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ABSTRACT Personalization of the amplification function of hearing aids has been shown to be of benefit
to hearing aid users in previous studies. Several machine learning-based personalization approaches have
been introduced in the literature. This paper presents a machine learning personalization approach with the
advantage of being efficient in its training based on paired comparisons which makes it practical and field
deployable. The training efficiency of this approach is the result of treating frequency bands independent
of one another and by simultaneously carrying out Bayesian machine learning in each band across all of
the frequency bands. Simulation results indicate that this approach leads to an estimated hearing preference
function close to the true hearing preference function in fewer number of paired comparisons relative to the
previous machine learning approaches. In addition, a clinical experiment conducted on eight subjects with
hearing loss indicate that this training efficient personalization approach provides personalized gain settings
which are on average six times more preferred over the standard prescriptive gain settings.

INDEX TERMS Hearing aids, personalization of hearing aids amplification, machine learning, Bayesian
learning.

I. INTRODUCTION
Widely used prescriptions of hearing aids, such as DSLv5 [1]
and NAL-NL2 [2], involve setting gain values in a number of
frequency bands based on a user’s audiogram. An audiogram
indicates the lowest level of sound pressure level (SPL) that
a person can hear across audible frequency bands in a quiet
audio environment [3]. There is a need to tailor the amplifica-
tion function of hearing aids to noisy audio environments that
are of particular interest to an individual user. Furthermore,
with the recent introduction of more affordable Over-The-
Counter (OTC) hearing aids, there is a growing need for their
self-adjustment [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Carmen C. Y. Poon .

Any personalization or self-adjustment needs to be done in
a simple and easy-to-use manner for it to be adopted by users.
A complex personalization or self-adjustment involving too
many ‘‘knobs’’ to adjust would be a major hindrance to its
utilization. A number of simple methods, such as sliders,
wheels, and pairwise comparisons, have been considered by
researchers [5], [6], [7], [8]. Among these methods, the pair-
wise comparison method is often chosen due to its simplicity
in hearing preference studies, e.g. [9], [10], [11], [12]. This
method places minimal cognitive load on users as it merely
involves selecting one out of two options similar to the pair-
wise comparisons in an eye exam.

A number of machine learning approaches have been
developed in the literature to encode pairwise comparisons
in a systematic way and to conduct personalization of the
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amplification function of hearing aids including the ones by
our research team [13], [14], [15]. These approaches normally
involve a trade-off between the size of the search space
and the duration of the fitting process or training. In our
latest work, the machine learning approach of Maximum
Likelihood Inverse Reinforcement Learning (MLIRL) [14],
[15] was introduced in order to achieve personalization of
amplification in an on-the-fly or online manner. Although
this approachwas shown to produce personalized settings that
were preferred over the standard settings by about 10 times,
it required a training duration of at least one hour to go
through a large number of paired comparisons. This relatively
long training time poses a bottleneck that restricts deployment
in the field.

In this paper, a new machine learning approach is devel-
oped in order to address the above shortcoming. This
approach involves conducting Bayesian machine learning in
each frequency band in an independent manner. As a result,
the number of paired comparisons to reach a personalized set-
ting is substantially reduced, thus making the online training
process more feasible to deploy in the field.

The sections that follow are organized as follows.
In section II, the independence aspect of the frequency
bands is discussed. In section III, the developed Bayesian
machine learning approach in each band is described allowing
an efficient multi-band personalization. Then, the clinical
setup for the subject testing conducted is mentioned in
section IV. Finally, in section V, the results of our hearing
preference and word recognition experiments are reported
for eight subjects with hearing loss. The paper concludes
in section VI.

II. INDEPENDENCE OF MULTI-BAND AMPLIFICATION
To personalize the amplification function in hearing aids,
prescriptive gains across a number of frequency bands are
taken to be the initial condition or the starting gain set.
In this work, theDSLv5 hearing aid prescription is considered
although any other prescriptions could be equally used to
set the initial gain set. By adjusting these prescriptive gains
within a lower and an upper bound, a set of personalized
gains or a personalized gain curve can be reached as shown
in Figure 1. The lower bound is established based on a user’s
audiogram. The upper bound is determined by the loudness
discomfort level (LDL) to ensure that the output audio signal
does not exceed this level.

Due to the nonlinearity of the human hearing perception,
an audiogram consists of frequency bands in an increasing
frequency range manner. The number of frequency bands in
an audiogram is normally 5, 7, 9, or 11. Although the per-
sonalization approach developed in this paper is applicable to
any number of frequency bands, for the clinical experiments
reported in this paper, the number of frequency bands is
considered to be five (0-500Hz, 500-1000Hz, 1000-2000Hz,
2000-4000Hz, and 4000-6000Hz) to make it easier for partic-
ipants to express their hearing preferences. Furthermore, the
number of gain adjustment levels in each band is considered

FIGURE 1. Depiction of the range of personalized gains around the
prescriptive gains.

to be eight indicated by the setX =
{
xi | i = 1, . . . , 8

}
which

correspond to these signal level changes {+12, +9, +6, +3,
0, −3, −6, −9} dB. Personalization of gains is expected to
provide improved hearing in an audio environment in which
a user is having difficulty hearing. Note that regardless of the
number of gain adjustment levels, the developed personaliza-
tion approach is applicable to any number of gain adjustment
levels. The size of the space that needs to be searched to find
the optimum setting is given by the number of levels raised to
the power of the number of frequency bands. For example, for
five bands and eight adjustment levels, the size of the search
space becomes 85.

Personalization is achieved via paired comparisons of
audio signals conducted by users. A paired comparison
involves a user listening to an audio signal which is passed
through two different gain sets. Then, the user selects the
preferred gain setting from the pair. Paired comparisons are
easy to conduct and demand a simple feedback from the user.
For S adjustment levels, it takes S(S-1)/2 paired comparisons
to reach the optimum setting via the round robin tournament
(RRT) method [10]. When the search space is too large, such
as 85 noted above, it would not be practical or feasible to
expect users to go through a very large number of paired
comparisons. In our previous MLIRL approach [14], only
three levels were used to keep the search space size to 35 or to
keep the training time to about one hour for about 200 paired
comparisons. One hour is a long time as far as users are
concerned and thus a more efficient training approach is
needed.

In order to reduce the number of paired comparisons, each
band is assumed to be independent of one another and via
the simulations described next it is shown that this is a valid
assumption. Let us consider a true personalized preference
function or gain set that a user desires to reach. Table 1 shows
an example of the true personalized gain set [3, 4, 5, 2, 3].
A similarity between the true gain set and another gain set in
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a paired comparison is defined to be:

Similarity (A,B)

=

∑m
i=1 AiBi√∑m

i=1 A
2
i ·
∑m

i=1 B
2
i

−

√∑m
i=1 (Ai − Bi)2

max(
√∑m

i=1 (Ai − Bi)2)
(1)

whereAis andBis denote gain values of two gain sets acrossm
frequency bands. This similarity is defined in such a way that
its value is normalized between −1 and 1. For the example
illustrated in Table 1, the similarity between option 1 gain set
[4, 6, 5, 2, 4] of a paired comparison and the true gain set is
greater than the similarity between the option 2 gain set [4, 2,
7, 3, 4] of the paired comparison and the true gain set, thus
the simulated preference for this pair is gain set 1.

Next, two tables are set up to keep track of two counts.
Table 2, named preference counting, is used to keep track of
a count of the frequency band locations associated with the
preferred hearing as determined by the similarity of a gain set
with the optimum or true gain set. Table 3, named occurrence
counting, is used to keep track of a count of the number of
frequency band locations that the two sets differ.

TABLE 1. Example showing similarity of two hearing preference functions
or gain sets with true gain set.

TABLE 2. Example of preference counting table.

TABLE 3. Example of occurrence counting table.

TABLE 4. Example of simulated hearing preference function.

The above counting is repeated for all possible 85 gain
sets corresponding to the search space. Another table is then
set up based on the ratio of the two counts to represent the
overall hearing preference gain set for all possible gain sets.
An example of this table or the simulation outcome is shown
in Table 4. As shown in this table, it can be seen that the
frequency band locations of the overall hearing preference
gain set matches the frequency band locations of the true gain
set. This simulation was repeated for a large number of differ-
ent true hearing preference gain sets and each time the same
location matches were obtained, indicating that the frequency
bands can be treated independently towards reaching the
optimum or personalized gain set. It is worth mentioning that
these simulations were repeated by using different adjustment
levels and again the same location matches were obtained.

III. PERSONALIZATION BY BAYESIAN MACHINE
LEARNING
By considering the independence of frequency bands dis-
cussed above, the search space for finding the optimum gain
set is drastically reduced for the paired comparisons needed
just in a single band. For example, a total of only 8∗7/2 =

28 paired comparisons would be needed for 8 levels.
Let f (x) be a function indicating a user’s hearing preference

across gain adjustment levels in a frequency band which is
to be determined by paired comparisons. Furthermore, let
us consider that this function belongs to a Gaussian process
f (x) ∼GP

(
0,k(x, x ′)

)
with the following kernel:

k
(
x, x ′

)
= exp

(
−

1
2λ

(
x − x ′

)2) (2)

This kernel captures the distance between two gain set-
tings where the parameter λ controls the preference function
smoothness. Let the distribution of f givenX and λ be normal
with zero mean as follows:

p (f | X , λ) = N (f | 0,K) (3)

where f = [f
(
x1
)
, . . . ,f (xn)] represents a vector containing

preference function values corresponding to n adjustment lev-
els, and the covariance [K]i,j = k

(
x i, x j

)
. Then, the optimal

or personalized adjustment level is given by

x∗
= argmax

x
f (x) (4)
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Noting that a user’s feedback is provided by paired compar-
isons, the so-called Probit likelihood for binary observation
can be used to encode the user’s feedback for the two options
xa ∈ X and xb ∈ X in a paired comparison as described
in [18]. The feedback is assigned −1 and +1 depending on
which of the two gain sets is preferred by the user during
paired comparisons D = {dk ∈ (−1, 1) | k = 1, . . . ,K },
where K denotes the number of paired comparisons. Now,
according to [17], the probability that xa is preferred over xb

can be written as follows:

p (dk | fk , σ ) = 8

(
dk
f
(
xak
)
− f

(
xbk
)

√
2σ

)
(5)

where 8 denotes the normal cumulative density function
and the parameter σ denotes the degree of uncertainty or
variations associated with a user’s feedback. Hence, given the
current preference function f, the likelihood of the feedback
can be written as

p (D | f, σ ) =

∏m

k=1
p
(
dk | fk , σ

)
(6)

Next the personalization problem is formulated within the
Bayesian machine learning framework. That is the posteriori
probability of interest is obtained based on the priori proba-
bility and the feedback likelihood as follows:

p (f |D,X , λ, σ ) =
p (D | f,σ ) p (f |X , λ)

p (D |X , λ, σ )
(7)

By using the Laplace approximation discussed in [19], the
posteriori probability can be approximated as a normal den-
sity, that is

p (f |D,X , λ, σ ) ≈ N
(
f |f̂,

(
K−1

+ W
)−1

)
(8)

whereW denotes the Hessianmatrix. Then, an estimate of the
function f̂ can be found in an iterative manner by using the
Newton method via the following iterative equation shown
in [19]:

fnew =

(
K−1

+ W
)−1

[Wf + ∇logp (D | f, σ )] (9)

As part of the above estimation, the parameters {λ, σ } need
to be determined. These parameters can be obtained via the
maximum-a-posterior estimation method named L-BFGS-B
described in [20] and [21], that is

{λ, σ } ≈ argmax
λ,σ

p (λ, σ |D,X ) (10)

Algorithm 1 illustrates the training of the personalization
algorithm indicated above. The heatmap shown in Figure 2
represents an example of the preference functions in each
frequency band. The darkest block in each frequency band
is the optimum personalized level for that band. The line in
Figure 2 indicates the personalized gain set or curve which
is obtained by connecting the optimum personalized levels in
each band.

A simulation studywas conducted to see whether the learn-
ing approach used generated an estimated preference function

Algorithm 1 Personalization Training
Initialize with the standard prescriptive gain set
Initialize preference function value f0 for each band
For iterations = 1: S(S-1)/2
Present two amplifications based on two gain sets
Collect corresponding user hearing preference
For given parameters {λ, σ}, find an estimate f̂ using equation (9)
Obtain updated parameters {λ, σ} using equation (10)

Output: Personalized preference function value f∗ for each band

close to the true preference function. A vector of length 8 with
random numbers between 0 and 1 was generated to represent
the true preference function for 8 adjustment levels in a band.
Initializing with a flat preference function, the outcome of
the simulation is shown in Figure 3. As can be seen from

FIGURE 2. Personalized gain set or curve obtained by connecting the
highest hearing preference function values (the darkest blocks) in each
frequency band.

FIGURE 3. Example of estimated hearing preference function in a
frequency band.
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this figure, the estimated hearing preference function values
f̂ came close to the true hearing preference function values.
If desired, it is possible to increase the accuracy of estima-

tion by going through more episodes of paired comparisons.
Based on a new episode of paired comparisons, the above
Bayesian learning can be updated by beginning with the
preference function values at the last episode. The parameters
can also get computed based on the L-BFGS-B gradient for
the new episode.

IV. CLINICAL EXPERIMENTS SETUP
In addition to the simulations done above indicating the
usability of the developed multi-band Bayesian machine
learning approach, a clinical study has been conducted in this
paper to show its applicability in practice. Eight subjects with
mild to moderate hearing loss were recruited for this clinical
study under an approved human subject Institutional Review
Board (IRB) protocol at the University of Texas at Dallas.
The eligibility for the participation included: (i) symmetric
mild to moderate hearing loss, (ii) being able to speak and
understand English, and (iii) being an adult in the age range
of 21-80 years old capable of providing informed consent.

The clinical sessions were divided into the following three
sessions: audiogram measurement session, training session,
and testing session. The audiograms of the participants were
obtained during the first session by a hearing healthcare pro-
fessional. Based on the audiogram, a DSLv5 prescriptive gain
set was generated from a web-based tool [22]. This DSLv5
gain set served as the baseline or the starting point of our
personalization. The range of the personalization for each
bandwas set to (Gainprescription−9 dB,Gainprescription+12dB)
for the adjustable levels around the prescriptive gain set.

During the second session, the participants underwent a
training procedure aimed at determining their individualized
hearing preferences using the developed machine learning
personalization. The participants wore a pair of commercial
hearing aids in both ears linked via Bluetooth to a dedicated
laptop placed in the sound booth in which the participants
were sitting. Figure 4 provides an illustration of the exper-
imental setup. The hearing aids were configured to deliver
flat amplification through their internal processors with noise
reduction and sound enhancement features disabled. The
environmental microphones were also turned off so all audio
was from the Bluetooth connection to the laptop. This setup
ensured that any variations in hearing experience were solely
attributable to different gain sets derived from the person-
alization algorithm. For guidance and communication, the
experimenter remained stationed outside the sound booth
and visible to the participant through a window. The experi-
menter ran the personalization algorithm running on a laptop
(laptop 1 in Figure 4) which was connected to another laptop
in the sound booth (laptop 2 in Figure 4) via an onlinemeeting
utility. Laptop 1with the personalization algorithm controlled
the amplification of audio signals through gain sets, sending
audio signals from laptop 1 to laptop 2 via the online meeting
utility, and then to the hearing aids via Bluetooth. With this

FIGURE 4. Experimental setup of clinical testing.

FIGURE 5. Graphical-user-interface (GUI) of paired comparisons for
obtaining the hearing preference function of a hearing aid user.

setup, the experimenter was the one who operated the per-
sonalization program and the participants focused solely on
stating their hearing preferences.

The graphical-user-interface (GUI) of the personalization
training program is shown in Figure 5. For each paired
comparison, the participants were presented with a pair of
audio signals generated by applying two different gain sets
on the same audio signal of a sentence lasting approxi-
mately 2.5 seconds. Then, the participants were asked to
indicate their hearing preference by selecting ‘‘Audio 1’’,
‘‘Audio 2’’, or ‘‘Same’’ in the interface. The audio signals cor-
responded to the TSP speech database which is widely used
in speech processing [23]. This dataset consists of recordings
of 1400 utterances spoken by 24 speakers. The recordings
of this database are phonetically balanced and designed to
contain a diverse range of speech sounds. Babble background
noise was added to the spoken utterances with a moderate
Signal-to-Noise Ratio (SNR) of 5 dB. During the training
session, paired comparisons were conducted for a pair of gain
sets. The gain values in the five bands were passed through
a cosine curve interpolator to generate a smooth frequency
response curve. Subsequently, a 64-tap FIR filter, obtained
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TABLE 5. Standard Dslv5 prescriptive and personalized gains.

FIGURE 6. Comparison of the personalized versus standard amplification settings; the numbers indicate the percentage of times the
amplification setting was preferred.

via a filter design module, was employed to generate the
frequency response curve.

The training was carried out based on 28 paired compar-
isons. The preference function derived from the personaliza-
tion algorithm was then used to establish the personalized
gain setting. It is important to mention here that the entire
training session was completed in less than 10 minutes,
indicating the efficiency of the developed machine learning
personalization algorithm.

After the personalized gain values were obtained from
the training session, a test session was conducted that
aimed to select between the standard DSLv5 gain setting
and the personalized gain setting. This session consisted
of presenting thirty audio pairs randomly chosen from the
TSP dataset with added babble noise. Audio pairs were
processed through the standard DSLv5 gain set and the
personalized gain set, with the presentation order ran-
domized to enable an unbiased selection. The results of
the test session are presented and discussed in the next
section.

V. SUBJECT TESTING RESULTS AND DISCUSSION
This section presents the outcomes of our clinical testing.
Table 5 illustrates the audiograms of the participating sub-
jects as well as the standard DSLv5 and personalized gain
values for the five frequency bands and eight adjustment
levels considered. As shown in Table 5, the personalized
gain values differed from the standard DSLv5 prescription
gain values. An important consideration is that DSLv5 targets
represent the mean amplification values for a given hearing
loss. In other words, there is variance around these values
across frequency bands and it is not only possible but likely
that an individual’s optimal amplification can lie below or
above these average targets. Indeed, this is supported by the
literature, whereby studies have found that nearly half of hear-
ing aid users prefer alternate settings than those prescribed
from average values such as those from DSL. In clinical
practice, finding these optimal gain values would be incred-
ibly time consuming and there are no standard methods to
derive them across frequency bands. The results in Table 5
indicate that our machine learning approach addresses this
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FIGURE 7. Word recognition score percentages of the personalized and standard settings in babble background noise at 5dB SNR.

task in a systematic way that makes clinical and field deploy-
ment possible. In this study, all of the participants exhibited
greater hearing loss in high-frequency bands relative to low-
frequency bands. The standard DSLv5 prescription gain
values compensate for this loss by providingmore gain values
in the high-frequency bands. However, as seen from Table 5,
the personalized gain values varied across the participants
with some desiring more gains whereas others preferred less
gains in the high frequencies.

The results of the hearing preference testing, represented
as percentages, are shown in Figure 6. As evident from this
figure, all the participants indicated that the personalized
setting was preferred over the standard setting, albeit with
varying degrees depending on their level of hearing loss.
By dividing the sum of the percentage times that the per-
sonalized setting was preferred across the eight participants
by the sum of the percentage times that the standard setting
was preferred, it is seen that the personalized settings were
favored on average by six times over the standard settings.

An additional experiment was conducted to assess whether
the personalized settings had any adverse impact on word
recognition or speech understanding. A 50-word list from
the Northwestern University Auditory Test No. 6 (NU-6)
dataset [24] was considered for this experiment. The list was
played with babble background noise at 5dB SNR. Half of
the words in the list were played using the standard DSLv5
setting, and the remaining half with the personalized set-
ting. The order of presenting the words was randomized.
The participants were instructed to repeat each word after
it was presented to them once. Correct word repetition con-
tributed to an increase in the word recognition score. The
word recognition scores from this experiment are provided
in Figure 7. As illustrated in this figure, the personalized
setting exhibited no adverse impact on word recognition

or speech understanding compared to the standard DSLv5
setting.

The work presented in this paper shows an efficient and
effective approach to addressing the hearing healthcare needs
of hard of hearing individuals by leveraging machine learn-
ing to personalize amplification. Our original hypothesis
was that machine learning could generate an individual-
ized prescription without degrading word recognition scores.
By personalizing the hearing experience, users would likely
be more satisfied with their hearing aids and would be more
likely to wear them. What our work demonstrates is that
not only can machine learning derive and optimize individ-
ual preferences but that these preferences can also increase
word recognition scores in competing background noise.
The improvement in hearing in competing background noise
addresses the top complaint among hearing aid users, diffi-
culty in background noise. The approach presented in this
paper addresses a major shortcoming of the current standard
of care for hearing aid programming that remains tethered
to average amplification targets and provides an efficient
method that could substantially improve the current practice
of hearing aid fitting.

VI. CONCLUSION
A training-efficient machine learning-based personalization
approach has been introduced in this paper. This personal-
ization approach involves the use of Bayesian learning to
model a hearing preference function in a frequency band
independent of other frequency bands. The independence of
the frequency bands has led to an efficient and thus practical
training for reaching personalized gain values by conducting
a small number of paired comparisons. The clinical experi-
ments carried out on eight participants with hearing loss have
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shown that the personalized gain values are preferred over the
standard DSLv5 prescriptive gain values on average by six
times. In our future work, it is intended to turn this machine
learning-based personalization approach into a smartphone
app to enable its utilization in the field or in real-world audio
environments.
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