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ABSTRACT Effective extraction of building edge information based on high-resolution remote sensing
images is the basis for efficient urban 3D modeling. Existing building extraction methods still have some
problems, such as an uncertain segmentation scale, effective feature selection, and sample selection. In this
paper, we propose a practical building extraction method based on convolutional network edge-enhanced
attention U2-Net (EA U2-Net) to accurately achieve multi-scale extraction of buildings from remote sensing
imagery. First, the U2-Net is used as the backbone network for building extraction because each stage of
the network is filled by residual U-block (RSU), and the network can better aggregate multi-scale features.
Second, the building edge feature map is introduced into the generation network to compensate for the
problems of insufficient extracted building edge features and loss of detail. Finally, the convolutional block
attention module is used to achieve effective feature extraction of buildings.We performed the experiment on
the WHU building dataset, and the experimental results showed that the EA U2-Net model has significantly
improved the ability to extract buildings, with an accuracy of 96.30%, a recall rate of 94.91%, f1 of 95.26%,
and iou of 91.57%. This proves that EA U 2 - Net can achieve better remote sensing image-building
segmentation results. Finally, in view of the problem that the deep learning network relies on training
samples, this study examined the influence of the number of building samples, sample purity, and sample
resolution on the effect of building extraction. The results confirmed that reasonable sample parameter
settings can improve the target extraction accuracy and the optimal sample parameter combination was
verified in this experiment.

INDEX TERMS Building extraction, EAU2-Net, high-resolution remote sensing imagery, sample parameter
study.

I. INTRODUCTION
The spatial distribution of buildings plays a pivotal role in var-
ious human activities, including economic development [1],
urban planning [2], disaster prevention andmitigation [3], [4],
as well as national defense security. The rapid development
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of high-resolution remote sensing technology has provided
abundant data resources for building extraction research [5].
Compared with medium and low-resolution remote sensing
images, high-resolution remote sensing images have finer
ground features, more specific geometric contours, and tex-
ture features of ground features and landscapes. However, the
increase in details also introduces a large amount of noise
information, making the spectral characteristics of ground
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objects more complex. Moreover, the phenomena of ‘‘differ-
ent body with same spectrum’’ or ‘‘same body with different
spectrum’’ have increased significantly, which greatly limits
the improvement of building extraction accuracy and restricts
the large-scale application of high-resolution remote sensing
imagery in urban information extraction.

Traditional research on building extraction typically relies
on comprehensive information such as thresholds, edges,
and regions. Threshold-based segmentation methods, such
as Li et al. [6], proposed an adaptive global threshold
method to solve the problems of over-segmentation and
under-segmentation. Wu et al. [7] measured the saliency
of building targets in images of different scales through
multi-feature fusion and combined it with the Otsu algorithm
to automatically obtain thresholds and achieve automatic
detection of buildings. Edge-based segmentation methods
mainly target the texture, grayscale, shape, and other fea-
tures of buildings. Qu et al. [8] used the Sobel operator
and linear support vector machine to classify features for
building detection. Cui et al. [9] extracted buildings based
on the grayscale and geometric features of the image, and
completed the extraction by detecting the spatial distribution
characteristics of the basic elements in the image. Region-
based segmentation methods utilize the spatial relationships
between segmented regions. Izadi et al. [10] used the spatial
relationship between segmented regions and their regional
features to identify potential regions inmulti-layer segmented
images and used tree structures to describe these relation-
ships for accurate extraction of buildings. Wegner et al.
[11] proposed an irregular pattern combining optical and
interferometric synthetic aperture radar (SAR) functions for
building detection, using a Conditional Random Domain
(CRF) framework to study the advantages of irregular graphic
structures in building extraction. Tao et al. [12] integrated
object-oriented thinking into building segmentation methods
and effectively extracted buildings using multi-feature fusion
methods and Bayesian criteria. Although these comprehen-
sivemethods have improved themining of buildings, they still
face challenges. The selection of thresholds and the design
of image features often depend on professional knowledge
and experience. Facedwith complex urban land cover images,
the comprehensive ability of these features is weak, making
it difficult to meet the practical requirements of building
extraction from high-resolution remote sensing images.

With the rapid development of machine learning technol-
ogy, deep learning algorithms combine low-level features
with multi-layer neurons to form abstract high-level fea-
tures [13] (attribute categories or features), combine feature
extraction with classifier modeling, reduce the need for man-
ual feature design, and have achieved significant results in
the field of image semantic segmentation [14], [15]. In 2015,
Jonathan Long [16] first proposed a fully convolutional neu-
ral network (FCN), laying the foundation for the application
of deep learning algorithms in image segmentation. However,
FCNs are not sensitive enough to details and do not consider

pixel relationships. Inspired by FCNs, Olaf Ronneberger [17]
proposed U-Net, a strictly symmetric encoder-decoder struc-
ture that can achieve more accurate resolution, and introduce
corresponding scale feature information into the upsampling
process through skip connections to obtain finer segmentation
results. Due to the progressiveness of U-Net, many scholars
have made improvements based on U-Net to improve the
ability to extract buildings [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [54], [55]. Although the above methods
can effectively improve the accuracy of building extraction,
remote sensing images have the characteristics of rich seman-
tic information and diverse target categories compared to
ordinary photos. The colors and shapes of buildings are also
different, which cannot fully utilize the spatial features of
remote sensing images. Therefore, there are still issues of
boundary blurring and information loss in the extraction
results.

Compared with U-Net, U2-Net uses an RSU instead of
a convolutional layer, which can capture more contextual
information. Wei et al. [28] directly used U2-Net to extract
building, and the experimental results showed that com-
pared with segmentation networks Segnet [29], U-Net [17],
Deeplab [43], and FCN [16], and edge detection networks
RCF [30], HED [31], and DexiNed [32], U2-Net can obtain
higher precision and more precise location. Zhou et al.
[33] used U2-Net to extract dense low-rise buildings to
achieve large-scale mapping of urban buildings and achieved
good results, verifying the effectiveness of U2-Net in build-
ing extraction. However, the complex network structure
of U2-Net achieves a deeper architecture by sacrificing
high-resolution feature maps, and it is easy to lose important
information at low frequencies, especially in the face of
small-target detection [34]. When extracting buildings, the
model does not pay enough attention to small-area buildings,
which are prone to missed detection, and ignore edge infor-
mation, resulting in blurred edges of buildings.

However, deep learning methods rely heavily on
large-scale annotated data, and high-quality annotated data
are mostly manually operated, resulting in a large workload
and low efficiency. This defect greatly limits the application
of deep learningmethods in practical image recognition tasks,
and hence, many scholars have generated fake data through
rotation, cropping, scaling, etc. [35], generative adversarial
networks [36], transfer learning [37], and other methods
to enhance the dataset. These methods have effectively
expanded the dataset. Sufficient and rich training samples
can enable the deep learning network to fully learn the
characteristics of the samples; however, blindly increasing
the training samples may lead to overfitting of the network
model and reduce the training effect of the model, which in
turn affects the segmentation accuracy in the testing phase to
a certain extent [38]. In addition to quantitative parameters,
compared with ordinary photos, remote sensing images have
the characteristics of target category diversity, feature infor-
mation variability, and complexity of interference factors,
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FIGURE 1. EA U2-Net structure. The network uses U2-Net as the main structure, introduces building edge features in the data
input phase, and introduces the convolutional block attention module in the decoding phase of the network.

which will also affect the extraction of buildings. Therefore,
it is necessary to study the influence parameters of building
samples [39].

To address the above problems, this paper introduces the
deep learning network U2-Net for the purpose of build-
ing extraction from high-resolution remote sensing images
and proposes the EA U2-Net for the characteristics of
high-resolution images and building features to achieve accu-
rate and effective building extraction. At the same time,
we study the influence of sample parameters on the deep
learning model, including the number of building samples,
sample purity, and sample resolution, to explore the mini-
mum demand for remote sensing data from different sources
for building extraction; it is also intended to be weakly
supervised learning under sparse annotation [40] provides
theoretical support. The main contributions of this study are
as follows:

(1) To solve the insufficient learning of edge features in
the process of building extraction by U2-Net, enhancing the
learning ability of the deep learning network for edge fea-
tures according to the edge features of buildings is obtained
through Canny edge feature detection, which can compensate
for edge blurring in the segmentation results.

(2) To make the network more focused on building
features and suppress non-building features, the convolu-
tional block attention module is introduced into U2-Net to
enhance the connection between each feature in space and
channel [45].

(3) To verify the effectiveness of this paper’s method,
we compare our method with other building extraction meth-
ods on the WHU building dataset, and the results show that
our method is more effective than other methods.

(4) The deep learning method relies heavily on the train-
ing samples. To understand the impact of different sample
parameters on the deep-learning model, this study considers
building extraction as an example to study the impact of
the number of samples, sample purity, and sample resolution
on the segmentation results.

The rest of this paper is organized as follows. In Section II,
the proposedmethod is described in detail, including the basic
structure of the network, the dataset enhancement method,
and the convolutional block attention module. Section III
presents the details of the experiment, including the datasets,
experimental platform, evaluation metrics, and experimental
results, Section IV presents the conclusions.

II. METHODOLOGY
EA U2-Net uses U2-Net as the main backbone network.
Before inputting the training data into the network, the edges
and contours of the buildings in the image are effectively
detected by using the canny edge detection algorithm [51],
which increases the ability of the U2-Net network to perceive
the details and edges, and thus improves the boundary quality
of the segmentation results. Moreover, combining the con-
volutional block attention module in the decoding stage of
the network can help the network better focus on the region
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of interest and suppress irrelevant background information,
which can help to reduce the interference of background noise
on the segmentation results, and also increase the network’s
ability to perceive the local image regions, which can better
capture the local features and textures [52] The combination
of the canny edge detection algorithm and the attention mod-
ule enhances the interpretability of the network and improves
the robustness of the network. The network structure of EA
U2-Net is shown in FIGURE 1.

A. EXTRACTION OF EDGE INFORMATION
The training data for building extraction usually have only
RGB three-band information, and the information richness
is limited. Canny edge detection [44] has a strong adaptive
ability and capability to remove interference, identify asmany
actual edges as possible, and provide edge information for
building training data. Therefore, this study uses the fusion
data of the original RGB band data and the Canny edge
detection result data as the training datasets.

The input single-channel grey-scale image is first
smoothed using a Gaussian filter, where the standard devi-
ation of the Gaussian filter is 1.4 by default, and the filter
kernel size is 5. The gradient values and gradient directions
are then calculated for each pixel of the returned smoothed
image. After that, it is processed by applying non-maximum
suppression to the gradient values and gradient directions.
Finally, the image is subjected to a double thresholding
method to compute the edges, where the small threshold
controls the edge connectivity and the large threshold controls
the initial segmentation of the strong edges and outputs the
binary image.

The calculation steps of Canny edge detection are as
follows:

Step 1: Using Gaussian filtering to complete the image
smoothing, the formal description of Gaussian filtering is
shown in (1).

G(x, y) =
1

2πσ 2 e
( x

2
+y2

2σ2
) (1)

Gaussian filtering was used to remove noise. The Gaussian
kernel used in Gaussian filtering is a Gaussian function with
two dimensions, x and y, and the standard deviation in these
two dimensions is the same.

Step 2: Calculating the pixel gradient using the Sobel
operator. The calculations of the Sobel operator are shown
in (2)-(4).

Gx = Sx ∗ I (2)

Gx = Sy ∗ I (3)

Gxy =

√
G(x2) + G(y2) (4)

where Sx and Sy represent the pixel gradient matrices
in the x and y directions, respectively, I represents the
grayscale imagematrix, and ∗ represents the cross-correlation
operation.

Step 3: Non-maximum suppression.

FIGURE 2. The flowchart of dataset generation.

FIGURE 3. The CBAM structure.

The purpose of non-maximum pixel gradient suppression
is to eliminate spurious effects caused by edge detection. The
basic method is to compare the gradient strength of the cur-
rent pixel with the gradient strength of adjacent pixels along
the positive and negative gradient directions and maintain the
maximum value as the edge point.

Step 4: Threshold hysteresis processing.
We defined high and low thresholds. Pixels whose gradi-

ent strength is lower than the low threshold are suppressed.
Conversely, pixels higher than the high threshold are defined
as strong edges and are reserved as edge points, and those
between the high and low thresholds are defined as weak
edges and are left for further processing.

Step 5: Isolate weak edge suppression.
The edge is judged according to the connection between

the weak edge pixel and strong edge. As long as one of the
neighboring pixels in the weak edge is a strong edge pixel,
the weak edge can be retained as a strong edge, that is, a real
edge point.

The flowchart of dataset generation is shown in FIGURE 2.
First, the RGB data are used to generate the Canny edge
detection data, and then the RGB and Canny edge detection
data are fused to obtain the fusion data.

B. CONVOLUTIONAL BLOCK ATTENTION MODULE
The convolutional block attention module (CBAM) allows
the network to pay more attention to the target to be detected,
focus on important features, and suppress unimportant fea-
tures [47] The addition of CBAM to U2-Net can improve the
connection between the channels and spaces of each feature.
During the training process, the CBAM can serially generate
attention feature map information in the channel and space
dimensions and then multiply the two types of feature map
information with the input feature map to obtain the final
feature map. The CBAM structure is shown in FIGURE 3,
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FIGURE 4. The CAM structure.

FIGURE 5. The SAM structure.

and the process is shown in (5)-(6):

F ′
= MC (F) ⊗ F (5)

F ′′
= MS (F ′) ⊗ F ′ (6)

where ⊗ presents element-wise multiplication, F denotes the
input feature map,Mc denotes the channel attention map,MS
denotes the spatial attention map, F

′′

denotes the final refined
output.

1) CHANNEL ATTENTION MODULE
The channel attention module [48] (CAM) firstly performs
global and average pooling on the input feature map to
obtain two feature vectors, then applies two fully connected
operations to generate two two-dimensional vectors. The cor-
responding elements are added. The weight containing the
channel information is multiplied by the input feature map
to obtain the feature map weighted by channel attention. The
CAM structure is shown in FIGURE 4, the channel attention
is shown in (7):

MC (F) = σ (MLP(AvgPool(F)) +MLP(MaxPool(F))) (7)

2) SPATIAL ATTENTION MODULE
The spatial attention module (SAM), similar to the channel
attention module, first performs global pooling and aver-
age pooling on the input feature map containing channel
information to obtain two compressed feature maps and then
combines these two features. The graph is superimposed, and
a convolution with a convolution kernel of 7× 7 is performed
to adjust the number of channels. The obtained spatial weight
information is multiplied by the input feature map to obtain a
feature map containing spatial and channel information. The
SAM structure is shown in FIGURE 5, the spatial attention is
computed in (8):

MS (F) = σ (f 7×7([AvgPool(F);MaxPool(F)])) (8)

C. U2-NET
Qin et al. [41] proposed a U2-Net composed of a two-level
nested U-shaped structure, which includes a multi-scale RSU

FIGURE 6. Residual U-block RSU structure.

in the extraction stage and a U-block connected to the RSU
module. The network consists of a six-level encoder and a
five-level decoder, each of which is filled with a residual
block RSU, so that the network can better extract intra-stage
multi-scale features and aggregate inter-stage multi-level fea-
tures. In the encoding stage, the first four stages pass through
the RSU modules with layers 7, 6, 5, and 4, and stages 5 and
6 are RSU modules with dilated convolutions. Each decoder
stage takes as input the concatenation of the upsampled fea-
ture maps from the previous stage and the feature maps from
the symmetric encoder stage and finally fuses the feature
maps obtained from each stage as the output. When using a
small sample dataset, we can reduce the risk of overfitting
by using a pre-trained model through migration learning,
whereas in this paper a larger dataset is used to avoid the risk
of overfitting due to a small dataset, so the network does not
require any pre-training, and can be trained from scratch to
achieve very competitive performance, increasing the depth
of the network to obtain a high-resolution featuremapwithout
increasing the memory and computational cost.

The residual U-block RSU consists of three parts: a con-
volutional layer that converts the input feature map into an
intermediate feature map, a U-shaped structure that extracts
multi-scale features, and a residual connection layer that fuses
local and multi-scale features. and this design enables the
network to extract multiple scales of features directly from
each residual U-block RSU [42] as shown in FIGURE 6.
The left side is the encoding stage, and the right side is
the decoding stage. The larger the number of layers in the
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FIGURE 7. Sample image from the WHU building dataset. (a) Original
image. (b) Ground truth.

encoder, the deeper the RSU structure, and more pooling
operations will increase the receptive field and enrich the
extraction of global features [43]. L is the number of layers in
the encoder, Cin,Cout denote the input and output channels,
and M denotes the number of channels inside the RSU.

D. LOSS FUNCTION
To solve the problems of gradient disappearance and low con-
vergence speed in the training process, the backbone network
was supervised by deep supervision [31], and the training loss
function was calculated using (9):

L =

M∑
m=1

ω
(m)
sidel

(m)
side + ωfuselfuse (9)

where l(m)side is the loss of each stage feature map, and lfuse is
the loss of the final output feature map. ω(m)

side and ωfuse are the
loss weights. For each term l, we used the standard binary
cross-entropy to calculate the loss, and the standard binary
cross-entropy was calculated using (10):

l = −

∑(H ,W )

(r,c)
[PG(r,c) logPS(r,c) +(1 − PG(r,c)) log(1−PS(r,c))]

(10)

where (r, c) is the pixel coordinates, and (H ,W ) is the height
and width of the image. PG(r,c) and PS(r,c) are the pixel values
of the ground truths and predicted feature map. The total loss
L is minimized during training. In the testing process, lfuse is
output as the final feature map.

III. EXPERIMENTAL RESULT
A. DATASETS
The building sample dataset used in this study was the
aerial image dataset in the WHU building dataset [48]
(http://study.rsgis.whu.edu.cn/pages/download/). The origi-
nal data are shown in FIGURE 7. The dataset contains
approximately 22,000 individual buildings, and the images
have an original ground spatial resolution of 0.075 m, down
sampled to 0.3 m ground resolution, and cropped to 8189 tiles
with 512 × 512 pixels.

FIGURE 8. Image-processed samples.

To further enhance the generalization ability of the model,
this study also expanded the original dataset through image
processing methods such as Gaussian noise and salt and pep-
per noise to increase the diversity of experimental samples.
The sample after image processing is shown in FIGURE 8.

B. EVALUATION METRICS
Precision, recall, F1 score, and intersection-over-union (IoU)
were used as evaluation metrics to evaluate the accuracy of
building extraction. The calculation of the different evalua-
tion metrics are as follows.

(1) Precision is expressed as the ratio of pixels, which is the
ratio of the number of pixels for which a building is correctly
predicted, to the number of pixels for all predicted buildings.
The precision is calculated using (11):

Precision =
TP

TP+ FP
(11)

(2) Recall is expressed as the ratio of classified pixels,
which is the probability of correctly predicting a pixel in a
building. Recall is calculated using (12):

Recall =
TP

TP+ FN
(12)

(3) The F1 score takes into account both the accuracy and
recall of the segmentation model. The calculation of the F1
score is given by (13):

F1 =
2 × Precision× Recall
Precision+ Recall

(13)

(4) IoU is the ratio of the intersection region to the concur-
rent region. The IoU is calculated using (14):

IoU =
TP

FP+ TP+ FN
(14)

where TP stands for true positive, which is the image element
that predicts the positive class as a positive class; that is, the
real building pixels are predicted as the number of building
pixels. TN stands for true negative, which is the image ele-
ment whose negative class is predicted to be negative; that is,
background pixels are predicted as the number of background
pixels. FP is a false positive, which is the number of pixels
that predict a negative class as a positive class; that is, the
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FIGURE 9. The building extraction results of different methods on the WHU building dataset.

background pixels are predicted as the number of building
pixels. FN stands for false negative, which predicts a positive
class as a negative class; that is, the number of real building
pixels is predicted as background pixels.

C. IMPLEMENTATION DETAILS
The proposed EA U2-Net adopts an Intel Core
i7-12700H@2.30GHz 14-core processor, equipped with
16.0 GB memory, and an Nvidia GeForce RTX 3050 Ti 4 GB
graphics card. In terms of software environment, we used
Windows 10 Professional Edition 64-bit operating system,
the programming language, Python, the CUDA11.3 version
of the GPU computing platform and the cuDNN8.2.1 deep
learning GPU acceleration library.

To ensure the objectivity of the experimental results, all
experiments were optimized using the Adam algorithm [50],
and the initial learning rate was set to 0.001. During the
training process, two images were input into the model each
time, the iteration round was 100, and the network training
parameters were saved every 10 epochs.

D. COMPARISON TO DIFFERENT BUILDING EXTRACTION
METHODS
To evaluate the algorithm performance on theWHUbuildings
dataset, we compared the proposed EA U2-Net with other
state-of-the-art methods, which includes the U-Net [18],
U2-Net [28], Deeplabv3+ [43], [52] and HRNet [53] with
the same sample datasets (the number of samples was 2000).
FIGURE 9 shows the building extraction results of differ-
ent methods on the WHU buildings dataset. For large-area
buildings, the prediction results of the three methods had
different degrees of edge blurring, but the extraction results
were generally accurate. For small-area buildings, there were

certain missed detections and false detections. Among them,
U-Net had the worst extraction effect, and the extraction of
large-area buildings had the phenomenon of broken edges
and incomplete extraction. There were also a large number of
false detections and missed detections for small-area build-
ings. Secondly, HRNet and Deeplabv3+ extract better than
U-Net, but there still exists a weakening of the edges of the
building contours and the omission of small-area buildings.
U2-Net yielded better extraction results. The outline of build-
ings was more complete as well as accurate, and the missed
and false detections of small-area buildings were also greatly
improved, but blurred edges still existed. Compared with
U-Net and U2-Net, EA U2-Net could capture more detailed
information, distinguish the boundaries of buildings better,
and extract small-area buildings more accurately. Overall, the
outlines of the buildings were clearer, and the extraction was
more complete, and accurate.

Table 1 presents the accuracy evaluation of the extraction
results of different deep learning methods. It can be seen
that EA U2-Net achieved the best performance in various
evaluation indicators, with a precision of 96.30%, a recall
of 94.91%, an F1 of 95.62%, and an IoU of 91.57%. Com-
pared with U-Net, Deeplabv3+, U2-Net, and HRNet, the
precision increased by 5.63%, 3.37%, 0.57%, and 0.82%, the
recall increased by 14.40%, 7.00%, 0.94%, and 0.08%, F1
increased by 10.35%, 5.28%, 0.78%, and 0.47%, and IoU
increased by 18.84%, 8.74%, 1.93% and 0.82%, respectively;
thus the effectiveness of this method was verified.

E. ABLATION STUDY
There are two improvements to our proposedmodel, the intro-
duction of building edge feature maps and the convolutional
block attention module. In order to evaluate the effect of

VOLUME 12, 2024 111585



F. Xie et al.: EA U2-Net: An Efficient Building Extraction Algorithm

TABLE 1. The accuracy evaluation of the extraction results of different deep learning methods.

FIGURE 10. Ablation experiments on the WHU buildings dataset. Extraction results for adding different modules on buildings.

these two in modules, we conducted ablation experiments.
FIGURE 10 shows the results of building extraction for the
WHU building dataset by adding different modules.

As shown in Table 2, U2-Net+canny brings consider-
able accuracy improvement, which indicates that the edge
information of the building is critical. We also compare
the experiments with U2-Net+CBAM. As shown in the
table, we show that the proposed EA U2-Net has a sig-
nificant performance gain by comparing U2-Net+canny,
U2-Net+CBAM with EA U2-Net. When using the method
containing two modules on the WHU building dataset, the
accuracy is 96.30%, F1 reaches 95.62%, and IoU is 91.57%.
Thus, the validity of the method is verified.

F. INFLUENCE OF TRAINING SAMPLES
Compared with ordinary photos, remote sensing imagery has
the characteristics of target category diversity, feature infor-
mation variability, and complexity of the interference factors.

TABLE 2. Ablation experiments on the WHU building dataset. These
results show the impact of the canny edge detection and attention
modules.

It is proposed to study the impact of the sample number,
sample purity, and sample resolution on building extraction
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FIGURE 11. The extraction results for different numbers of building samples.

TABLE 3. The sample dataset settings.

results when a sample database is constructed. The sample
dataset settings are presented in Table 3.

The extraction results for different numbers of building
samples are shown in FIGURE11.When the number of build-
ing samples was small (only 20 or 200), the overall building
extraction results were poor, the building boundaries were
not clear, and there were a large number of false and missed
detections. When the number of building samples reached
2000, the extraction effect was significantly improved, and
the building boundaries were relatively clear. With a gradual
increase in the number of building samples, the extraction
effect also improved. The building boundaries were clear-
est when the number of buildings reached 4000. However,
when the number of samples increased to 5000 or 6000,
the extraction effect of buildings began to decline and edge
blurring occurred. This shows that an appropriate increase
in the number of samples is beneficial for improving the
extraction results; however, blindly increasing the number of
samples will lead to a decrease in the extraction effect.

Our presents the accuracy evaluation of the building extrac-
tion results for different numbers of samples. When the
number of samples reached 3000, the recall and F1 reached
their highest values of 95.70% and 95.14%, respectively,
and the precision and IoU were reduced by only 1.23%
and 0.79%, respectively, compared with the highest values.

FIGURE 12. The curves of various accuracy evaluation indicators for
different numbers of samples.

Compared with the case of 20 samples, the precision, recall,
F1, and IoU increased by 9.49%, 8.48%, 9.41%, and 14.35%,
respectively. When the number of samples was 4000, the
precision, recall, F1, and IoU decreased by 1.09%, 3.13%,
2.12%, and 2.56%, respectively.When the number of samples
was 5000, the precision, recall, F1, and IoU improved by
2.32%, 1.74%, 2.03%, and 1.54%, respectively, compared to
4000 samples. When the number of samples was 6000, the
precision, recall, F1, and IoU decreased by 0.93 %, 2.37 %,
1.67 %, and 8.62 %, respectively, compared to the case of
5000 samples.

The curves of various accuracy evaluation indicators are
shown in FIGURE 12. The precision and IoU curves exhibit
the same trend. They increased at the beginning with the
increase in the number of samples, and then slowly decreased
until the number of samples reached 4000, and then began
to rise to 5000; at this time, the precision curve reached
a peak, and with the continuous increase in the number of
samples, it showed a downward trend. The recall curve and
F1 curve also tended to be consistent. In the early stage, as the
number of samples continued to increase, both the curves first
decreased and then increased. When the number of samples
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FIGURE 13. Building extraction results for different values of training sample purity.

FIGURE 14. The curves of various accuracy evaluation indicators for
different values of purity of samples.

reached 3000, both reached their peaks. As the number of
samples continued to grow, the two curves first fell, then rose,
and then continued to fall.

The buildings are densely distributed. When the number
of samples reached 2000, the building extraction effect, that
is, the accuracy, was significantly improved, and the time
consumptionwas shorter. Therefore, in this study, we selected
2000 samples to study sample purity, that is, the impact of
building density on the extraction results of buildings. The
building extraction results are shown in FIGURE 13. When
the sample purity was 20 or 50, the buildings exhibited obvi-
ous edge blurring and loss of detail. When the sample purity
was 65, the blurring of the building edges was significantly
improved. With the improvement of the sample purity, the
building extraction effect improved, and the building bound-
aries became increasingly clearer. When the sample purity
reached 95, the building extraction effect was the best, and the
boundary was the clearest. When the sample purity reached
100, the edge definition of the building decreased, and the
misdetection phenomenon became serious. It is easy to pre-
dict that non-buildings are buildings. This shows that the

higher the purity of the dense samples, the better the extrac-
tion effect of buildings; however, an appropriate increase in
blank samples gives the model enough information to distin-
guish between buildings and non-buildings, to better learn the
background information, to help balance the distribution of
categories, and to improve the overall extraction effect.

Our presents the accuracy evaluation of the building extrac-
tion results for different values of sample purity. When the
sample purity was 20, the recall, F1, and IoU were 92.65%,
94.30%, and 88.93%, respectively, which are the lowest val-
ues, but the precision was high. When the sample purity
was 50, recall, F1, and IoU increased by 3.11%, 0.52%,
and 1.23%, respectively, but precision decreased by 2.09%.
When the sample purity was 65, the precision, F1, and IoU
were improved by 1.36%, 0.53%, and 0.82%, respectively,
compared with a sample purity of 50, and the recall was
slightly decreased by 0.32%.When the sample purity was 80,
the precision indicators were almost identical to those when
the sample purity was 65. The precision and F1 increased
by 0.12% and 0.04%, respectively, and the recall and IoU
decreased by 0.04% and 0.08%, respectively. When the sam-
ple purity was 90, the precision reached the highest value
of 96.28%, and the recall, F1, and IoU were only 0.79%,
0.11%, and 0.21%, respectively. When the sample purity was
95, compared with a sample purity of 90, all the evaluation
indicators decreased, and the precision, recall, F1, and IoU
decreased by 0.12%, 1.59%, 0.87%, and 2.03%, respectively.
When the sample purity was 100, F1 and IoU reached their
highest values of 95.73% and 91.68%, respectively. Com-
pared with the sample purity of 95, the recall, F1, and IoU
increased by 2.22%, 0.98%, and 2.24%, respectively, but the
precision dropped by 0.30%.

The curves of various accuracy evaluation indicators are
shown in FIGURE 14. In the initial stage of the increase
in sample purity, the various accuracy indicators gradu-
ally increased, but the precision curve gradually decreased.
When the sample purity increased to approximately 50%,
the precision curve decreased to its lowest value, whereas
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FIGURE 15. Building extraction results for different training sample resolution.

FIGURE 16. The curves of various accuracy evaluation indicators for
different resolutions of samples.

the recall curve increased to the highest value. Thereafter,
as the sample purity increased, the precision, F1, and IoU
curves gradually increased, whereas the recall curve grad-
ually decreased. When the sample purity was increased to
90%, each curve began to decline. When the sample purity
increased to 95%, the recall, F1, and IoU curves gradually
increased, whereas the precision curve continued to decline.

The diversity of remote sensing imagery sources leads
to the diversity of scales of remote sensing imagery; thus,
research on the sample scale is executed. The visualization
results are shown in FIGURE 15.When the sample resolution
was 0.3 m, the building boundary was the clearest, but it
was easy to miss certain discrete small-area buildings. When
the sample resolution was downsampled to 0.6 m, the build-
ing boundaries were also relatively clear, but some discrete
small-area buildings that were missed when the sample reso-
lution was 0.3 m were accurately extracted. When the sample
resolution was downsampled to 1 m, the boundary of the

buildings was blurred, and the extraction effect of small-area
buildings also deteriorated. When the sample resolution was
downsampled to 2 m, 5 m, or even 10 m, the boundary of
the building was blurred, and a large number of missed and
false detections occurred. This shows that with the reduction
of image resolution, the extraction effect of buildings also
gradually declines, but the sample resolution is not the higher
the better. Appropriately reducing the sample resolution is
beneficial for extracting small-area buildings.

Our presents the accuracy evaluation of the building extrac-
tion results with different sample resolutions. When the
sample resolution was 0.3 m, the recall, F1, and IoU reached
the highest values, which were 93.38%, 94.75%, and 89.44%,
respectively, and the precision differed from the highest value
of 1.70%. When the sample resolution is 0.6 m, the precision
reaches the highest value of 97.86%, and the recall, F1, and
IoU decreased by 3.36%, 0.97%, and 1.21%, respectively,
when the sample resolution is 0.3 m. When the sample res-
olution was 1 m, the precision, F1, and IoU decreased by
1.50%, 0.51%, and 1.21%, respectively, and recall increased
by 0.36% when the sample resolution was 0.6 m. When the
sample resolution was 2 m, the precision, recall, F1, and IoU
dropped by 0.57%, 16.97%, 10.81, and 19.68% when the
sample resolution was 1 m, respectively. When the sample
resolution was 5 m, the recall, F1, and IoU improved by
6.93%, 2.06%, and 4.59%, respectively, but the precision
dropped by 6.57%when the sample resolutionwas 2m.When
the sample resolution was 10 m, each evaluation index had
the lowest value, and the precision, recall, F1, and IoU were
73.64%, 62.08%, 67.32%, and 44.32%, respectively.

The curves of various accuracy evaluation indicators are
shown in FIGURE 16. In the early stage of the decline in sam-
ple resolution, the precision curve gradually increased. When
the sample resolution reached 0.6 m, the accuracy curve
peaked. Subsequently, as the sample resolution decreased, the
precision curve gradually decreased. The recall, F1, and IoU
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curves tend to be consistent. At the beginning of the decline
of the sample resolution, the three curves slowly decreased,
and the sample resolution was down-sampled to 0.6 m, and
the three curves increased briefly and then decreased. When
the sample resolution was downsampled to approximately
2 m, the three curves started to rise, and when the sample
resolution was downsampled to approximately 5 m, the three
curves started to fall again.

IV. CONCLUSION
This section is not mandatory but can be added to the
manuscript if the discussion is unusually long or complex.

Considering the phenomenon of blurred boundaries in the
process of building extraction, in this study, we propose a
practical framework EA U2-Net based on U2-Net to extract
buildings. The Canny edge detection data were added to the
RGB data of the training data for training, and CBAM was
added to the U2-Net. The experimental results show that,
compared with U-Net and U2-Net, the EA U2-Net method
extracts clearer building boundaries, more complete outlines,
and more accurate extraction of small buildings, which can
effectively improve the building extraction accuracy. At the
same time, in view of the phenomenon that deep learning
relies too much on samples, this paper considers building
extraction as an example to study the influence of sample
parameters on the extraction results. The experimental results
of the number of samples show that when the number of
samples is small, increasing the number of samples can effec-
tively improve the extraction accuracy of buildings. However,
when the number of samples reaches a certain level, con-
tinuously increasing the number of samples will not only
lengthen the training time of the model but also reduce the
extraction effect and accuracy of buildings. The experimental
results of sample purity show that the higher the purity of
dense samples, the better the extraction effect of buildings,
but the appropriate addition of blank samples is conducive
to the network learning the characteristics of non-buildings
and improves the overall extraction effect. The experimen-
tal results of sample resolution show that with a decrease
in image resolution, the extraction effect of buildings also
gradually declines, but the sample resolution is not the higher
the better, and appropriately reducing the sample resolution
is beneficial to the extraction of small-area buildings. The
experimental results of the sample parameters confirm that
reasonable sample parameter settings can improve the accu-
racy of building extraction and provide a reference for the
sample settings of other target extraction experiments.
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