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ABSTRACT JavaScript has significantly evolved, broadening its capabilities. However, the uptake of
tail call optimization (TCO) remains limited, largely due to concerns about debugging difficulties and
the potential increase in overall complexity. This paper highlights the compelling importance of tail calls
within web applications, advocating for TCO as a means to boost performance and enhance memory
efficiency.We present an innovative TCO technique that leverages the native stack within JavaScript engines,
capitalizing on the native stack’s inherent benefits over heap memory. This technique is carefully crafted to
comply with diverse TCO standards, prioritizing simplicity and providing debugging features. We tackle
the inherent challenges of TCO and successfully deploy our method in a lightweight JavaScript engine.
Our approach is rigorously evaluated, proving its effectiveness and practicality. Notably, our implementation
facilitates considerable memory savings for web applications, comparable to the maximumResident Set Size
(RSS), and achieves an average performance improvement of approximately 19.8% for algorithms that are
heavily recursive. This research not only demonstrates the versatility and efficiency of our TCO strategy but
also makes a significant contribution to the wider adoption and comprehension of TCO, thereby improving
JavaScript engines’ performance and memory management efficiency.

INDEX TERMS Code optimization, compiler, interpreter, JavaScript, JavaScript engine, tail call
optimization.

I. INTRODUCTION
JavaScript, originally designed for client-side, event-driven
interactions within web browsers, has significantly evolved.
Through continuous improvement and the incorporation of
diverse language features, JavaScript has expanded its reach
into various domains beyond the web environment. These
extensions include server constructions [1], IoT solutions [2],
and even AI frameworks [3]. Consequently, JavaScript has
become one of the most popular programming languages,
a fact presented in the state of the octoverse 2023 report [4].

The JavaScript language specification, as detailed by the
ECMAScript standard [5], is updated annually to include new
features that browser vendors generally implement in a timely
manner. However, one feature that has seen inconsistent
support is tail call optimization, shortly TCO. Although TCO

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

was introduced in the 2015 revision of the ECMAScript
standard [6], only a handful of JavaScript engines offer
limited TCO support, as indicated by an online compatibility
table [7] (which notes TCO support in only 7 out of more than
40 surveyed web engines). TCO is an optimization strategy
that aims to efficiently manage recursive function calls by
curbing the expansion of the call stack. In JavaScript, a tail
call occurs when a function’s last operation is to invoke
another function or itself in the case of recursion, immediately
returning the result of the callee, as illustrated in Figure 1.
TCO streamlines this process by allowing the JavaScript
engine to reuse the current call frame for the subsequent
call, thereby decreasing overall stack memory usage and
preventing stack overflow exceptions that may arise during
prolonged recursive operations.

The primary reason for the incomplete adoption of
TCO in modern web engines stems from uncertainty
regarding the trade-offs between benefits and potential
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FIGURE 1. Examples of tail calls, with tail recursion as a specific case of
tail call where a function invokes itself recursively in the tail call position.

drawbacks, including challenges in debugging and imple-
mentation. Developers who rely on stack information,
such as Error.stack, for debugging their code may
encounter issues due to missed call frames caused by TCO.
Additionally, implementing TCO can pose a burden on web
engines, as it requires extra stack management, potentially
increasing the overall complexity of the engines. In an effort
to address these concerns surrounding TCO, an alternative
approach called syntactic tail call (STC) [8] was proposed.
STC aimed to make tail calls explicit, offering developers the
option to choose TCO or not. Unfortunately, this proposal
was ultimately rejected. As a result, the original TCO
specification remains largely disregarded, with only a few
web engines incorporating it. According to the compatibility
table [7], WebKit [9], the browser engine developed by
Apple primarily for its applications such as Safari [10],
is the only prevalent browser implementing TCO. Other web
engines that support TCO are typically designed for resource-
constrained devices, where TCO can help reduce overall
memory consumption—a critical factor in such devices.

Based on this historical context, we embarked on an
exploration of the present state of web applications to gain
valuable insights into the active utilization of TCO. Our focus
centered exclusively on JavaScript aspects, driving our evalu-
ation using the web-tooling-benchmark suite [11]. This suite
is specifically designed to measure the JavaScript-related
workloads commonly found in web developer tools. The data
presented in Table 1 offers a comprehensive view of tail calls,
including their prevalence, frequency and actual call counts
across various scenarios. Specifically, the Tail Call
Occurrence column provides the total number of return
statements in tail call positions for each application. Each
figure is complemented by respective proportions relative
to the overall number of return statements, indicated within
parentheses. The Tail Call Count column presents the

cumulative count of invoked tail calls, along with proportions
relative to the total call count, also shown in parentheses.
Lastly, the Tail Recursion Count column signifies
the total count of tail recursion calls, where a tail call
invokes itself recursively (the Tail Call Count column
encompasses both tail recursion and general tail call cases).
We paid particular attention to these special tail call cases,
as tail recursion often involves extensive self-invocations,
potentially impacting overall application performance sig-
nificantly. Remarkably, the table highlights a significant
occurrence of tail calls within return statements of functions,
ranging from 13.89% to 33.53%. Furthermore, a substantial
number of applications already leverage tail recursion, as seen
in the Tail Recursion Count column of Table 1,
illustrating the practical applicability of TCO. While the
overall percentage of tail calls concerning the total call
count may not be overwhelming, their potential impact on
memory management through TCO is undeniable, given the
substantial number of tail calls that are invoked. This analysis
further reinforces the compelling need for TCO support
within JavaScript engines, especially when considering
resource-limited devices.

In this paper, we introduce an advanced TCO technique
that harnesses the native stack of JavaScript engines.
Specifically, we focus on a lightweight JavaScript runtime
that utilizes the native stack of the engine for JavaScript call
frames. In contrast to other major JavaScript engines that
allocate JavaScript call frames in separate memory spaces,
such as heap memory, it merges JavaScript call frames
into the native stack of the engine. This approach offers
several advantages in memory management, as call frames
are automatically reclaimed after a JavaScript function call
completes, similar to native function calls. In contrast,
when call frames are allocated in a separate memory space,
JavaScript engines require manual reclamation of each call
frame, which can be resource-intensive. Moreover, this
approach can alleviate the burden on memory systems,
including garbage collection, potentially resulting in per-
formance enhancements. Our primary goal is to efficiently
expand the use of the native stack for TCO, enabling the reuse
of the current JavaScript call frame allocated in the native
stack for subsequent tail calls. To the best of our knowledge,
the adoption of TCO while exploiting the native stack of the
language engine has not been proposed before.

While the concept may appear straightforward, yet it
introduces complex challenges, particularly in managing the
native stack which is inherently more restrictive than manipu-
lating heap memory. Adjusting or expanding the native stack
while a JavaScript engine runs poses significant limitations.
Our key objectives include ensuring comprehensive support
for the diverse TCO scenarios specified in the language
standard to guarantee a consistent TCO feature for web
developers. Additionally, we prioritize implementing our
proposal with minimal complexity to facilitate JavaScript
engine maintenance. Lastly, we emphasize the importance
of providing additional stack information related to TCO for
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TABLE 1. The state of tail call in the web-tooling-benchmark.

debugging purposes. We have addressed these challenges and
successfully integrated our TCO strategy into a lightweight
JavaScript engine. Our implementation was rigorously tested,
evaluating both its feasibility and its impact on performance.
The contributions of this paper can be summarized as follows:

• Assessment of TCO in Contemporary Web Environ-
ments: We conducted a thorough analysis of the current
implementation and support for TCO across various web
engines and real-world web applications. This analysis
highlights the critical need for enhanced TCO support to
improve performance and efficiency.

• Development of an Advanced TCO Approach: We
introduced a novel TCO technique that leverages the
native stack efficiently. This approach is carefully
designed to align with existing TCO standards, ensuring
broad compatibility and applicability.

• Implementation in a Lightweight JavaScript Engine:
Our TCO technique was successfully integrated into
a lightweight JavaScript engine. The focus was on
ensuring the implementation remained straightforward,
avoiding unnecessary complexity to facilitate ease of
adoption and maintenance.

• Enhancement of Debugging Capabilities: To aid devel-
opers in debugging, we extended the JavaScript engine
to provide additional stack information relevant to
TCO. This feature is invaluable for troubleshooting and
understanding the behavior of optimized code.

• Comprehensive Evaluation and Validation: The effec-
tiveness and practicality of our TCO approach were
validated through extensive evaluations. Notably, our
TCO implementation demonstrated significant memory
savings—comparable to the maximum RSS (Resident
Set Size) memory size—for general web applica-
tions. Furthermore, it yielded an average performance
enhancement of around 19.8% on workloads that are
heavily dependent on recursion.

The rest of this paper is structured as follows: Section II
gives background information on the TCO standard and the
JavaScript engine that leverages the native stack. Section III
provides an in-depth description of the proposed TCO

method, tackling the challenges introduced above. Section IV
presents the results of our evaluation, along with specific
analyses. Section V reviews related works within the field.
Finally, in Section VI, we conclude this paper and suggest
directions for future research.

II. BACKGROUND
This section provides background information on the TCO
standard of JavaScript and the JavaScript engine that utilizes
the native stack. It lays the foundation for understanding the
core concepts discussed in this paper.

A. TAIL CALL OPTIMIZATION IN JavaScript
A tail call occurs when a function invokes another function
as its final operation and directly returns the result without
further modification. Figure 2(a) shows an example of a tail
call within the functionf. In this scenario, the calling function
has no additional instructions to execute, making its call
frame redundant. This redundancy allows for the elimination
or reuse of the call frame, a technique known as tail call
optimization (TCO). TCO is particularly advantageous in
programswhere recursive functions are heavily utilized.With
TCO, such programs can run without encountering stack
overflow issues. Additionally, TCO can improve the speed
of recursive algorithms by reusing the call frame instead of
managing additional call frames.

According to the ECMAScript standard [5], several criteria
must be met for a function call to be considered a tail call:

• The callee of the tail call should be in strict mode:
“use strict”; in Figure 2(a) is a directive in
JavaScript that ensures the code executes in strict
mode, which enforces stricter parsing and error han-
dling, leading to more reliable and secure code.

• The caller of the tail call should not be in the form
of an async, generator, or async-generator
function: these are special types of functions designed
to handle asynchronous operations and streams of data.
TCO is exclusively applied to conventional synchronous
functions.

• ReturnStatement: return \llexpr\gg;
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FIGURE 2. Transition of a JavaScript function with a tail call in the Escargot engine.

Only a return statement can encompass a tail call
(arrow function may omit the return statement,
but implicitly has one). While a return statement
can encompass various expressions, including logical
(&&, ||) or comma (,) expressions, the return statement
must ultimately return the result of the tail call.

Recognizing a function call as a tail call enables the
JavaScript runtime to optimize resource usage. It can either
release the resources associated with the current call frame
or reuse them for the next function invocation. While
the ECMAScript standard defines the criteria for TCO
application, the specifics of its implementation are left to
the discretion of individual JavaScript engines. In alignment
with the language standard, we propose a comprehensive
application of TCO that optimizes various tail call scenarios,
including tail recursion as depicted in Figure 2(a), by effi-
ciently reusing the call frame for subsequent calls.

B. JAVASCRIPT RUNTIME EXPLOITING NATIVE STACK
Our proposed solution leverages the Escargot JavaScript
engine [12], which is an open-source, lightweight engine
mainly optimized for environments with limited resources,
such as embedded systems. This is in contrast to more
mainstream engines like V8 [13], JavaScriptCore [14], and
SpiderMonkey [15], which may be unsuitable for such
environments due to their larger memory requirements.

Escargot’s execution model is designed for efficiency,
comprised of a parser and an interpreter responsible for
executing JavaScript code. Initially, JavaScript source code
is parsed into an Abstract Syntax Tree (AST), where each
node represents a distinct language construct. The AST is
then compiled into bytecode, serving as an intermediate,
executable representation of the code.

Figure 2 (Figure (a), Figure (b), and Figure (c)) demon-
strates the transformation of the function f from source
code to AST and finally to bytecode. Within this figure,

the bold-dashed outlines connect the corresponding parts
of the AST and bytecode that represent the tail call in the
return statement return f(n-1);. During the parsing
stage, the AST is traversed depth-first to generate the
bytecode sequence, ensuring that the return statement’s
result—the tail call—is processed appropriately. Escargot
uses a register-based bytecode format, where operations
are conducted using virtual registers (denoted as r#) that
store temporary values, local variables, and parameters.
As shown in Figure 2(c), the result of the tail call within
f is stored in register r0 which is in turn returned by the
last return bytecode, corresponding to the concept of tail
call.

After completing the code translation, the interpreter pro-
ceeds to execute the bytecode stream sequentially. To manage
a function call, Escargot instantiates an interpreter instance
and allocates a JavaScript call frame, which consists of
ExecState and RegisterFile, directly on the native
stack of the engine, rather than in heap space. This process is
illustrated in Figure 3. A JavaScript call frame is a data struc-
ture used for storing the context needed to execute a function.
The RegisterFile maintains virtual registers for the
bytecode associated with each function call. Simultaneously,
the ExecState contains essential execution pointers, such
as the address of the current bytecode and references to the
argument list, which facilitate execution within the inter-
preter. Specifically, the bytecode address points to the active
bytecode, updating to the next in line upon the completion of
the current one in the interpreter. Regarding call arguments,
the virtual registers of the calling function, such as r2 (as
seen in Figure 2(c)), store the argument values, and the
ExecState’s argument list points to these registers, which
are located in the caller’s RegisterFile. During the
target function’s execution, the interpreter accesses argument
values via the ExecState, as demonstrated by the bytecode
instruction get r4 <- ExecState.arg_list[0] in
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FIGURE 3. The native stack structure of the Escargot engine during the
execution of a recursive function f.

Figure 2(c). These structures are instantiated just before
invoking the interpreter.

Escargot distinguishes itself by efficiently utilizing the
native stack, where the JavaScript function’s call frame and
the interpreter’s call stack coexist. This approach greatly
enhances data access speed for the interpreter because the
JavaScript call frame resides in the same native stack space
as the interpreter. Additionally, it leverages the native stack’s
inherent memory management capabilities. Upon completion
of a JavaScript function’s execution, both its call frame
and the interpreter instance are automatically reclaimed
by the system, substantially reducing the typical memory
management overhead. In contrast, major JavaScript engines
(like V8 [13], JavaScriptCore [14], and SpiderMonkey [15])
typically allocate the JavaScript call frame in a separate
memory space and require manual management.

Figure 3 highlights a potential issue with the recursive
tail calls in the function f. In their current form, these
recursive calls still carry the risk of causing a stack overflow.
To address this concern, our study enhances Escargot’s native
stack utilization by introducing an advanced TCO technique.
This innovation aims to maximize the utilization of the
native stack, effectively mitigating the limitations that can
lead to stack overflow and reducing overall stack usage.
It’s important to note that asynchronous constructs, such as
async, generator, and async-generator functions
require heap allocation for their call frames. However,
we have excluded them from our TCO scheme based on the
tail call criteria outlined in Section II.A.

III. ADVANCED TAIL CALL OPTIMIZATION
This section provides a detailed description of the proposed
TCO method, specifically designed for leveraging the native

FIGURE 4. Bytecodes generated for TCO and their transitions, including
fallback to direct return in case of TCO failure.

stack of the JavaScript engine. It also addresses the various
challenges associated with this approach.

A. OVERVIEW OF TCO IMPLEMENTATION
Our method extends the capabilities of the native stack,
optimizing all tail calls by reusing the native stack structures.
We integrate this advanced TCO into the parsing and
interpretation phases of the Escargot engine’s execution
model.

1) PARSING PHASE
During the parsing phase, the parser’s role includes gen-
erating specialized bytecode for tail calls. As illustrated
in Figure 2(b), when encountering a return statement, the
parser assigns a virtual register to store the expected return
value. It then proceeds to generate bytecode for each
child node iteratively, maintaining the association with the
allocated register. While generating bytecode for the call
expression, the parser verifies whether the call’s destination
register matches the previously allocated register, indicating
a potential tail call.

When the caller satisfies the tail call criteria specified in
Section II.A, the parser generates a tail_call bytecode,
specifically optimized for tail call execution, as depicted
in Figure 4. This process focuses solely on the caller
function, given that, unlike in statically-typed languages, the
callee function can vary dynamically. If the caller does not
satisfy the tail call criteria, the parser instead generates a
call_direct_return bytecode. This alternative byte-
code facilitates further optimization by directly handling the
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return operation, capitalizing on situations where a tail call
optimization is not applicable but performance gains can still
be achieved.

Within the context of these optimized bytecodes, the
conventional return bytecode becomes redundant and is
consequently omitted. The tail_call bytecode, specifi-
cally designed for tail calls, defers the actual return operation
to the subsequent call, as it directly returns the result value
of the callee. In Figure 2(a), the return 0; statement
serves as the exit point for recursive tail calls. In contrast, the
call_direct_return bytecode encapsulates the return
operation within its execution logic, with further details to
be explored in an upcoming section. The parser’s primary
role involves identifying tail call opportunities and generating
the corresponding bytecodes. Concurrently, the interpreter,
leveraging these custom instructions, is responsible for
effectively executing TCO.

2) INTERPRETATION PHASE
In the interpretation phase, the interpreter aims to optimize
the tail call by reusing the current function’s data structures,
including ExecState, RegisterFile, and the inter-
preter’s own call stack. Due to the engine’s strategy of sharing
the native stack with other modules, managing this stack
requires a calculated and methodical approach. Furthermore,
the interpreter needs to verify a set of conditions that must be
satisfied before applying TCO.

During the processing of tail_call, the interpreter first
verifies whether the target function of the tail call (callee)
meets the tail call criteria specified in Section II.A. This
verification is essential for every tail_call execution
due to JavaScript’s dynamic nature, where functions are
treated as first-class citizens [16] and can be reassigned.
This flexibility means that the callee could potentially change
during execution, unlike in statically typed languages. For
example:

function other_func(m) { ... }

function f(n) {
if (n <= 0) { return 0; }
if (n == 100) {

f = other_func; // set to another function
}
return f(n-1); // Is a valid tail recursion?

}

f(100000);

In this snippet, the function f could be altered even in the
middle of recursive calls, potentially invalidating the TCO
process.

After validating the callee, the interpreter assesses the
overall size of the callee’s call frame to ensure it can fit
within the current call frame of the calling function (caller).
This constraint arises because the call frames of JavaScript
functions and other engine internal methods/modules are

FIGURE 5. Reuse of native stack structures in the Escargot engine during
the execution of a recursive tail call f.

allocated sequentially and densely on the same native stack.
Therefore, resizing or enlarging the already assigned call
frame of the caller is not a feasible option. Moreover,
the call frame of a JavaScript function is designed for
sequential alignment, with interpreters accessing stack data
accordingly. If TCO were applied to a larger callee function,
additional stack space would need to be allocated separately
from the caller’s call frame. However, this would disrupt
the sequential alignment of the call frames and invalidate
bytecode execution through the interpreter. Consequently,
TCO is exclusively applied to smaller or equal callee
functions during tail calls to ensure compatibility with the
existing stack allocation scheme and maintain the integrity of
bytecode interpretation. In the case of tail recursion, where
tail calls are invoked recursively, the TCO approach is fully
applicable because both the caller and callee require identical
call frame sizes. This limitation in call frame size represents
the sole constraint imposed by native stack utilization.

Once the previous conditions are met, the interpreter
proceeds to execute TCO. Figure 5 describes the overview
of the native stack structures when TCO is applied to
the source code depicted in Figure 2(a). The interpreter
updates the current ExecState to reflect the context of
the callee. The RegisterFile is entirely reused without
any modification, as it matches the requirement of the target
function. The interpreter then jumps to the first bytecode
of the callee without invoking another interpreter instance,
effectively reusing the entire stack structure for the tail call.
This approach avoids incremental stack allocation, which
could otherwise result in stack overflows, as depicted in
Figure 3.
An additional consideration pertains to handling argument

values. As shown in Figure 3, the original arguments are
located in the RegisterFile of the caller function. If this
RegisterFile is reused in the callee function, it may
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inadvertently alter the argument values during execution,
potentially leading to incorrect operations. To address this
issue, we allocate a buffer called ArgumentBuffer in a
separate memory space. This buffer serves as a temporary
space to hold the argument values for subsequent tail
calls. The interpreter copies the argument values to this
predefined buffer, and ExecState points to this buffer
as the argument list. Subsequently, the interpreter executes
the bytecode of the callee while accessing the argument
values via the ArgumentBuffer. Since these argument
values are eventually allocated into virtual registers at the
start of the function, as demonstrated in Figure 2(c) by
the bytecode get r4 <- ExecState.arg_list[0],
the ArgumentBuffer needs to hold the arguments tem-
porarily. Consequently, just one ArgumentBuffer can be
shared among all tail calls, including nested tail calls or tail
recursion cases, as illustrated in Figure 5.
If the previous checks fail, the interpreter promptly

jumps to the fail handler to manage non-valid tail calls.
In this scenario, the fail handler treats the target function
invocation as a regular call. Moreover, it converts the
tail_call instruction into call_direct_return,
under the assumption that a function (callee) which failed
in TCO once is likely to fail again. This strategy is based
on a previous analysis [17] indicating that over 81% of calls
in JavaScript are monomorphic, implying that the majority
of call sites invoke the same function repeatedly. Therefore,
instead of attempting TCO again in subsequent iterations,
we opt to abandon it immediately to reduce the check
overhead. For call_direct_return, the interpreter
initiates the target function following the standard procedure
of a regular call. Subsequently, the result of the call is
directly returned instead of progressing to the next bytecode
execution, as it represents the final operation of the current
function.

In the context of recursive tail calls, we propose a
specialized bytecode aimed at optimizing the execution of
tail recursion, which can significantly impact overall perfor-
mance. This new bytecode, tail_recursion, is designed
to speed up the execution of recursive tail calls compared
to the standard tail_call bytecode. Initially, the parser
generates the tail_call bytecode, as it cannot predict in
advance whether the tail call will be recursive or not. During
the execution of the tail_call, the interpreter performs
an additional check to determine if it is a tail recursion case
by comparing the callee and caller objects. If this check
confirms a tail recursion case, the tail_call bytecode is
transformed into tail_recursion, allowing subsequent
identical calls to be handled by the specialized bytecode.
The interpreter then executes the tail_recursion more
efficiently with a simplified check that compares the callee
and caller objects to confirm the tail recursion case. This
check is necessary because the callee of the call could be
changed during runtime as seen in the previous example.
After the check, the interpreter directly updates the JavaScript

Algorithm 1 Interpretation Routine of tail_call
Require: callee, caller , callee_stack_size,

caller_stack_size
1: if verifying callee fails OR callee_stack_size >

caller_stack_size then
2: goto TCO-Fail-Handler
3: end if
4: if callee == caller then
5: transform tail_call into tail_recursion
6: end if
7: Copy argument values to ArgumentBuffer
8: Update ExecState to target function callee
9: Interpreter jumps to the first bytecode of target function

callee

Algorithm 2 Interpretation Routine of tail_recursion
Require: callee, caller
1: if callee ̸= caller then
2: goto TCO-Fail-Handler
3: end if
4: Copy argument values to ArgumentBuffer
5: Update ExecState to target function callee
6: Interpreter jumps to the first bytecode of target function

callee

Algorithm 3 Interpretation Routine of call_direct_
return
Require: callee
1: Invoke callee following the procedure of regular call
2: Return the result of callee

call frame and jumps to the callee as it would with a
tail_call. If the check fails, the fail handler handles
it similarly to the tail_call by invoking the callee
as a normal call. However, instead of directly converting
the tail_recursion into call_direct_return, the
fail handler rechecks if the callee could still be handled
by the general tail_call. If the callee satisfies the
tail call criteria, the tail_recursion is transformed
into tail_call, expecting that subsequent calls could
be handled using TCO. Otherwise, the tail_recursion
is transformed into call_direct_return. The overall
process of bytecode transition is depicted in Figure 4.
The processes of specialized bytecodes are described in
Algorithm 1, 2 and 3.

Our proposal seamlessly integrates additional bytecodes
into the existing execution framework, ensuring the sim-
plicity of the TCO implementation while maintaining the
integrity of the core system. This approach avoids complex
modifications and reduces potential risks to the overall
performance. A more detailed analysis of the complexity
impact will be discussed in the evaluation section later.
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B. CASE STUDY OF TAIL CALL
This section addresses themanagement of corner cases within
our TCO implementation.

1) TAIL CALL WITH CLOSURE
Closures in JavaScript represent a fundamental concept that
is especially crucial in functional programming and the
development of complex applications. A closure is created
when a function (referred to as an inner function) is declared
within another function (referred to as an outer function),
allowing the inner function to capture and maintain access
to the outer function’s scope even after the outer function
has finished execution. This capability facilitates the creation
of private variables, the encapsulation of data, and the
employment of advanced function creation and management
strategies.

"use strict";
function foo() {
...
return outerFunc(); // tail call

}
function outerFunc() {
var outerVar = 0;
function innerFunc() {
return ++outerVar;

}
innerFunc(); // return 1 (outerVar)
return innerFunc;

}

var func = foo(); // return innerFunc
func(); // return 2 (outerVar)

In the above example, innerFunc exemplifies a closure
as it is defined within outerFunc and maintains access
to outerVar, a variable within the scope of outerFunc.
Upon invocation of outerFunc, it returns innerFunc,
which continues to have access to outerVar beyond the
execution period of outerFunc, embodying the principle
of a closure.

To accommodate closures, the Escargot engine employs
a specialized data structure, named Record, stored in
heap memory as depicted in Figure 6. Specifically, when
outerFunc is invoked, a Record is allocated on the heap
to preserve the value of outerVar, rather than storing
it directly within the RegisterFile. The ExecState
of outerFunc internally holds a reference to this newly
created Record. Throughout the execution of outerFunc,
any access to or modification of outerVar is conducted
via this Record. Upon definition of innerFunc inside
outerFunc, an object representing innerFunc is instan-
tiated in the heap, inheriting the current scope’s Record
reference. When innerFunc is eventually executed, its
ExecState adopts the Record reference from the
innerFunc object, thereby granting innerFunc access
to outerVar contained within the Record. Since the
Record resides independently within the heap, it persists
even after the completion of outerFunc.

FIGURE 6. Illustration of closure management within the Escargot engine.

Incorporating closures into our TCO methodology is
achieved by adhering to the established strategy. As demon-
strated, upon tail call invocation of outerFunc, the existing
call frame is reused for executing outerFunc. Simulta-
neously, a new Record for outerVar is allocated in the
heap, with its reference updated in the current ExecState.
Consequently, outerFunc and innerFunc operates as
it typically would, unaffected by TCO. Thus, by leveraging
the conventional strategy, our TCO implementation seam-
lessly supports the closure feature, avoiding any additional
complexity.

2) TAIL CALL IN TRY-CATCH-FINALLY
The try statement in JavaScript consists of a try block, which
is followed by either a catch block, a finally block, or both,
as demonstrated in the following code snippet. The code
within the try block is executed first, and if it encounters
an exception, the code within the catch block is executed
to handle the exception. Regardless of whether an exception
occurs or not, the code within the finally block is always
executed before control flow exits the entire construct.

"use strict";
function f(n) {
if (n <= 0) {

return 0;
}

try {
throw new Error(); // throw an exception

} catch (err) {
// handle exception
...

} finally {
// tail recursion
return f(n-1);

}
}

f(100000);

Escargot handles each block within the try statement by
invoking a dedicated interpreter (sub-interpreter) to detect
any exceptions that may occur in each block. If an exception
arises in any of these blocks, it is returned to the main
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FIGURE 7. Illustration of a tail call within a finally block and its execution
flow through the Escargot engine’s interpreter.

interpreter, which then decides the subsequent course of
action based on the returned result. In the above case where
an exception is being triggered within the try block, this
exception is passed back to the main interpreter of function
f, as illustrated in Figure 7(a). Subsequently, the main
interpreter checks the exception result and proceeds to invoke
another sub-interpreter to handle the exception within the
catch block. Finally, another sub-interpreter is invoked to
execute the code within the finally block. This approach
ensures proper exception handling and execution flow control
within the try statement.

We implement our TCO for the try statement with simple
modifications, ensuring that it does not disrupt the overall
process. First, we consider that a tail call can occur in the
catch block without the finally block or in the finally block
itself, adhering to the principle that a tail call should be the last
action of the function. During the parsing process, we identify
such tail calls and generate a specialized bytecode called
try_tail_call designed for the try statement. When the
interpreter executes this bytecode, it applies the same TCO
check procedure used for tail_call. If the call is indeed
a valid tail call, a special value representing TCO is returned
from the sub-interpreter of the catch or finally block. Instead
of directly jumping to the target function within the block,
this value serves as an indicator that TCO is applicable. In the
final step, the main interpreter checks the returned value and,
if it indicates TCO, directly jumps to the target function.
This process allows us to reuse the native stack of the main
interpreter, as represented in Figure 7(b).

It’s important to note that our implementation does not
consider nested try statements (e.g., a try statement inside
another try statement). When try statements are nested,
it implies that the sub-interpreters for try, catch, and finally
blocks are called in a nested manner. In such cases, delivering
the special value of TCO from the deepest sub-interpreter
to the uppermost main interpreter to trigger TCO can make
the overall structure overly complicated. For the sake of
maintaining the Escargot engine and ensuring simplicity,
we have decided to support TCO only for non-nested try
statements. Fortunately, cases of tail calls within nested try
statements are rare, and there are no such cases in the web-
tooling-benchmark, making this limitation acceptable for
practical use.

3) TAIL CALL WITH eval
The eval function is a predefined function within the
JavaScript global object. It is used to evaluate its argument
as JavaScript code. When eval is called directly using the
eval(arg) syntax, it executes the provided code within the
scope in which it is called. However, handling direct calls to
eval in Escargot involves a complex procedure as below:
1) The parser examines every function call with the name

eval and generates a specialized bytecode for it.
2) The interpreter handles this bytecode differently from a

regular function call. It first checks if the target function
is the global eval function.

3) If the target function is not the global eval function, the
interpreter treats it like a normal function and calls it.

4) If the target function is indeed the global eval function,
the parser is invoked again to generate bytecode for the
argument code.

5) The execution environment, including scope informa-
tion, is organized, and the argument code is executed
within a new interpreter instance.

The below example illustrates tail recursion involving
the eval function. In this scenario, the eval property is
overwritten with the function f, just before calling f. As a
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result, during the execution of f, it recursively calls itself due
to the invocation of the modified eval. In order to support
TCO for this specific case, changesmust bemade to the direct
eval call mechanism. This includes incorporating additional
checks and implementing the TCO process into the complex
sequence of direct eval calls.

function f(n) {
"use strict";
if (n <= 0) {
return 0;

}
return eval(n - 1); // tail recursion

}
eval = f; // overwrite eval
f(100000);

However, implementing this modification would require
significant changes to the system, and as a result, combining
TCO with eval could pose a burden on the system.
In fact, using the eval function is strongly discouraged due
to potential security risks and performance degradation it
causes [18]. Previous works have addressed these issues by
forbidding, filtering, or even removing the eval calls [19],
[20], [21]. Therefore, we have chosen not to support TCO
for the eval function. According to the analysis of the web-
tooling-benchmark, tail calls with eval never occur, making
our decision practical.

C. DEBUGGING WITHIN TCO
In JavaScript development, the call stack plays a pivotal
role in debugging, as it reveals insights into function calls,
their execution order, and the origins of errors. Developers
often rely on language properties like Function.caller,
Function.arguments, and Error.stack to inspect
the stack. Additionally, Escargot inherently supports display-
ing call history during error occurrences. In Figure 8, the
source code of test.js contains nested tail calls, where the
function foo invokes bar as a tail call, bar then invokes
baz as a tail call, and finally baz invokes itself recursively
in a tail recursion manner. During recursive execution of
baz, if an error occurs at line 15 in test.js, the call history
from the error’s point of origin is displayed, as shown in
Figure 8. To facilitate this debugging feature, the Escargot
engine leverages the ExecState structure, where each
call’s information is stored. In fact, each ExecState is
linked to the next, organizing the entire call chain as depicted
in Figure 8. When an error arises, Escargot traces from
the current ExecState to linked ones, presenting each
call information based on the ExecState. Furthermore,
it can identify the last execution position in the source code,
as the ExecState holds the address of the last executed
bytecode. Each code position is represented with line and
column numbers within parentheses in Figure 8. However,
with TCO, these debugging properties become unavailable
since call frames including ExecStates might be reused
and consequently omitted during tail calls.

FIGURE 8. Illustration of call stack tracing using linked ExecState
structures for debugging.

To maintain stack traceability with TCO, one could
employ a Shadow Stack [22], [23], [24], which creates a
separate set of call frames for debugging purposes. Despite
its effectiveness in restoring the visibility of call frames
reused by TCO, this approach incurs additional overhead and
complexity, not ideal for lightweight engines like Escargot.

Our solution maintains debugging capabilities with
minimal modifications. In non-strict mode, where TCO
is inapplicable, properties enabled only in such mode
like Function.caller and Function.arguments
remain unaffected, thus requiring no additional support.
However, for Error.stack and Escargot’s inherent stack
tracing, basic diagnostic stack traces that outline the sequence
and source of function invocations are needed, even in strict
mode. The Error.stack property provides a trace of
called functions, their order, and file locations, related to
the Error instance, similar to Escargot’s default debugging
feature. For tools that rely on these features, we leverage
the existing ExecState structure, inherently linked along
the call chain. Specifically, we allocate an ExecState for
each tail call like normal function calls. For tail recursion,
we allocate only one ExecState and reuse it, as countless
ExecStates could be generated by recursive tail calls,
potentially resulting in a stack overflow. Additionally,
we include a tail recursion counter in ExecState to track
the number of recursive tail calls. These enhancements
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FIGURE 9. Illustration of call stack tracing with extended ExecState
structures for nested TCO.

ensure that stack traces accurately reflect essential
information.

Figure 9 demonstrates how the Escargot engine imple-
ments stack tracing for the source code depicted in Figure 8.
ExecStates for functions foo, bar, and baz are
sequentially allocated on the native stack, while other parts
of the JavaScript call frame, including RegisterFile and
interpreter’s call stack, are reused for all tail calls. The printed
call history resembles that of Figure 8, where recursive calls
of baz are briefly displayed along with a count indicating the
occurrence of tail recursion. Notably, this debugging method
is exclusively enabled in Escargot’s debug mode, whereas
it remains disabled by default in release mode to uphold
the performance advantages of TCO. Our debugging method
provides only theminimal stack tracing information, focusing
on the call sequence and function source, without call frame
details. This approach allows for precise stack tracing within
the Escargot engine under TCO, enabling developers to debug
effectively without the need for a Shadow Stack and its
associated overhead.

IV. EVALUATION
We conducted our evaluation on a system with an x86_64
architecture, equipped with an Intel Core i7-7700 CPU and
16GB of RAM, running the Ubuntu 20.04 operating system.
Our proposed TCO technique was implemented in the latest
version of the Escargot engine, v4.1.0. We carried out
comprehensive tests to assess the feasibility and performance

implications of our TCO implementation. The following
sections outline our methodology, detailing the various
aspects of our evaluation, and present a discussion of the
achieved outcomes.

A. COMPLEXITY ANALYSIS
In assessing the complexity introduced to the Escargot engine
by our TCO implementation, we conducted an analysis to
quantify the changes. As described earlier, our approach
involved enhancing the execution model with a limited set
of additional bytecodes and associated routines. Complexity
was evaluated by examining both the increase in the source
code line count and the resulting binary size. An in-depth
analysis of Escargot’s C++ codebase revealed that the
TCO-related modifications accounted for a mere 0.59% (828
out of 139,562 lines) of the total lines of code. Furthermore,
the binary size saw a marginal increase from 4.01MB
to 4.02MB, representing a mere 0.2% growth in total.
These metrics highlight the negligible footprint of the TCO
code. The findings affirm that our TCO strategy seamlessly
integrates into the engine, enhancing its capabilities without
a proportionate increase in complexity. Consequently, the
inherent efficiency and maintainability of the JavaScript
runtime are preserved.

B. CONFORMANCE TESTING
The test262 suite [28], regularly updated to reflect both
officially released and draft features of the ECMAScript
specification, stands as the de facto standard for JavaScript
engine conformance testing. Comprising over 50,000 tests
covering various language behaviors and edge cases, it pro-
vides a comprehensive evaluation framework. For our
evaluation, we specifically focused on tests tagged with
tail-call-optimization, which directly evaluate
TCO functionality. Additionally, we compared our work by
testing other well-known JavaScript engines that support
TCO, to see how they all perform on these tests.

As presented in Table 2, the tests were grouped according
to specific features, with each engine’s support denoted
by a pass (O), fail (X), or partial pass (△). Notably,
all TCO-related tests focused on evaluating tail recursion
scenarios and checking if a stack overflow occurred or not.
Lightweight engines like Duktape [25], KinomaJS [26], and
Moddable XS [27], tailored for resource-constrained environ-
ments similar to Escargot, were included in the evaluation.
Among these, Moddable XS exhibited the broadest support
for TCO features, while Duktape showed the least support.
Both WebKit, the sole major browser engine equipped with
TCO, and Escargot passed all tests except those involving
eval.

While our approach did not achieve full compliance
across the entire suite, it robustly supports the principal
TCO features. The inability to pass eval-related tests
holds minimal significance, given that eval is typically
discouraged in practice and is absent from benchmark suites
such as web-tooling-benchmark. It’s worth reiterating that,
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TABLE 2. Comparative result of conformance testing on TCO features across TCO-enabled JavaScript engines.

to the best of our knowledge, no other JavaScript runtimes
simultaneously support TCO while leveraging the native
stack. Other JavaScript engines listed in Table 2 allocate
separate memory space for the JavaScript call frame and
resize it to enable TCO. This demonstrates the effectiveness
of our approach, enabling TCO utilization while adhering to
JavaScript standard requirements and leveraging the native
stack efficiently.

C. PERFORMANCE ANALYSIS
Prior to evaluating the performance impact, we outline the
specific benefits of TCO for performance enhancement as
follows:

• Reduced Call Overhead: TCO significantly decreases
the overhead associated with function calls in JavaScript
engines. This reduction is accomplished by reusing the
current call frame and interpreter instance, eliminating
the need for separate call frame allocation and interpreter
invocation for each tail call.

• Improved Return Path: TCO streamlines the return
process for functions engaged in tail calls. It allows
the engine to bypass intermediate return steps, directly
transferring control back to the initial non-tail call-
ing function. This advantage becomes more pro-
nounced with increasing call chain depth, offering
greater performance improvements for deeper recursive
calls.

• Enhanced Memory Utilization: TCO enables the imme-
diate clean up of local objects as a function enters a
tail call. In the absence of TCO, local objects allocated
in the call frame persist in memory for the duration
of the function’s execution, which can be prolonged
in the presence of recursive calls. By employing TCO,
however, the engine can immediately recycle the mem-
ory allocated to these local objects, as their lifetimes
conclude with the function’s tail call. This promptness
in memory recovery not only optimizes memory usage

but also ensures that resources are available more
quickly for subsequent allocations, thereby enhancing
the overall memory management efficiency within the
engine.

• Increased Stack Space Efficiency: By minimizing the
native stack usage, TCO indirectly enhances memory
cache performance. This optimization ensures that less
cache is employed for call frame storage, potentially
decreasing cache misses and improving overall system
responsiveness.

To assess the impact of TCO on execution efficiency,
we performed comparative evaluations using three distinct
configurations of the Escargot engine:

• Origin: This configuration represents the original
Escargot engine without incorporating TCO implemen-
tation. It allocates the JavaScript call frame on the native
stack.

• TCO-Stack: In this configuration, the Escargot
engine is equipped with TCO enabled, reusing
the call frame (ExecState and RegisterFile)
and the interpreter instance allocated in the native
stack. This configuration corresponds to our proposed
approach.

• TCO-Heap: Here, the Escargot engine is equipped with
TCO enabled, but the call frame (ExecState and
RegisterFile) is allocated in heap memory. This
configuration was included to compare the efficiency of
the native stack against heap management.

We evaluated performance using two test suites: the web-
tooling-benchmark, which includes typical web applications,
and a self-generated test suite containing four recursive algo-
rithms. The web-tooling-benchmark was utilized to assess
TCO performance for generic web applications. In contrast,
we selected the four recursive algorithms where our TCO
implementation could potentially provide themost significant
performance improvements to evaluate the specific impact of
TCO on performance.
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FIGURE 10. Performance gain of different Escargot configurations on the web-tooling-benchmark.

1) PERFORMANCE OF WEB-TOOLING-BENCHMARK
Figure 10 illustrates the performance results, normalized rela-
tive to the performance of the Origin configuration. Higher
values on the graph indicate better performance. To ensure
reliability, each test was executed ten times, and the graph
represents the average performance outcome across these
trials. Our proposed method (TCO-Stack) demonstrates a
modest performance improvement of around 1.2%on average
for the web-tooling benchmark. In contrast, TCO-Heap
shows a significant performance decline, reaching only
57.4% of the Origin performance. This slight enhancement
of TCO-Stack is expected, given that the proportion of tail
calls among all function calls is insignificant (as depicted in
Table 1), limiting the potential for performance gains through
TCO. Nevertheless, it is crucial to emphasize that our TCO
approach does not introduce any significant performance
slowdowns by integrating tail call implementation into the
Escargot engine, regardless of the frequency of tail calls.

On the other hand, TCO-Heap significantly degrades
performance across all test cases. This downturn is largely
attributed to the strategy of allocating JavaScript call frames
on the garbage collector (GC)-managed heap, despite the
adoption of TCO. GC identifies and reclaims unused memory
objects (garbages), freeing up space for future use. The
necessity for the GC to manage these heap-allocated call
frames introduces a considerable overhead, which stands
in contrast to the more streamlined management of call
frames directly on the native stack. GC is typically triggered
when the heap space is nearly full, leading to interruptions
in the execution of the JavaScript engine and adversely
affecting overall performance. As shown in Table 3, the
total number of GC invocations substantially increases in
TCO-Heap to reclaim the call frames, while Origin

TABLE 3. Number of garbage collections triggered during evaluation of
the web-tooling-benchmark.

and TCO-Stack configurations exhibit comparable results,
where call frames in the native stack are automatically
reclaimed. This comparison highlights the superior efficiency
of using the native stack for call frame management in
the Escargot engine, reinforcing the benefits of native stack
utilization over heap allocation.

Table 4 provides a comprehensive breakdown of the
TCO-Stack execution for the web-tooling-benchmark,
detailing the reused memory and tail call coverage. To assess
the memory benefits of TCO, we measure the total size
of reused stack memory and compare it to the maximum
RSS memory of each test case execution to demonstrate its
effectiveness. In several cases, significant memory savings
are observed, such as in acorn (72.29%) and espree
(62.22%), where the total size of reused memory rivals the
max RSS memory. Although not all cases exhibit substantial
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TABLE 4. Breakdown of the execution of TCO-Stack for the web-tooling-benchmark.

memory savings relative to the max RSS, the absolute
value of reused memory remains significant. Moreover,
all test cases unequivocally utilize tail calls and derive
certain benefits from TCO. Given that the Escargot engine
is designed for resource-constrained devices, this mem-
ory optimization could be more critical than performance
enhancement.

Additionally, Table 4 outlines the coverage of TCO to
analyze the extent to which our approach optimizes tail calls.
We measure the total count of tail calls optimized by our
method and compare it with the overall tail call count from
Table 1 to illustrate the TCO coverage. The results indicate
varied TCO coverage, ranging from 0.32% to 73.84% across
different test cases. The limited coverage primarily stems
from an inherent constraint in our methodology, where
the call frame of the callee must be smaller or equal to
that of the caller. Notably, esprima exhibits exceptionally
low TCO coverage (0.32%), due to certain call patterns
where a simple function invokes a complex target function
that requires large-sized call frames in a tail call manner.
Consequently, we could not optimize these tail call patterns
appropriately, resulting in suboptimal TCO coverage.
However, when considering tail recursion, our approach
effectively optimizes all tail recursion cases using the spe-
cialized bytecode tail_recursion, with the exception
of buble. In the case of buble, only 4.2% of recursive
tail calls utilize tail_recursion, while the remainder
employ either the general TCO routine (tail_call) or
the direct return routine (call_direct_return). This
disparity arises from partially recursive tail calls, where
the target function of tail recursion is not always the
caller itself, leading to a transformation to tail_call
or call_direct_return by the fail handler of
tail_recursion. Excluding this special case in buble,
our approach fully optimizes tail recursion cases, which
could significantly impact overall performance. To further
examine the precise performance effects of TCO, we evaluate
our approach on recursive algorithms in the subsequent
section.

2) PERFORMANCE OF TAIL RECURSION
Tail recursion, characterized by its intensive self-invocations,
stands as an ideal subject for realizing substantial perfor-
mance improvements via TCO. To directly measure the
potential impact of TCO on performance, we constructed
four typical algorithmic tests that heavily rely on recursive
tail calls. In order to execute these tests successfully without
triggering stack overflow errors in the Origin configuration
and yet place a significant computational load, we adjusted
the recursion depth and the execution count for each test as
described below:

• Binary-Search: This algorithm aims to find an
item within a sorted array containing 5000 elements.
It achieves this by recursively dividing the array’s
portion in half. The test is executed 10,000,000 times,
with a maximum recursion depth of 13.

• Factorial: The factorial algorithm calculates the
product of all positive integers less than or equal to the
input number through recursive multiplication. The test
is executed 10,000 times, with a maximum recursion
depth of 10,000.

• Fibonacci: This algorithm computes a Fibonacci
number by iteratively summing the two preceding ones.
It is executed 10,000 times, with a maximum recursion
depth of 10,000.

• GCD (Greatest Common Divisor): The GCD
algorithm determines the largest number that divides two
given numbers without leaving a remainder, employing
the Euclidean algorithm. It is executed 10,000,000
times, with a maximum recursion depth of 16.

Figure 11 presents the performance outcomes of four
recursive algorithms, normalized to the performance of
the Origin configuration, with higher values indicating
better performance. The TCO-Stack approach yielded
improvements across all tested algorithms, reporting an
average performance gain of 19.8%, aligning with our
anticipations. This improvement directly results from our
tailored TCO approach, which leverages the native stack for
optimizing tail recursion.
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FIGURE 11. Performance gain of different Escargot configurations on the four recursive algorithms.

Conversely, theTCO-Heap variant demonstrated amodest
average improvement of 1.8%, though the results varied
significantly across different tests. Specifically, TCO-Heap
adversely affected the performance of Binary-Search
and GCD by -22.3% and -22.6%, respectively. Both tests share
a characteristic of high execution frequency. Even with TCO
applied, the initial call in a tail recursion sequence requires
allocating its call frame on the heap, which is then reused
for subsequent recursive calls. The high execution count
leads to an increase in heap-allocated call frames, triggering
frequent GC invocations, as detailed in Table 5. On the other
hand, TCO-Heap boosted the performance of Factorial
and Fibonacci by 39.8% and 27.9%, respectively. These
algorithms, which feature deep recursion with less frequent
executions, benefitted from the TCO-Heap approach, even
marginally outperforming TCO-Stack in terms of per-
formance. This discrepancy arises because heap-based call
frames are collected in bulk during the GC process rather
than being individually reclaimed after each call. Meanwhile,
the TCO-Stack strategy involves an immediate cleanup
of stack-allocated call frames following tail call execution,
which requires processing destructors for any stack-stored
local objects, thereby adding extra overhead. This operational
difference reveals that in scenarios with moderated heap
allocation rates, such as those observed with Factorial
and Fibonacci, TCO-Heap may deliver more effi-
cient outcomes compared to TCO-Stack. Nonetheless,
this efficiency is highly context-dependent, indicating that
its benefits are not universally applicable across all use
cases, as evidenced by varied results in web-tooling
benchmarks.

The overall findings demonstrate that our TCO implemen-
tation not only facilitates modest performance improvements
and significant memory savings in general web applications
but also offers considerable performance enhancements for

TABLE 5. Number of garbage collections triggered during evaluation of
the four recursive algorithms.

recursive-intensive workloads. This highlights the versatility
and efficiency of our TCO strategy.

V. RELATED WORK
The concept of TCO has already found successful implemen-
tation in various programming languages. Leading compilers
like GCC [29] and LLVM/Clang [30] have integrated TCO
into their optimization strategies, benefiting languages such
as C and others when higher optimization levels are applied.
Furthermore, the emerging WebAssembly standard [31],
a key player inweb technologies, is also beginning to embrace
TCO as a draft feature [32].

Studies have explored the implementation of TCO in
various language runtimes, with a particular focus on Java
platforms. In a previous study [33], the Funnel compiler
takes a unique approach to TCO. It augments all functions
with an integer argument known as the Tail Call Counter
(TCC), responsible for tracking consecutive tail calls on
the call stack. When the count of tail calls exceeds a
predefined threshold, the stack is dynamically shrunk, and
the current continuation is passed back to a trampoline.
This method offers control over worst-case stack space
usage, effectively balancing speed and space considerations.
Another approach [34] introduces a novel representa-
tion of first-class functions called Imperative Functional
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Objects (IFOs). IFOs are abstract classes featuring argument
and result fields, along with an apply function. The core of
TCO in this context revolves around an auxiliary structure
that tracks the next call to be executed, enabling delayed
application of methods during tail calls and minimizing
memory allocation overhead for each tail call. A continuous
work [35] proposes a thread-safe variant of IFO for full tail
call elimination on the JVM.

Previous approaches to achieving TCO in JavaScript envi-
ronments, such as babel-plugin [36] and ClojureScript [37],
typically transform tail recursive functions into loops to
optimize them, rather than relying on the JavaScript engine’s
built-in capabilities. Additionally, Gambit-JS [38] offers a
technique for compiling Scheme’s tail calls and first-class
continuations to JavaScript. In this approach, a trampoline
function is utilized to control the flow of execution. This
trampoline is a higher-order function that repeatedly invokes
the function it receives as an argument until a specific
condition is met. When a tail call occurs, the next function to
be executed is returned instead of making a typical JavaScript
function call. Subsequently, the trampoline function invokes
this returned function, bypassing the calling function itself.
In contrast, our TCO method directly jumps to the target
function’s instruction when a tail call is invoked, without the
need for an intermediary trampoline function.

VI. CONCLUSION
This research has effectively demonstrated the feasibility
of an innovative TCO strategy tailored for optimal use of
the native stack in JavaScript engines. We are pleased to
report that our proposed TCO solution has been successfully
integrated into the Escargot engine’s main branch, mark-
ing a significant milestone towards optimizing JavaScript
execution.

While our TCO implementation has been specifically
developed for JavaScript environments, we firmly believe
that this methodology can be adapted and applied to various
other language runtimes as well. Since TCO represents
a generalized optimization strategy that positively impacts
both performance and memory usage, incorporating it
into programming languages such as Python and Java—
alongside native stack utilization—could lead to significant
enhancements in their efficiency and effectiveness.

Looking ahead, we aim to refine our approach by incor-
porating an advanced heuristic for more precise detection of
tail calls. Rather than applying the tail_call bytecode
directly to all potential tail calls, we suggest a method
that utilizes source code analysis to selectively identify
and optimize those calls most likely to benefit, thereby
unlocking additional avenues for performance improvement.
The insights gained from the web-tooling-benchmark under-
score the vast potential for TCO within the real-world web
applications. By continuing to refine and enhance our TCO
methodology, we anticipate not only wider implementation
but also notable performance enhancements across a broader
array of applications. Furthermore, our research is ongoing,

with a focus on uncovering prevalent coding patterns in actual
applications. Our goal is to devise bespoke optimization tech-
niques that cater specifically to these patterns, thus driving
more significant and practical performance improvements.
Through these efforts, we aspire to contribute further to the
efficiency and effectiveness of JavaScript engines, enhancing
the web development ecosystem at large.
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