
these actions. For example, we define a SHACL shape
to check the label of the ompd:MaintenanceAction
against an accepted terms list. We then provide the main-
tenance engineer the opportunity to decide how to correct
their data if validation issues are raised. This capability is
significant for maintenance engineers to track what work
was done on what items. This information is a useful input
to maintenance strategy improvements. For example, if a
filter is the patient of a ‘‘change out’’ activity, maintenance
engineers can then trace how often that filter is changed using
the frequency that the procedure is executed. If maintenance
engineers can understand and track the work performed
maintenance procedures, they have increased visibility
over the maintenance occurring on equipment and its
components.

D. WHAT OPPORTUNITIES ARISE FOR FURTHER WORK?
This work presents several opportunities for future work.
First, we demonstrate examples of consistency and cor-
rectness rules that are suitable for validating maintenance
procedure documentation. Future work involves discussing
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the consistency and correctness rules that have highest value
with domain experts.

Second, there is value in validating procedure documen-
tation by matching the results against existing industrial
vocabularies. In this work, we consider the Maintenance
Activity Ontology [11] to check if the activity terms found
in the procedure documentation were consistent with known
terms. Upon finding that several activities in the iFixit data
are documented at a more atomic level than those captured
in the maintenance activity ontology, we extended the terms
list from the maintenance activity ontology to also capture
these terms. Future work involves analysing the effects of
this extension and considering if the maintenance activity
ontology can accommodate activities at a more granular
level.

Finally, while we have presented a proof of concept in
this work, future work involves further validation activities
to test that Quokka can effectively deliver value at scale
using real-world industrial data. It is important to take
ethical considerations into account when using LLMs with
industry data. The first consideration is confidentiality. If data
is considered confidential or of proprietary value, then
organisations may prefer to use open-source LLMs such as
Llama20 in secure self-contained environments. The second
consideration is anonymity. If procedure documentation
contains identifiable information (such as author names and
email addresses) such information should be removed before
passing the data to an LLM (unless prior consent is received).

VIII. CONCLUSION
In this work, we demonstrate a proof-of-concept workflow,
titled Quokka for improving the completeness, consistency
and correctness of machine-readable maintenance procedure
documentation. For this, we use OpenAI’s GPT to extract
information from maintenance procedures. Our work shows
success using few-shot learning to identify tools, materials
and activities. However, more work is required to effectively
identify items and relations using few shot learning. Next,
we use OTTR to map the procedure to OWL triples (aligned
with OMPD). Using OTTR, we demonstrate a configurable
and repeatable way for organisations to produce and manage
OWL-based procedure documentation to make the most of
from consistency checking capability of OWL reasoners.
Finally, we use SHACL to check the documentation against
closed-world constraints.

This work has material impacts on the work of both main-
tenance technicians and maintenance engineers. This work
can be extended to support new domains where procedures
are used day-to-day. These include manufacturing, energy
and surgical domains. A key contribution of this work is
our publicly available code, that is designed to be both
flexible and configurable to support re-use and future work
in additional domains.

20Llama: https://llama.meta.com/
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