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ABSTRACT Numerous studies have examined classroom seating arrangements to enhance student safety
and resource utilization during COVID-19. These studies typically aimed to maximize the minimum distance
between students for a given number of students to be assigned. This paper distinguishes itself from the
existing literature by not only assigning students as far apart as possible but also focusing on maximizing
the average distance between students. We call this new problem the maximum diversity social-distancing
problem (MDPs), a novel variant of the maximum diversity problem (MDP). This problem is a two-phased
problem, where the first phase involves producing the maximum of minimum distance (max-min) between
students, and once that is resolved, the max-min distance is used in the second phase for having the highest
dispersion. The first phase is here solved by a new algorithm, which effectively determines max-min distance
for each student allocation scenario. For the second phase, three exact and one greedy approximation MDPs
models are proposed. In computational testing, we observe that the greedy approximation MDPs model
mostly returns optimal solutions across all tested classrooms in less than a second. More importantly,
utilizing the greedy one significantly improves student pair spacing, increasing the average distance by over
40 centimeters compared to the max-min distance approach of the literature. Later, this effective approach is
integrated into the pandemic management platform, which proactively assists the university administration
in preparing for and effectively managing future infection outbreaks.

INDEX TERMS Sustainable education, maximum diversity problem, social distancing, seat assignment,
mathematical modeling.

I. INTRODUCTION
During the COVID-19 pandemic, the economic situation of
the countries has deteriorated, most workplaces, schools, and
public places have been closed or they have continued to
operate with less capacity. These have negatively affected
societies in various areas, from social life to education.
Therefore, governments and institutions have taken crucial
steps to mitigate the impact of the pandemic and slow its
spread; some of these include wearing masks, maintaining
social distancing, and hygiene in crowded and closed
environments. Many education institutions have switched
to the online-learning to support the pandemic control in
closed areas [1]. Alternatively, as face-to-face education has
been preferred to online learning, different social distancing
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policies have been adopted by many countries in closed
areas [2]. For example, Singapore, Germany, USA have
enforced 1 meter (m), 1.5 m, and 2 m of physical distance
in closed areas, respectively. In such countries, either
the education institutions have significantly reduced their
classroom capacity, or they have divided classes into a few
sessions in order to facilitate continued in-person education.
However, manually arranging students in classrooms while
adhering to social distancing guidelines presents a formidable
challenge for decision-makers. To address this issue, [3],
for example, proposed several seat assignment models to
determine the maximum number of students that could
be fitted in a classroom while ensuring adequate physical
distance between students. They noted that assigning students
as far apart as possible could provide a safer space, reducing
the risk of contracting the virus. So, recent studies such as [4]
and [5], including the aforementioned study, have focused on
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maximizing the minimum distance (i.e., defined as max-min
distance) among the students in the classroom, which actually
corresponds to an application of the p-dispersion problem
(pDp) in the context of pandemic control.

So far, the literature has focused on the pDp for seating
plans in the context of pandemic control. Specifically, the
pDp aims at assigning students as far apart as possible in
a classroom setting in order to protect each student from
being infected in the largest and equal way possible. Another
related problem that can be used for seating arrangements
is the maximum diversity problem (MDP). However, the
seating plan generated by the MDP in a classroom setting
does not prioritize protecting each student against virus
risk as the goal is simply to maximize the overall distance
between students, whichmay result in some students sitting in
high-risk positions (i.e., some sitting very close to each other).

Our model MDPs combines both aforementioned
approaches in order to generate a robust seating plan for all
students by increasing the average distance between students
and guaranteeing at least a certain level of protection for
each student, thus further reducing the average probability
of the virus spread. We call this new problem as the
maximum diversity social-distancing problem (MDPs),
a novel variant of the MDP. We observe that utilizing the
MDPs for seating layout optimization significantly improves
student pair spacing, increasing the average distance by
over 40 centimeters (cm) compared to the pDp across all
tested classroom scenarios. This demonstrates how effective
the proposed solution procedure is in further improving
student safety to better serve the sustainability of education.
Accordingly, we expect this approach to better serve the
ultimate purpose of slowing the spread of a pandemic
and helping to flatten its peak, thus easing the burden on
healthcare systems and sustaining continuing education.

The remaining of this study is organized as follows.
Section II contains a literature review of research on
Operations Research (OR) approaches to support pandemic
control. Section III includes the proposed algorithm and
optimization models developed to solve the problem in
question. Section IV includes extensive computational testing
discussing the performance of the examined models in vari-
ous classroom instances. Section V introduces the pandemic
management platform developed to help the decision process
of authorized users on student seating placement. Finally,
Section VI summarizes the paper with concluding remarks.

II. LITERATURE REVIEW
This section scrutinizes the studies that included OR-based
modeling and solution approaches that can be well-adapted
to respond to the pandemic from the perspective of social
distancing in various sectors, including education. One of the
earliest studies on MDP was [6], wherein the goal was to
choose locations to site p facilities on a network in order to
maximize the average distance between assigned facilities.
Reference [7] developed a randomized greedy heuristic
approach to solve the MDP, whereas [8] approached the

MDPwith respect to proposing themathematical models with
the objective function of equity in dispersion. Reference [9]
reviewed the previously proposed integer programming
models and developed a branch-and-bound algorithm for
the MDP. Later, while [10] proposed an iterated greedy
meta-heuristic algorithm, [11] developed a hybrid memetic
algorithm that includes a constrained neighborhood tabu
search procedure to efficiently solve theMDP. Reference [12]
brought together all benchmark libraries and came up with
a new library called MDPLIB. Reference [13] applied the
t-linearization technique to solve theMDP in a short period of
time. They also presented valid inequalities to reduce solution
space within the concept of t-linearization. Reference [14]
presented four mathematical models and compared them
by using the input data from the MDPLIB. Reference [15]
classified the history of the MDP into three eras; the early
period, the expansion period, and the developed periods. They
indicated the lack of the MDP application and suggested
doing a more elaborate application from an OR perspective.

The studies that have applied OR techniques to the
COVID-19 pandemic from the perspective of social dis-
tancing have also been reviewed. Choi [16] emphasized
in their study that OR is a well-established field that
develops the decision tools to assist decision-makers in a
broad perspective, from resource allocation to humanitarian
logistics. Barry et al. [17] developed a space allocation
model that applies social distance constraints for workers
returning to the office. The authors presented a graph-based
approach and a linear model to optimize the workspace while
considering the social-distancing constraint. Salari et al. [18]
proposed a mixed-integer programming model applied to the
airline industry in which the passengers are assigned to seats
by taking into consideration social distancing. Kamga et al.
[19] evaluated the bus capacity in terms of the maximum
number of passengers that can be fitted on a transit bus
based on both various social distancing and bus dimensions.
The authors also evaluated the transportation capacity of
the Newyork subways under different scenarios of social
distances. They stated that with each inch of reduced social
distance, the number of required trains drastically decreased.
Chen et al. [20] applied optimization and machine learning
methods to supply chain management, resource allocation,
and along with some other areas to mitigate the impact of
the pandemic on societies. Chen and Kong [21] implemented
a social distancing policy in a hospital to compare three
healthcare systems based on mortality rate and infection rate.
Liu et al. [22] presented an evolutionary deep learning model
that predicts the effect of social distancing on the spread of
the virus depending on social distancing metrics. Fischetti
et al. [23] designed an optimum layout that determines
the location of seats and tables for service business while
mitigating the risk of infection. Their mathematical model
imitated the modeling approach used to locate wind turbines
in an offshore area. Milne et al. [24] introduced three greedy
methods to seat airplane passengers, separating those at
higher risk of infection from those likely to be infectious.
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They presented a procedure that categorizes passengers into
four groups based on their likelihood of disease susceptibility
and infectiousness. Tan et al. [25] proposed a non-linear
programming model to provide a sustainable urban bus
service for mitigating the speed of the epidemic in the
post-pandemic era. Moore et al. [26] proposed a mixed
integer programming model to assign passengers to seats
based on the vehicle layout. Also, they considered household
grouping in the seat assignment and presented a heuristic
model to increase the utilization of seating of transit
vehicles. Song et al. [27] used mobility data to compare
the campus visitation between pre and post COVID-19 in
the three largest universities in Texas. Their study showed a
significant decrease in campus visitations for all universities
and also found that the impact of COVID-19 was greater
for those who live within a mile of the university. Dundar
and Karakose [3] developed seat assignment models and a
graph-based heuristic approach to maximize the number of
students that can be fitted in a classroom while inter-seat
distance is arranged based on social distance. Bortolete et al.
[4], and Kudela [5] proposed the pDp models, which focused
on finding the best seat assignment pattern by maximizing
the minimum distance between individuals for various places
such as classrooms.

III. PROBLEM FORMULATIONS
The problem at hand follows a two-phase framework.
In the initial phase, the primary objective is to maximize
the minimum distance among students, referred to as the
‘‘max-min’’ distance. Once this optimization is achieved,
the computed max-min distance serves as the foundational
parameter for the subsequent second phase, which aims to
achieve the highest possible dispersion for a more robust
seating layout. Algorithm 1 is employed effectively during
the first phase, adeptly determining the max-min distance for
each distinct student allocation scenario. As for the second
phase, one can obtain the solution by using the proposed exact
models or opting for the greedy approximation model.

A. MATHEMATICAL MODELS
Define a graph G = (V, E) comprised of V nodes and E links,
where V is a set of seats in a classroom and E represents
the abstract links between pairwise seats. Let ℶ be the
maximum of minimum distance between all pairs of students,
which is effectively assessed by Algorithm 1 for each student
allocation scenario 2 (i.e., the number of assigned students).
Let dij be the distance between seat i and seat j, and finally, ℵ
be the least social distancing value that must be kept between
each student pair (ℶ ≥ ℵ). We define xi binary variable as
1 if a student is assigned to seat i, and 0 otherwise. Similarly,
we define yij binary variable as 1 if both seat i and seat j are
filled with students and 0 otherwise. The first exact MDPs
model, 1e-MDPs, is provided below.

max
∑

i,j∈V |j>i

dijyij (1)

s.t. yij ≤ xi, ∀i, j ∈ V|j > i (2)

yij ≤ xj, ∀i, j ∈ V|j > i (3)

xi + xj ≤ yij + 1, ∀i, j ∈ V|j > i (4)

yij ≤
dij
ℶ

, ∀i, j ∈ V|j > i (5)∑
i∈I

xi = 2 (6)

xi, yij ∈ {0, 1} ∀i, j ∈ V (7)

In model 1e-MDPs, the objective (1) maximizes the total
distance among the students. The constraints (2)-(4) enforce
yij variable to take the value of 1 when both seat i and seat
j are occupied. Constraint (5) guarantees that if the distance
between seats i and j is not greater than or equal to ℶ, both
seats i and j cannot be filled together. The constraint (6)
assigns 2 number of students to the classroom.

However, in our computational testing, for the sake
of computational performance improvement, we relax yij
variable of the model 1e-MDPs as given in the equation (8).
Additionally, the constraint (5) is removed in the model 1e-
MDPs and the constraint (9) is added instead in order to
improve the performance of the model. Note that equation (9)
still ensures that if the distance between seat i and seat j is
less thanℶ, then the corresponding variable yij takes the value
of 0, as does the constraint (5).

yij ≥ 0, ∀i, j ∈ V|j > i (8)

yij = 0, ∀i, j ∈ V|j > i, dij < ℶ (9)

The second exact model, 2e-MDPs, has fewer constraints
compared to the 1e-MDPs. The 2e-MDPs reads as follows:

max
∑

i,j∈V |j>i

dijyij (10)

xi + xj ≤ yij + 1, ∀i, j ∈ V|j > i (11)∑
j∈V

(
yij|j>i + yji|i>j

)
= (2 − 1)xi, ∀i ∈ V (12)

xi ∈ {0, 1}, yij ≥ 0 ∀i, j ∈ V (13)

Here there is an implicit constraint in the 2e-MDPs that
yij = 0 ∀i, j ∈ V|j > i, dij < ℶ. As noticed,
constraints (2), (3) and (5) are now not included in the model
2e-MDPs. Specifically, removing (2) and (3) from the 2e-
MDPs does not introduce any obstacle that would prevent the
objective function (10) from taking the actual optimal value.
In addition, if seat i is occupied, then the sum of assigned
seat pairs i − j from seat i must be equal to the number of
assigned students minus one, given in constraint (12). As this
constraint reduces the search space of the model 2e-MDPs,
we expect that the 2e-MDPs return a solution in a shorter time
compared to the first model. Note also that, for the sake of
computational improvement, we found it better to include (6)
in the model 2e-MDPs as a valid inequality constraint, since
it generally further shortened the computational time of the
2e-MDPs.
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In the third exact model, we introduce the addition of one
new variable, wi. Here, wi represents the total distance from
the seat i to the other seats. 3e-MDPs is formulated as follows.
The objective function (14) maximizes the sum of

distances between occupied seats. If seat i is occupied, then
constraint (15) becomes active and ensures that wi takes at
most the value of the total distance from seat i to the other
seats whose distance from seat i is greater than or equal to
ℶ. Similarly, constraint (16) ensures that wi is the sum of the
distance between the occupied seats if the distance between
them holds the following equation dij > ℶ, ∀i, j ∈ V|j > i.
Constraint (17) becomes active when the distance between
two seats is less than ℶ. The seat pairs i − j that activate
Constraint (17) cannot be filled together. The constraint (18)
is exactly the same as (6). Finally, the constraint (19) provides
the nature of variables.

max
∑
i∈V

wi (14)

wi ≤ xi

 ∑
j∈V |j>i,dij>ℶ

dij

 , ∀i ∈ V (15)

wi ≤

 ∑
j∈V |j>i,dij>ℶ

dijxj

 , ∀i ∈ V (16)

xi + xj ≤ 1, ∀i, j ∈ V|j > i, dij < ℶ (17)∑
i∈V

xi = 2 (18)

xi ∈ {0, 1}, wi ≥ 0 ∀i ∈ V (19)

The last proposed model is the greedy approximation
model denoted as a-MDPs. Recall that the previous models
maximize the distance between occupied seats. In the a-
MDPs, however, the objective function (20) includes the
summation of two parts: (1) the double of the distance
when both seats are occupied, and (2) the distance when
one of the seats is occupied. As the objective (20) tends
to greedily assign students to the furthest possible distance
from each other, we will refer to the model a-MDPs as the
greedy approximation model throughout the paper. In the
such greedy assignment, part (2) is the one that may deviate
the result of the a-MDPs from the optimal assignment
because the objective should only take the distance into
account between occupied seats. However, constraints (21)
strictly narrow search space owing to ℶ (recall that ℶ is the
largest possible minimum distance value between occupied
seats), causing such deviation to be minimal. Hence, the
a-MDPs showed remarkable performance in solving class-
room instances in our computational testing, consistently
returning optimal solutions (i.e., optimal allocation layouts
for classrooms) in a very short period of time. The a-MDPs
reads as follows.

max
∑

i,j∈V |j>i

dij(xi + xj) (20)

xi + xj ≤ 1, ∀i, j ∈ V|j > i, dij < ℶ (21)

∑
i∈I

xi = 2 (22)

xi ∈ {0, 1} ∀i ∈ V (23)

B. A NOVEL ALGORITHM FOR OPTIMIZING THE STUDENT
ALLOCATION
This section outlines the process for determining parameter
ℶ in the aforementioned models by utilizing Algorithm 1
for any given 2. In Algorithm 1, lines 2-12 constitute the
data preparation phase. Specifically, the Euclidean distance
between the seats is calculated based on their positions on
the x-y Cartesian plane. All dij data are placed in the Ds
list in non-duplicated ascending order if dij between ℵ and
ℵ̄. Remember that ℵ is the least social distancing value
that must be kept between each student pair as advised by
authorities. We define ℵ̄ as the maximum social distance
value beyond which it would be unreasonable to examine
(i.e., 4 m is selected in our computational testing). Lines 13-
26 constitute the efficient frontier phase. Note that in this
paper, the efficient frontier includes the best combination of
the optimal seating distance and its corresponding maximum
student assignment. Specifically, line 14 gives the maximum
number of seats that can be filled according to the given
social distance value Ds[t]. Here, Ds[t] gives the element of
Ds located at position t . Note that in any case, as the social
distance increases (i.e., Ds[t] increases with each iteration
t), either the number of assignments remains the same or
decreases. Keeping this in mind that if γ , the number of
occupied seats, calculated from line 15 is less than the number
of occupied seats found in the previous iteration (i.e., γx), then
we update the efficient frontier student allocation scenario
list (i.e., γList ), and it’s corresponding the efficient frontier
social distancing list (i.e., ℶList ). From line 22, for γx = γ

situation, however, we leave γList as it is, but update the last
entry of the current ℶList (i.e., ℶList [r] ) with Ds[t]. That
is, the model given in line (15) gives the same allocation
value (γ ) for both Ds[t] and ℶList [r] social distance values.
Since the aim is to maximize the social distance between the
occupied seats, the largest social distance corresponding to
the same number of student assignments is selected for that
student allocation scenario 2. To elaborate, let us assign 2

number of students to a classroom. Let not exist 2 value in
the efficient frontier created by Algorithm 1. (If exists, then
max-min distance, ℶ, corresponding to 2 is directly found
from it). First, determine the values γi and γj such that they are
closest to 2, and at the same time smaller and larger than 2,
respectively (e.g., γi < 2 < γj). Then, ℶ max-min distance
for 2 student allocation scenario is evaluated as the distance
ℶj corresponding to γj in the efficient frontier.

IV. COMPUTATIONAL RESULTS
The computational testing was performed on a PC with
an Intel i7-11800H @ 2.3 GHz and 16 GB RAM. GAMS
platform was used to code the formulations; CPLEX
12.6.2.0 was chosen as the solver to solve them; and Python
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Algorithm 1 The Algorithm to Generate the Efficient
Frontier for Each Classroom.
1: Inputs:

V =
(
bir , bjr

)
where (i, j) ∈ V |i < j and 1 ≤ r ≤ q

2: D = {}

3: for i ∈ V do
4: for j ∈ V do
5: if i < j then

6: dij =

[ ∑
1≤r≤q

|bir − bjr |p
]1/p

7: D = D ∪ dij
8: end if
9: end for

10: end for
11: Ds=sortingD in non-duplicated ascending order, such that ℵ ≤

dij ≤ ℵ̄

12: r = 0, t = 0, γList = {}, ℶList = {}, γx = inf , ℶx = 0
13: while t < |Ds| do

14: γ =



max
∑
i∈I

xi

s.t
xi + xj ≤ 1, ∀i, j ∈ V|j > i,
dij < Ds[t]
xi ∈ {0, 1} ∀i ∈ I

15: if γ < γx then:
16: γx = γ
17: ℶx = Ds[t]
18: γList = γList ∪ γx
19: ℶList = ℶList ∪ ℶx
20: r = r + 1
21: t = t + 1
22: else:
23: ℶList [r] = Ds[t]
24: t = t + 1
25: end if
26: end while
27: draw the efficient frontier based on γList and ℶList

3.10.1 was used to code Algorithm 1. The maximum allowed
CPU time for computational testing is set to 10,000 seconds
(s) for optimization models. Detailed computational tests
were conducted for various classrooms at Bartin University.

A. IDENTIFYING THE CRITICAL SCENARIOS ON THE
EFFICIENT FRONTIER
For illustrative purposes, we first choose a classroom
identified as ED-B1-7, which has a seating capacity of
56. When Algorithm 1 was applied to ED-B1-7, it yielded
an efficient frontier showcasing various seat assignment
scenarios. Remarkably, this encompassed a total of 81 distinct
seat distance values, with 11 pivotal points, referred to
as critical scenarios, found along the efficient frontier,
as visually represented in Figure 1. It is worth noting that
within the range from 1 m to 4 m, the array of 81 different
classroom seat distances included measurements such as 1 m,
1.06 m, 1.12 m, 1.14 m, and spanning up to 3.99 m. Since the
seats in all examined classes are firmly anchored to the floor,
parameter ℶ must reside within this range.

TABLE 1. Critical assignment scenarios for class ED-B1-7.

FIGURE 1. Efficient frontier for class ED-B1-7.

For the sake of clarity when discussing class ED-B1-7, the
critical scenarios depicted in Figure 1 have been conveniently
summarized in Table 1. According to Table 1, when we aim to
allocate 16 students (2 = 16) to the ED-B1-7 classroom, the
max-min distance ℶ between students is 1.56 m. However,
in situations where the desired number of students (2) is not
explicitly listed in Table 1, such as when we need to assign
17 students, we determine the value of ℶ by identifying the
assignment closest to and greater than 17. To clarify, for the
17-student scenario, we find ℶ as 1.19 m, which corresponds
to the assignment for 20 students in Table 1. Consequently,
for the 17-student allocation scenario, the parameters 2 and
ℶ in the MDPs models, such as in the model 1e-MDPs, are
set as 17 and 1.19 m, respectively. This approach allows us
to determine the max-min distance (ℶ) for each assignment
scenario2 by referencing the efficient frontier, automatically
performed by Algorithm 1.
In terms of computational efficiency, the process of con-

structing the efficient frontier as depicted in Figure 1 utilizing
Algorithm 1 was completed in a quick 10.45 s for this
class. Instead, if one applied the model developed by [3], the
process of determining ℶ for all assigned student scenarios
in the ED-B1-7 classroom would take much more than one
hour. Another notable advantage of constructing an efficient
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frontier lies in its capacity to provide decision-makers with
various options. For instance, when increasing the number
of students in this classroom from 16 to 17, at least one
student comes closer to their peers by 37 cm (i.e., the ℶ
value decreases from 1.56 m to 1.19 m). In this scenario, the
decision-maker faces the choice of assigning 17 students to
the classroom, or, if feasible, opting for 16 students to ensure
greater spacing between them in terms of ℶ; if not feasible,
he or she may consider evaluating other alternative classes
that have a larger area where 17 students can be assigned.
So, showing this flexibility enables decision-makers to make
well-informed choices aligned with their specific priorities
and constraints.

B. THE PERFORMANCES OF THE PROPOSED MODELS
The previous section includes a discussion of how ℶ
parameter is generated according to the given 2 assignment
scenario. This section, however, introduces the performance
of the proposed mathematical models. Specifically, Table 2
demonstrates the performance of three exact models (1e-
MDPs, 2e-MDPs and 3e-MDPs) for small-size classes. These
models were evaluated across a range of social distances,
from 1 m to 4 m. For instance, the ED-B1-7 classroom
has 29 feasible seat assignment scenarios within this range,
accommodating between 4 to 32 students depending on social
distancing. The models were tested for each scenario, and
Table 2 presents the average computation times in seconds for
each model. This analysis was extended to other classrooms
in Table 2. The results show that the 3e-MDPs model
consistently outperforms the other two models in terms of
CPU efficiency. Conversely, the 1e-MDPs model exhibits
the least favorable computation time performance across all
classrooms. To illustrate, in the EA-K1-5 classroom, the 2e-
MDPs model achieves the optimal solution approximately
21 times faster than the 1e-MDPs model, while the 3e-MDPs
model attains the optimal solution about 1.4 times faster than
the 2e-MDPs model.

Table 3 compares the performance of two exact models for
mid-size classrooms. Observe that we exclude the model 1e-
MDPs from Table 3, given its poor performance exhibited
in Table 2. Notice in Table 3 that the model 3e-MDPs
returns the solution in a shorter time than the 2e-MDPs for
all classrooms examined. For example, for the EA-K1-3A
class, the model 3e-MDPs provides an optimal solution in
approximately 14 times less time than the 2e-MDPs, with
average solution times of 35.62 s and 492.53 s, respectively.
Although not detailed in Table 3, it is worth noting that across
all 180 assignment scenarios encompassing all classes, the
model 3e-MDPs consistently outperformed the model 2e-
MDPs in terms of computational speed.

Table 4 presents a comparative assessment of the per-
formance between the model 3e-MDPs and the greedy
approximation model a-MDPs for large-size classes, defined
as those with 100 or more seats. Observe again that we
exclude the model 2e-MDPs from Table 4, given its poor
performance for mid-size classrooms compared to the 3e-

MDPs exhibited in Table 3. Observe in Table 4 that the 3e-
MDPs was unable to provide solutions within the allocated
time frame (i.e., 10,000s) for some student assignment
scenarios (specifically, 4, 7, 3 and 42 unsolved student
assignment scenarios out of a total of 53, 51, 60 and
79 scenarios for classrooms ED-Z-10, EA-Z-10, EA-K1-
3B, and ED-K1-11/B, respectively). Note that the unsolved
instances heremean that the solver attained a feasible solution
that was not verified as optimal within 10,000s. In contrast,
the approximationmodel a-MDPs successfully solved each of
the 291 assignment scenarios in an exceptionally short time,
averaging between 0.13 and 0.14 s of CPU time. Furthermore,
Table 4 also compares themodel a-MDPs and the 3e-MDPs in
terms of the average distance (in centimeters) among assigned
seats, revealing that both models provide nearly identical
average distance values.

While MDPs models are primarily constructed based on
the total distance objective function, calculating the average
distance between students is a straightforward task once the
assignment is completed. Note here that the average distance
between students is calculated for the 3e-MDPs model, for
which the solution is returned only within the specified time
constraint (i.e. for 233 scenarios). For instance, in the case
of the ED-Z-10 class, for 49 assignment scenarios (out of
the total 53, excluding the four scenarios where the 3e-
MDPs was unable to provide a solution within 10,000 s),
the 3e-MDPs model yields an average distance between
students of 588.30 cm, while the a-MDPs model produces a
slightly lower value of 588.29 cm. In essence, if we employed
the exact model, 3e-MDPs, instead of the a-MDPs model,
for scenarios where the model 3e-MDPs could produce
a solution within 10,000 s, the average distance between
students would increase only a negligible amount of 0.01 cm,
0.12 cm, 0.07 cm, 0.03 cm for the classrooms according to
the order provided in Table 4. Considering the assignment
of 51 students in the ED-Z-10 classroom, a scenario not
explicitly provided in Table 4, it is noteworthy that even
though the a-MDPs demonstrated its weakest performance in
this particular case, the 3e-MDPs achieved only a marginal
increase of 0.33 cm in the average distance between students
compared to the a-MDPs (i.e., the average distances of
562.50 cm and 562.17 cm for the models 3e-MDPs and
a-MDPs, respectively). In addition, for the proven optimal
layout scenarios (the scenarios that can be solved by the 3e-
MDPs within 10,000 s), we observed that the model a-MDPs
provided the optimal seating layout for 45, 40, 52, and 31 out
of 49, 44, 57, and 37 assignment scenarios for classrooms
ED-Z-10, EA-Z-10, EA-K1-3B, ED-K1-11/B, respectively.
For the remaining scenarios, it consistently delivered results
that were nearly optimal, typically deviating by less than a
negligible amount of 0.33 cm from the optimal values.

C. COMPARING THE AVERAGE DISTANCE GENERATED BY
THE OPTIMIZATION MODELS
This section merely compares the average distance between
students found by the models 3e-MDPs, a-MDPs, and
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TABLE 2. Comparing the CPU time of models 1e-MDPs, 2e-MDPs, and 3e-MDPs for small-size classrooms.

TABLE 3. Comparing the CPU time of models 2e-MDPs, and 3e-MDPs for mid-size classrooms.

TABLE 4. Comparing models 3e-MDPs and a-MDPs for large-size classrooms in terms of the CPU time and the average distance.

pDp of the literature across various assignment scenarios
for all examined classrooms. Remember here that the
pDp (or our developed Algorithm 1 alone) generates a
seating layout that maximizes the smallest distance between
students. Therefore, the average distance between students
was derived by performing an additional calculation based
on the seating arrangement provided by pDp. When Table 5
is examined, it is observed that the approximation model
a-MDPs closely approximates the optimal values, consistent
with what is observed in Table 4. For example, for class
EA-K1- 5, for 42 possible student assignment scenarios, the
optimal average distance between students is 447.30 cm,
while the approximation model a-MDPs produced a fairly
approximate value of 447.21 cm. In Table 5, we can also
observe the excellent performance of the model a-MDPs for
other classrooms. The model a-MDPs returned the optimal
solutions between 0.13 and 0.15 s for each scenario. Despite
this low running time, it was observed that it significantly
increases the distance between students in the seating layout
compared to the pDp of the literature. For example, the
a-MDPs found the optimal value for the 12 scenarios in
class EO-K2-5, and increased the average distance between
the students by 21.89 cm compared to the pDp model (i.e.,
370.09 − 348.20 = 21.89 cm). Similarly, for other classes,
themodel a-MDPs also achieved an average distance increase
ranging from 22.37 cm to 58.62 cm when compared to the
pDp. For class EO-K2-5, the most favorable comparison of
the a-MDPs, corresponding to the allocation scenario of the
combination of 2 = 7 and ℶ = 1.19m, the a-MDPs

returned the average distance as 385.43 cm whereas the
pDp returned the average distance of 326.81 cm, which
corresponds to 58.62 cm distance improvement achieved by
the a-MDPs. Similarly, for the most-favorable comparison
of the a-MDPs among all examined student allocation
scenarios of the remaining classes in Table 5, the a-MDPs
significantly increased the average distance compared to
the pDp, corresponding to the increase of 93.64 cm (i.e.,
382.91-289.27 = 93.64 cm for the combination of 2 =

13 and ℶ = 125 cm of ED-Z-16), 190.17 cm, 192 cm,
166.30 cm, 162.79 cm, 172.36 cm, 91.7 cm, 102.15 cm,
142.19 cm, 193.33 cm, 127.28 cm and 150.44 cm for the
classes according to the order given in Table 5 (i.e., ED-Z-
16, ED-B1-7, . . . , ED-K1-11/B), respectively.

D. INVESTIGATING THE PROBABILITY OF INFECTION
The rate of virus transmission will decrease with increasing
social distance (e.g., [28], [29], [30]. For example, according
to the UK’s Scientific Advisory Group for Emergencies
(SAGE), there may be a 2–10 fold increase in the like-
lihood of SARS-CoV-2 transmission at 1 m compared
to 2 m [31]. While [28] states that the infection risk
decreases monotonously with distancing, [29] developed a
logarithmic function that captures the relationship between
social distancing and the likelihood of infection.

pa =
−18.19 ln(dij) + 43.276

100
(24)
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TABLE 5. The comparison of average distance values found by 3e-MDPs, a-MDPs and pDp.

TABLE 6. The probability of virus transmission for each assignment scenario of classroom EO-K2-5.

To investigate the probability of virus transmission with
respect to the potential values of social distance, we consider
the smallest classroom, EO-K2-5, and run a-MDPs and pDp
models for each assignment scenario of students as given in
Table 6. The probability value in this table is calculated taking
into account the mathematical model in [29] as indicated in
Equation 24. In Table 6, pw represents the probability of get-
ting infection from a host based on the closest distance (which
corresponds to ℶ found by pDp or Algorithm 1) while pa rep-
resents the probability of getting infection based on the aver-
age distance. As known, pw value must be the same for both
a-MDPs and pDp models of each student allocation scenario,
while pa value of the a-MDPs is expected to be lower than
pa value of the pDp as the a-MDPs produces larger average
distance value than do model the pDp. As shown in Table 6,
the average virus spread rate (pa) decreased from 22% to
21%, an improvement of 1% achieved when all scenarios
were taken into account. An improvement of approximately
3% has been achieved in the transmission probability of the2

= 7 assignment scenario where pa is the most reduced. Recall
that scenario 2 = 7 stands out as the assignment scenario in
which a-MDP achieve the most substantial distance increase
compared to pDp, which amounts to an increase of 58.62 cm
for the class EO-K2-5. In addition, a reduction in the average
probability of virus transmission was observed in other
classrooms. For example, using the model a-MDPs instead
of the pDp, it was observed that pa value is reduced by up to
approximately 4.75%, 5.48%, and 4.54% for 2 = 13, 2 = 4,
and 2 = 23 assignment scenarios of the ED-Z-16, ED-B1-7,
and ED-Z-5 classrooms, respectively.

V. THE PANDEMIC MANAGEMENT PLATFORM
This section introduces a pandemic management platform
developed to promptly and proactively assist university
administration in preparing for and effectively managing
future infection outbreaks. More specifically, this platform
helps decision makers optimally utilize resources, assess
risks, and implement strategic interventions in order to
minimize the spread of infection within the university
community. First, data are created for each classroom,
including the surface area and the number of seats, doors,
and windows. Second, the x-y coordinate of each seat was
also determined to track the distance between occupied seats.
Later, the collected data were incorporated into the developed
decision platform, along with the integration of the greedy
approximation model (a-MDPs). Note that we do not provide
the exact MDPs options in the decision platform, as the
computational testing demonstrates the superiority of the
model a-MDPs over the exact MDPs models in terms of
solution return time.

Figure 2 provides the developed decision support platform
for Bartin University. Here, the authorized user first clicks
the ‘‘First: Upload Data’’ button which facilitates the user in
automatically accessing the data website and enables them
to manually select the classrooms for examination. Once
a classroom is selected, the relevant data is obtained to
optimize student allocation. In Figure 3, the class highlighted
with a yellow background represents the selected class.
Subsequently, the user clicks the ‘‘Second: Generate Sce-
narios’’ button, which assists decision-makers in analyzing
various student assignment scenarios. For example, Figure 4
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FIGURE 2. Optimized student allocation: A decision support platform.

FIGURE 3. Classroom selection for examination.

FIGURE 4. Classroom EO-K2-5: Number of assigned students vs. Social
distancing ranges.

explicitly illustrates the number of students assigned and their
corresponding social distance values for the classroom EO-
K2-5. Assume that the user aims to maintain a distance of at
least 1.5 m between students in this classroom.

According to the Figure 4, it suggests that 16 students can
be assigned to the classroom, with the minimum distance
potentially expanding to 1.56 m. Alternatively, if the user
intends to assign 30 students to this classroom, Figure 4
indicates that the distance between the students falls in the
range of 1 m to 1.06 m. However, reducing the number of

FIGURE 5. The number of assigned students for EO-K2-5.

FIGURE 6. Classroom EO-K2-5: Optimal student allocation for classroom
EO-K2-5.

students by 2 (assigning 28 students instead) would allow for
an increase of at least 6 cm between each pair of students,
increasing the spacing between student pairs from 106 cm to
112 cm. This level of flexibility empowers decision makers
to choose policies among various options, providing them
with the options to make well-informed decisions. This
approach develops a proactive decision-making process that
goes beyond simply assigning a predetermined number of
students or aiming for a specific social distancing value. Next,
the user clicks the ‘‘Third: Assigned Students’’ button, which
allows to manually enter the number of students assigned
to the classroom, provided in Figure 5. The number in
Figure 5 is determined by the user whose decision is based
the Figure 4 created by Algorithm 1 for a given classroom.
Finally, the user clicks the ‘‘Fourth: Optimal Assignment’’
button, initiating an automatic allocation of students to
classrooms. This process utilizes a-MDPs to determine the
optimal seating placement. In Figure 6, the positions of six
students are represented by squares with a blue background
for classroom EO-K-5.

Although Figure 6 might give the impression that the
problem is easy to solve, it is, in fact, a challenging problem.
The reason is basically due to the number of options to seat
students. Namely, the number of potential seating placements
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FIGURE 7. Classroom EA-K1-12: Optimal student allocation for classroom
EA-K1-12.

is
(30
6

)
= 593, 775 for Figure 6, which is a very large number.

Of course many student placements are likely unfeasible,
violating the separation rule stipulated in the constraints of
the optimization models, but technically all placements must
be explored, implicitly or explicitly, so as to determine and
decide that a solution is an optimal solution. More complex
seating arrangements for a large classroom, which cannot
be solved by mere human intuition, along with the related
detailed discussions, are provided in the appendix A.

VI. CONCLUSION
This paper distinguishes itself from the existing literature
by not only assigning students as far apart as possible but
also focusing on maximizing the average distance between
students. Hence, we first develop an algorithm to determine
the max-min distance (i.e., ℶ) for each student allocation
scenario. Second, we introduce three exact models and
one greedy approximation model, each of which uses ℶ
input and generates a robust seating plan for students.
Based on our computational testing, we observe that the
proposed models produce a better seating layout than the
one generated from the max-min distance approach of
the literature (i.e.,pDp) by notably increasing the average
distance between student pairs, thus further reducing the
average probability of the virus spread among students. Later,
we integrate the a-MDPs and Algorithm 1 into the pandemic
management platform developed for Bartin University, which
proactively assists the university administration in preparing
for and effectively managing future infection outbreaks.
Additionally, this platform can be used to design strategies for
constructing healthy, sustainable buildings with pandemic-
prevention capabilities.

APPENDIX A
ADDITIONAL EXPERIMENTS
This section includes more complex seating arrangements
which are designed to showcase scenarios where human
intuition falls short, thereby emphasizing the value of our
proposed approach. Also, this section provides a detailed
comparison of our method with a classical method, the
maximum independent set (MIS) algorithm [32].
In Figure 7, the positions of 13 students are represented

by squares with a blue background for classroom EA-K1-12,

FIGURE 8. Classroom EA-K1-12: The best student allocation produced by
MIS for classroom EA-K1-12.

FIGURE 9. Classroom EA-K1-12: 8-student allocation scenario for
classroom EA-K1-12.

which has a seating capacity of 116. Observe that this seating
arrangement is not solvable through human intuition, and
there is no straightforward pattern in the optimal seating plan.
In this seating plan, the minimum distance between any two
students is 2.79 m.When averaging these minimum distances
across all pairs, the average distance is 2.95 m. Additionally,
the average distance between all pairs of students, consider-
ing all possible pairs, is 6.57 m. To place 13 students using
the MIS algorithm, one would iterate the algorithm, incre-
mentally adjusting distances to find a seating arrangement
that maximizes the minimum distance between any pair of
students, though it may not necessarily be the optimal seating
arrangement. Figure 8 provides the best possible positions of
13 students produced by MIS algorithm for classroom EA-
K1-12. In Figure 8, the minimum distance between students
is 2.71 m, with an average of 2.87 m for these distances, and
the total average distance is 6.37 m. Our method achieved
a minimum distance increase of 8 cm, an average minimum
distance increase of 8 cm and the total average distance
increase of 20 cm when compared to the MIS.

We also provide an allocation of 8 students, illustrated with
simple plots using squares with a red background. Figure 9
depicts the optimal seating layout on the left and the MIS
layout on the right for this allocation. Observe that this
seating plan is also not straightforward, given the 8 choose
116 scenarios. In the optimal seating plan given on the left of
Figure 9, the minimum distance between any two students is
4.21 m. When averaging these minimum distances across all
pairs, the average distance is 4.31 m. Additionally, the aver-
age distance between all pairs of students, considering all pos-
sible pairs, is 7.16 m. For the MIS layout on the right of Fig-
ure 9, the minimum distance between students is 4.07 m, with
an average of 4.24 m for these distances, and the total average
distance is 6.90 m. Our method achieved a minimum distance
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increase of 14 cm, an average minimum distance increase of
7 cm and the total average distance increase of 26 cm when
compared to the MIS. Although not illustrated, our method
achieved an average minimum distance increase of 9 cm and
10 cm for 15 and 30 student allocation scenarios, respectively.
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