
Received 5 July 2024, accepted 29 July 2024, date of publication 12 August 2024, date of current version 26 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3441725

Control Plane Performance Benchmarking and
Feature Analysis of Popular Open-Source 5G
Core Networks: OpenAirInterface,
Open5GS, and free5GC
TARIRO MUKUTE 1, LUSANI MAMUSHIANE 1,2,
ALBERT A. LYSKO 1,2, (Senior Member, IEEE),
ELENA-RAMONA MODROIU 3,
THOMAS MAGEDANZ 3, (Senior Member, IEEE),
AND JOYCE MWANGAMA 1, (Member, IEEE)
1Department of Electrical Engineering, University of Cape Town, Cape Town 7700, South Africa
2Council for Scientific and Industrial Research, Pretoria 0184, South Africa
3Department of Next Generation Networks, Technische Universität Berlin, 10587 Berlin, Germany

Corresponding author: Tariro Mukute (mkttar001@myuct.ac.za)

ABSTRACT This study examines the maturity and state of open-source 5G Core (5GC) networks, with a
focus on their support of 5G procedures and Network Function (NF) operations. The research emphasises
the importance of optimising the virtualised resource usage of 5GC control plane functions. Given the
large set of NF operations and procedures defined for 5GC networks, the study presents a framework that
correlates NF operations with 5G procedures, thus facilitating the assessment of 5GC implementations.
Furthermore, the study introduces macro-benchmarking and micro-benchmarking approaches to assess the
performance of 5GC control plane functions. Our 5G traffic generator is used to generate User Equipment
(UE) registration traffic for benchmarking. Macro-benchmarking measures the time taken for a specific
number of UEs to complete UE procedures. In contrast, micro-benchmarking analyses the system calls
made by the 5GC, presenting their latency and frequency and the processes responsible for generating
them. Our findings revealed a direct correlation between macro-level performance and micro-benchmarking
results. This suggests that optimising micro-level implementations is crucial for enhancing overall system
performance. Moreover, examining micro-benchmarking data can provide valuable insights into how the
system’s performance will scale under varying workloads. We use the correlation of benchmarking results
to identify performance improvement points in each 5GC and to provide recommendations for software
architectural changes that can optimise the usage of virtualised resources. The study includes artefacts and
source code to enable replication of the work and results.

INDEX TERMS 5G, 5G core networks, BPF compiler collection tools (BCC Tools), free5GC, Linux Kernel,
load testing, network function virtualisation, network traffic generator, OAI, OpenAirInterface, Open5GS,
open source software performance benchmarking, system calls.

I. INTRODUCTION
Fifth-generation wireless (5G) is the latest iteration of mobile
communication technology, designed to increase the speed
and responsiveness of mobile networks in an unprecedented

The associate editor coordinating the review of this manuscript and

approving it for publication was Tarcisio Ferreira Maciel .

way. In particular, 5G promises to enable sophisticated
use cases, such as connected vehicles, remote surgery,
remote control of production lines, and retail and medical
drone deliveries. To meet 5G performance objectives, the
Third Generation Partnership Project (3GPP) has defined
new network architectures such as the next-generation core
network, known as the 5G core (5GC) [1], and the new Radio

113336

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-1785-024X
https://orcid.org/0009-0003-6334-0192
https://orcid.org/0000-0001-7694-3513
https://orcid.org/0009-0009-8915-5044
https://orcid.org/0009-0004-5413-1388
https://orcid.org/0000-0001-5756-282X
https://orcid.org/0000-0002-8861-1708


T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

Access Technology (RAT), known as the 5G new radio (5G
NR) [2]. For the 5th Generation Core Network (5GC), the
3GPP introduced Control and User Plane Separation (CUPS).
In CUPS for 5GC, the control and data planes are separated,
ensuring efficient and scalable network operations.

The 5GC control plane is considered the heart of the 5G
mobile network and handles essential Network Functions
(NFs) such as connectivity, mobility management, session
management, authentication, authorisation, data aggregation,
and many others. Compared to previous generations of
core networks (such as 4G/LTE or 3G), 5GC control
plane has been purposefully designed to support a signif-
icantly larger number of procedures and operations. For
example, the 5GC control plane encompasses procedures
specifically designed to facilitate network slicing operations,
including instantiation, monitoring, and decommissioning of
network slices. Additionally, it incorporates NF discovery
and management operations that enable functionalities such
as registering and removing NF instances. The time to
complete these control plane operations directly impacts
the delay experienced by end-user applications [3], which
makes the performance of the control plane pivotal to 5GC
performance.

To deliver both agility and flexibility, 5GC networks adopt
a cloud-native approach and are designed to be infrastructure-
agnostic. This architectural choice enables rapid 5G inno-
vation and is necessary to unlock new capabilities such as
on-demand network slice customisation. Furthermore, the
cloud-native architecture means that the core network can
be deployed on any cloud — private, public or hybrid
cloud, centralised or edge cloud — depending on service
requirements. Although being cloud-native offers numerous
advantages, it can also lead to performance degradation
due to virtualisation of computing resources [4], [5]. This
is a significant concern in 5GC networks, which must be
addressed to unlock the promises of 5G fully. One way to
address this problem is to ensure that 5GC Virtual Network
Function (VNF)s are designed with performance costs in
mind. To achieve this, the implementation of 5GC must
include making software architectural decisions that optimise
the use of virtualised resources.

Although extensive research has investigated the perfor-
mance of the 5G Core Data Plane (User Plane Function
(UPF)) in various studies, e.g., [6], [7], and [8], the analysis
of its Control Plane (CP) performance remains fragmented.
The literature search identified only three published studies
closely related to the 5G Control Plane performance evalua-
tion. Some efforts address TLS optimisation for CP network
function communication [9] or performance improvements
through shared memory [10]. In another study, [3], the focus
is on scenarios and challenges that impact CP performance,
such as UE-Core state inconsistency, slow state updates,
and frequent control handovers. To bridge this gap, our
work presents the first study of its kind: an in-depth
performance benchmarking and comparative analysis of

different open-source 5GC implementations focused solely
on the control plane.

A plethora of open-source and 3GPP-compliant 5GC
standalone (SA) implementations have emerged since the
introduction of 5G. Some notable implementations include
OpenAirInterface (OAI) [11], free5GC [12], Open5GS [13],
and Open5GCore [14]. These implementations can run
on different types of Network Function Virtualisation
infrastructures (NFVis) such as containers, pods, or virtual
machines. The aim of this study is to assess and compare
the runtime performance and feature support of open-source
5G core networks. The focus of our performance evaluation
is specifically on the control plane network functions.
In terms of feature support assessment, various factors will be
considered, including the adoption coverage of each 5GC, the
maturity level indicated by the number of network operations
it supports, the minimum hardware requirements necessary
to run the 5GC, the licensing model employed, and other
relevant factors.

This study evaluates three different 5GC implementations,
i.e. OpenAirInterface (OAI), free5GC and Open5GS.
We assess the performance of registration scenarios for three
open-source 5G core networks using two benchmarking
approaches, namely, macro-benchmarking and micro-
benchmarking introduced in [15], [16], and [17]. The
macro-benchmarking provides end-to-end performance of
5GC based on metrics such as the time taken for a given
number of User equipment (UE)s to register and the Round-
Trip Time (RTT) for the Stream Control Transmission
Protocol (SCTP) association during registration. On the
other hand, micro-benchmarking evaluates the latency and
frequency of the underlying operations of the 5GC control
plane functions by analysing system calls and their patterns.

To assess performance, each 5GC network (which con-
stitutes the system under test) is traffic-loaded with UE
registrations generated by our 5GC traffic generator [18].
To gain insight into the software architectural design of each
5GC, we complemented the micro-benchmarking with sys-
tem profiling.1 This helped us identify areas for performance
improvement andmake recommendations accordingly.When
applicable, we also included tracing, which emphasises
the temporal aspect of performance variations and reveals
the specific points in the code where optimal performance
can be attained [19]. To conduct the micro-benchmarking,
we used Linux high observability2 tools, which enabled us to
understand the underlying software architecture of 5G core
implementations without having to go through the code base.

In addition to performance, another critical factor to
consider when evaluating the open-source 5GC is the level
of support for 3GPP releases. These releases specify the use
cases and features that the 5GC can support, along with the

1Profiling presents summary statistics of performance metrics [19].
2Observability is the ability to monitor, measure, and understand the state

of a system or application by examining its outputs, logs, and performance
metrics.

VOLUME 12, 2024 113337



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

corresponding procedures required to implement these fea-
tures. The procedures consist of a series of ordered operations
that must be performed by control plane network functions
to fulfil them. However, there are numerous procedures and
their respective operations, making the assessment process a
challenging task. In this study, we introduce a framework for
assessing the extent of 5GC support and provide a summary
of our assessment.

II. CONTRIBUTIONS
Our study aims to contribute:

1) A feature-based evaluation of three open-source 5GC
implementations, namely Open5GS, free5GC, and
OpenAirInterface (OAI) — by comparing the features
of each 5GC, practitioners in the 5G domain can make
informed decisions on which 5GC implementation
will best meet their specific requirements. Further-
more, a feature-based evaluation can help identify
the gaps in feature support between different 5GC
implementations, which can aid future development
and improvement efforts.

2) A framework that evaluates the software architecture
of three of the five open-source core networks.
This framework considers how software architectural
decisions affect the performance of 5GC networks
on virtualised platforms. Performance evaluation and
benchmarking are crucial to identify performance
bottlenecks to determine if the network is capable of
meeting the performance requirements of specific use
cases, and to determine the maximum traffic load that
the network can handle.

3) Based on our evaluations, we provide recommenda-
tions for architectural changes in the software that
can be made to minimise performance degradation
due to the virtualisation of 5GC networks — these
recommendations are aimed at fostering continuous
improvement efforts by the research community work-
ing on 5GC networks. It is important to note that
these recommendations are not limited to open-source
projects, but can also be implemented by 5GC vendors
and network operators to optimise their 5G core
network solutions.

In addition to the main contributions, this study also
includes comprehensive tutorials and related source codes to
reproduce the benchmark experiments [20]. These additional
contributions can be summarised as follows:

1) Ansible roles and playbooks for setting up and replicat-
ing the benchmarking environment;

2) A tutorial on how to replicate the experiment alongwith
the data collected from the experiment;

3) Contribution to the BPF Compiler Collection (BCC)
tools code base to enable easier visualisation of the
results for comparison;

4) Jupyter Notebook for analysing and visualising the
results from BCC tools

III. 5G CORE NETWORK ARCHITECTURE
The architecture of 5G is designed to be cloud-native, with
the aim of achieving greater agility and programmability. The
Next-Generation Core (NG Core) network, also known as the
5GC, was specified in 3GPP Release 15 [21], and constitutes
network functions, such as Access andMobilityManagement
Function (AMF), Session Management Function (SMF),
UPF, and Policy Control Function (PCF), each designated
to perform specific functionalities as outlined in 3GPP
Technical Specification (TS) 23.501 [22]. The 3GPP Release
15 release presented two NG Core architectures: the point-
to-point architecture and the service-based architecture. The
Service-Based Architecture (SBA), which is closer to the
cloud-native concept, was chosen for its flexibility in system
updates and a short time to market for new services. In the
service-based architecture, a services model is used instead
of predefined interfaces between elements, enabling network
functions to query an NF Repository Function (NRF) to
discover and communicate with each other. For the rest of this
study, when we state 5GC, we will be referring to a 5GC that
has been designed using a service-based architecture (SBA).

The 5GC introduces twomain changes from 3GPP Release
15 [21]: CUPS as in software-defined network (SDN)
and decomposition of the system into microservices as in
cloud-native design. The microservices architecture, also
referred to as SBA, allows NFs to interact using uniform
interface connections known as Service-Based Interface
(SBI), allowing NFs to be extended to any service-permitted
consumer. Therefore, the SBA offers the reusability and
modularity of NFs [23]. The 5GC is effectively a collection
of NFs separated into control and user planes that interact
through defined interfaces. The 3GPP TS 23.501 standard for
the system architecture for the 5G System [24] in Sections VI
and VII gives an inventory of the NFs for the 5GC as defined
in Release 17.

Each NF comprises smaller unit functions known as
NF services, which interact through SBI interfaces using
a producer-consumer model. The NFs make a set of
transactions to achieve a specific goal or result, such as the
UE registration. These transactions, or series of operations,
are referred to as Procedures. Procedures essentially entail
the 5GC features and functionalities and how they can
be delivered. In order to know the functionality delivered
by a core network, we can look at the procedures it
supports. The following are some of themost important 3GPP
technical specifications that cover the procedures for 5G
systems:

• 3GPP TS 23 502 [25]: This standard specifies the
overall architecture and procedures for the 5G system,
including the core network, the radio access network,
and user equipment. It also defines the interfaces
between different network functions and the protocols
used for communication.

• 3GPP TS 23.527 [26]: Specifically, Section 4.6 of this
standard describes the restoration procedures for the 5G
core network.

113338 VOLUME 12, 2024



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

• 3GPP TS 32.290 [27]: This standard specifies proce-
dures for charging and policy control in the 5G SBI.

• 3GPP TS 33.501 [28]: This standard outlines the secu-
rity architecture (features, requirements, mechanisms,
etc.) and procedures for 5G networks.

IV. FEATURE-BASED EVALUATION OF 5GC NETWORKS
Evaluating or comparing the features and procedures sup-
ported by open-source 5G core networks can be a tedious
task due to the multitude of procedures involved. For
example, in Release 17 alone (as described in 3GPP TS
23 502 [25]), there are about 126 procedures and more
than 596 operations. However, it is crucial to perform
such evaluations for performance improvement and 5GC
conformance assessment purposes. Furthermore, evaluation
plays a vital role in understanding the appropriate tools to
utilise and the extent of work required when implementing
a research idea, as well as selecting the most suitable core
network for specific scenarios.

To simplify the evaluation process and aid in decision-
making on the adoption of a 5G core network, we conduct
a feature-based comparison. Specifically, we compare three
open-source 5G core implementations: Open5GS, free5GC,
and OpenAirInterface (OAI). The scope of our evaluation is
on the following broad categories of features:

• Community support and adoption coverage of each
open-source 5G core network by examining and com-
paring project statistics, including fork count, com-
mits, number of contributors, watchers, and issues as
described in Table 1.

• Software and hardware requirements and capabilities of
the open-source core network implementation by evalu-
ating and comparing the minimum setup requirements,
as well as capabilities such as support for NB-IoT, and
others, as indicated in Table 2.

• Supported procedures of a given 5G core network
and comparing them with the procedures supported by
each implementation of open-source 5G core networks,
as presented in Table 3.

To evaluate the procedures supported by a given 5G core
network and to compare the features and procedures sup-
ported by open-source 5G core networks, we implemented
a project [29]. The project implemented the assessment using
the following steps, which can be easily reproduced for other
5G core networks:

1) We generated a checklist of all the NF operations
defined by Release 17. We generated this checklist
from application program interface (API) documenta-
tion artefacts by 3GPP.3

2) For each 5GC, we create an inventory file of the
NF operations by going through the source code
and updating the checklist from step (1), ticking the
operations supported. We use the resultant inventory
file as a variables file in the next steps. Since there are

3https://forge.3gpp.org/rep/all/5G_APIs.git

many NF operations, we make the resulting inventory
list of the core networks available on the webpages4

[29]. Table 3 gives a summary of the number of
operations supported, only for the operations for the NF
implemented by the core networks.

3) We create procedures sequence flow using plantuml,
an open-source diagrams-as-code tool, which allows
us to make colours dynamically represent a connection
(to indicate whether an operation is supported or not).
In addition to making the connection colours dynamic,
plantuml allows us to merge the related procedures
sequence diagrams into a single diagram, making it
easier to evaluate connected procedure flows.

4) For each of the core networks, we generate a set of
procedures (using the inventory file from step (2))
as variables that indicate whether an operation in
a procedure is supported or not. Since the results
from this are pages long, we created a webpage to
side-by-side depict the difference for each procedure
between the core networks [29]. We provide a sample
of the registration procedure diagrams in the Appendix
section in figs. 14 to 16.

V. NETWORK FUNCTION VIRTUALISATION
Virtual Network Functions (VNFs) are network functions
that run on virtualised platforms. Virtualisation allows NFs
to run on commercial off-the-shelf infrastructure. There are
different virtualisation approaches, the most common being
hypervisor virtualisation and OS-level virtualisation [30],
[31]. Regardless of the manner of virtualisation employed,
in most cases, a VNF is a piece of software that runs on top of
the Linux kernel, and this degrades its performance compared
to the hardware NF [4].

To gain a better understanding of how virtualisation affects
performance and how the software architecture of VNFs
affects the performance of the 5G core networks, it is
necessary to dive deeper into the underlying operations of
the Linux kernel. A standard Linux system is based on
the monolithic kernel architecture, which divides the system
into two main components: kernel-space and user-space,
which operate at different privilege levels. The kernel-space
is responsible for managing the hardware and software
components of the system and accounts for independent
operations of programs. The user-space contains and executes
user-defined programs and data. These two spaces are kept
separate from each other, and communication between them
is only possible through secure system calls. This concept
allows the Linux kernel to abstract away the complexities
of interacting directly with the hardware, which requires
specialised communication [32].

The system calls provide abstract APIs for various
functionalities, including process management, memory
management, file systems, device drivers, and networking.
The kernel manages and executes these system calls by

4https://tariromukute.github.io/5gc-features

VOLUME 12, 2024 113339



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

TABLE 1. Community support and adoption coverage.

TABLE 2. Software, hardware and capability assessments of open-source 5G core networks.

interfacing with the software or hardware support modules,
as described and illustrated in [33]. Of importance to the
scope of this study is process management.

A. PROCESS MANAGEMENT
In Linux, a process refers to an instance of a computer
program that is currently running and comprises various
components, including an identifier, state, priority, pro-
gram counter, memory pointer, context data, and Input
and Output (I/O) request [34]. Managing these processes
involves scheduling, switching between states, and allocating
resources [35]. Central Processing Unit (CPU) scheduling
is the responsibility of the CPU scheduler, which prioritises
processes based on their importance or urgency using a
specific scheduling policy. A process is executed on the CPU
as a set of tasks, also referred to as threads. Threads may
exit the CPU (a) involuntarily if they exceed their allocated
CPU time or are preempted by higher-priority threads, or
(b) voluntarily if they block an I/O operation, a lock, or a
sleep. When threads block, they remain suspended until
they receive a wake-up event [35]. The CPU scheduler’s
management of threads is illustrated in Figure 1a, showing the

various states in which threads can be. Blocking is a problem
for programs that should operate concurrently, since blocked
processes are suspended. Concurrent programs need to use
non-blocking alternatives to prevent performance issues from
blocking processes.

Processes can be cloned to share resources and function as
threads within a single process. Linux does not differentiate
between threads and processes [36]. Cloned threads that
share resources require locking mechanisms to prevent race
conditions from concurrent resource access. Locks can be
user-level locks or kernel-level locks, with different types
available in the Linux kernel, such as spin locks, mutex
(mutual exclusion) locks, and reader-writer locks. However,
the use of locks may affect performance due to thread
blocking [35].

VI. PERFORMANCE-BASED EVALUATION OF 5GC
NETWORKS
The centre of operations between the application (VNF) and
the kernel, along with its underlying resources, is occupied
by system calls, as shown in Figure 1b. By analysing these
system calls, it is possible to gain insight into the unique

113340 VOLUME 12, 2024



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

TABLE 3. Number of operations supported by 5GC implementation. Blue font highlights instances where all operations have been supported, and bold
font highlights the largest number of operations per line.

characteristics of VNFworkloads. As discussed in the Results
and Analysis section, examining usage patterns and data
related to system calls can also provide valuable information
on the software architecture of VNFs or systems. In this study,
we use this information to evaluate the performance of open-
source 5GC implementations and make recommendations for
software architecture improvements applicable to each core
network.

A. RELATED WORKS
Benchmarking refers to the process of conducting experi-
ments and measurements on a System Under Test (SUT) in
order to collect data that help to understand its behaviour [37].

However, accurately benchmarking a system can be challeng-
ing, especially as systems evolve from batch-style execution
to multiple parallel processes managed and orchestrated by
a general-purpose system such as the Linux kernel. This
evolution has made benchmarking challenging, necessitating
alternative approaches to benchmarking [17], [37], [38].Most
existing benchmarking approaches attempt to represent the
overall performance of the system as a scalar quantity [16].
However, this approach is suitable for simpler systems
but may not be adequate for accomplishing performance
evaluations of more complex systems.

Several studies have explored alternative approaches
to benchmarking. For example, the study [15] suggests

VOLUME 12, 2024 113341



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

FIGURE 1. Linux CPU scheduler and BPF Performance tools.

decomposing benchmarking into (i) macro-benchmarking,
which measures end-to-end performance on a specific
process or workload, and (ii) micro-benchmarking, which
employs a more granular approach by individually measuring
very small pieces of the Operating System (OS) kernel’s
abstraction layers. The OS kernel’s abstraction follows a
layered structure consisting of two main layers. Firstly, the
application layer interfaces directly with the OS. Secondly,
the OS layer interfaces with the underlying hardware,
providing a bridge between the application layer and the
hardware components of the system. This decomposition
process allows for a thorough examination of system perfor-
mance at different abstractions. It also helps OS developers
identify the abstractions that are critical for the application’s
performance. Additionally, application developers can utilise
this benchmarking approach to optimise their usage of OS
abstractions, such as system calls, in relation to hardware.
Furthermore, by examining the abstractions, hardware man-
ufacturers can explore various methods of hardware tuning to
enhance overall hardware performance.

The authors in [16] introduce three benchmarking method-
ologies, including the vector-based approach, which is similar
to the decomposition approach described in [15]. The vector-
based approach involves characterising an underlying system,
such as an operating system or Java Virtual Machine
(JVM), by utilising a set of micro-benchmarks. These
micro-benchmarks describe the behaviour of fundamental
primitives of the system. The fundamental principle underly-
ing the vector-based approach is based on the observation that
different primitive operations in a typical computer system
operation have varying completion times [16].
Another study [17] emphasises the importance of micro-

benchmarks and focusses onmeasuring safety-critical latency
on multi-core systems, by examining sub-latencies in
the communication between processes and hardware. The

authors of the study [37] acknowledge the connection
between overall performance and underlying performance
metrics, such as memory usage versus decoder bytes.
However, it does not take into account the impact of
operations that affect the request, such as the latency of the
OS system call involved in reading bytes from memory.

In our study, we incorporate bothmacro-benchmarking and
micro-benchmarking approaches similar to those described
in [15], [16], and [17]. To evaluate the performance of 5G core
networks, we employ macro-benchmarking, which provides
end-to-end performance metrics such as the time taken for a
given number of UEs to register. To achieve this, we load-test
the core network using our Traffic Generator and analyse the
macro-benchmark metrics.

To delve deeper into the latency and frequency of under-
lying system operations, we leverage micro-benchmarking
techniques. This approach involves analysing system calls,
representing low-level communications between a process
and the kernel. Numerous observability tools are available for
this analysis on Linux systems. The tools considered by us are
listed and inter-compared in Table 4, based on the findings
of various studies [39], [40], [41]. Taking into account the
combined advantages summarised in Table 4, we leverage
eBPFwith the BCC and bpftrace tools in this study. Figure 1b
further illustrates the specific tools used and their respective
focal areas.

In addition to evaluating the performance of 5G core
networks using the micro-benchmarking approach, we lever-
age micro-benchmarking to identify areas for performance
improvement, which is one of the advantages of micro-
benchmarking mentioned in [15]. We start by obtaining
resource usage patterns, by examining metrics such as
system call latency, frequency, and provided and returned
arguments. These patterns offer insight into the software’s
architectural designs, allowing us to identify potential areas

113342 VOLUME 12, 2024



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

TABLE 4. Comparision of Linux observability tools.

of performance improvement. In the cases where we identify
such performance improvement opportunities, we then use
tracing techniques to pinpoint in the application code where
these improvements can likely be applied.

B. EXPERIMENTAL SETUP AND METHODOLOGY
The objective of this study is to evaluate the performance of
open-source 5G core networks by generating a high volume
of control traffic, which mimics the traffic generated by UEs
in real deployment scenarios, and transmitting this traffic to
the 5G Core network.

In our experiment (see Figure 2), we designed and
developed a Traffic Generator that emulates the behaviour
of UEs and acts as a client, while the 5G core network
acts as the server. The core network constitutes the SUT.
To collect metrics at different vectors, the server employs
BCC tools to monitor the resource utilisation and usage
patterns of the core network. Subsequently, we analyse the
performance of the 5G core network based on the usage
of these resources and associated patterns. We chose to use
BCC because it provides a more granular and dynamic view
of the kernel processes. We developed a traffic generator
because other traffic generators like UERANSIM [42] and
my5G-RANTester [43] do not currently support significant
load testing. For example, UERANSIM throws segmentation
faults when generating traffic from 200 UEs, and my5G-
RANTester does not support simultaneous traffic generation
sessions. In addition, bothUERANSIM andmy5G-RANTester
do not provide any performance metrics, for example, the
number of UEs completing a registration procedure in a given
period. We do this for all 5G core networks.

The test environment is set up as follows:

• The core networks and Traffic Generator are deployed
within Virtual Machine (VM)s on an OpenStack infras-
tructure. The decision to use VMs was driven by the
limitation of hardware availability, which prevented a
dedicated hardware deployment of the 5GC and Traffic
Generator. The resources allocated to the VMs running
the 5GC had been selected to meet the minimum
recommended specifications for the open-source 5GC
being evaluated. These specifications are outlined in
Table 2).

• To set up OpenStack, we used an i7 CPU@2.5GHz PC
with 16 GB RAM, 8 CPUs cores, and a 200 GB HDD.

We installed the stable/zed version of OpenStack, which
includes services for networking (Neutron), computing
(Nova), storage (Cinder), and dashboard (Horizon).

• Both VMs run on Ubuntu 20.04 with a kernel version
of 5.4. We opted for a server Linux installation to
maximise system performance, since there is no desktop
environment to manage, and all compute resources
are dedicated to server tasks. This is important for
test performance. To minimise the degradation of
system performance caused by unrelated user processes,
we only installed the necessary software for the core
network under evaluation, including BCC tools.

• The communication between the Traffic Generator VM
and the Core Network VM is established through a
virtual private network (VPN), which may potentially
impact test performance.

To evaluate the performance of each of the three 5G core
networks, we employed the steps outlined below:

1) Installation and configuration of the open source 5G
networks on the server.

2) Configuration of the traffic generator tool with the
respective core network details. This involved set-
ting up subscriber information in the core network
databases, configuring networking settings, and other
relevant configurations.

3) Generation of control-layer traffic by emulating multi-
ple UEs on the client side, performing the registration
procedures for the UEs in a burst.

4) Collection of the macro- and micro-benchmarking data
on the systemmetrics and usage of resources and usage
patterns through BCC tools.

5) Analysis of the data collected to determine the
performance of each open-source 5G network and gain
insight into its software architectural design.

To ensure that the experiment can be easily replicated,
we utilised Ansible, a widely used infrastructure configu-
ration tool. With Ansible, we automated the setup process
for the servers, installation and configuration of the Traffic
Generator, installation of the core networks and BCC tools,
and establishment of the connection between the client and
the servers.We havemade the necessary artefacts available on
GitHub, including Ansible roles and playbooks for installing
and configuring the test environment [20], as well as the
Traffic Generator for simulating registration scenarios for

VOLUME 12, 2024 113343



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

FIGURE 2. Experimental Setup.

UEs [18]. In addition, we have provided a tutorial that guides
users on how to replicate the set up.

VII. RESULTS AND ANALYSIS
In this section, we present the findings and analysis derived
from our macro- and micro-benchmarking experiments.

Benchmarking results are meant to access the performance
improvement points of the 5GCs individually. Since the
5GCs have different software architectural designs, they
provide non-uniform results in the micro-benchmarking
section. For example, while Open5GS and OAI make use
of the select system call, free5GC does not; it relies on the
other I/O multiplexing system calls, epoll_wait and poll.
In the micro-benchmarking section, we give the reader and
the 5GC developers recommendations on the performance
improvement points for each system call. We leave the
correlation of the recommendations to the individual 5GCs
to the reader and the 5GC developers.

We faced challenges in generating a high load for free5GC;
therefore, throughout this section, for all the core networks,
we show the results up to the maximum UEs free5gc could
handle - 300 UEs. Initially, we faced a similar challenge
(core crashing when faced with high traffic loads) with
OAI. We found the source of the problem to be the
logs generated by the OAI 5GC’s Non-Access Stratum
(NAS) implementation, which could not be turned off. After
reporting the issue, the OAI team resolved it on the latest
docker images with tags develop and on the OAI GitLab
branch tags 2023.w12.

A. MACRO-BENCHMARKING METRICS
This section presents the high-level performance of the
three 5GCs under evaluation. We present the time taken to
complete the registration and de-registration procedures for
a given number of UEs in Figure 3a and the average time it
takes to complete registration and de-registration of a single
UE in Figure 3b. In both cases, we show the results as the UE

load increases. Open5GS leads in performance, with free5GC
coming next and OAI trailing behind. The subsequent section
on micro-benchmarking highlights specific implementation
decisions that explain these outcomes.

FIGURE 3. Time taken to complete Registration and De-registration
procedures.

B. MICRO-BENCHMARKING METRICS AND
PERFORMANCE IMPROVEMENT POINTS
This section presents the results and analysis of the software
architectural approaches used in each 5G core network.

The evaluation process begins with an analysis of fre-
quently invoked system calls. Based on the categories of the
system calls, we derive the most relevant virtual resources.
Subsequent to this, we examine the most active processes

113344 VOLUME 12, 2024



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

in the system, and for each frequently used system call,
we analyse the most active processes. This approach provides
valuable insights into the processes that consume the most
virtual resources. During the evaluation of system calls,
we consider both the latency and the frequency of calls. Here,
latency refers to the time it takes the kernel to execute a
given request, while frequency refers to how often a particular
system call is invoked.We provide the summarised results for
the system calls, formore details on how the system call usage
and frequency vary for each process, we refer the reader see
Figures published on our webpage5 [20].
Furthermore, we correlate the usage pattern of each system

call with the usage statistics of virtualised resources. These
correlations allow us to gain insight into the architectural
design of each 5G core network. Based on this analysis,
we provide recommendations for performance improvement.

1) SYSCALLS ACROSS THE SYSTEM
Analysing system calls (syscalls) across the system helps in
categorising the workload of the system. This information is
valuable in identifying the hardware resources that require
optimisation, such as installing an accelerated Network Card
Interface (NIC) or a cryptographic accelerator. System calls
can be roughly grouped into five major categories:

• Process control: These system calls are responsible for
tasks such as process creation, termination, execution,
loading, and so forth. They also handle memory
allocation and deallocation for processes.

• Filemanagement: These system calls handle operations
related to file manipulation, such as creating, opening,
closing, deleting, reading, writing, and renaming files
and directories. They also manage file attributes and
permissions.

• Device management: These system calls are primarily
responsible for requesting and releasing access to
devices, such as disks, printers, and scanners. They also
control device functions, such as reading and writing
data from or to devices.

• Information maintenance: These system calls provide
information on various system resources, such as time,
date, user identity, and process status. They also allow
for the modification of certain system parameters, such
as priority levels.

• Communication: These system calls enable communi-
cation between processes using different methods, such
asmessage passing or sharedmemory. They also support
network communication through the use of sockets or
pipes.

Based on the findings depicted in Figures 4, it can be
confirmed that the core networks make process control and
communication system calls. This information can help with
hardware selection. Importantly, the results reveal that 5G
core networks incur a considerable latency through futex
system calls. Futex, short for ‘‘fast user-space mutex,’’ is a

5https://tariromukute.github.io/control_plane_performance_analysis/

system call interface in Linux that provides a synchronisation
mechanism primarily used for inter-process and thread
synchronisation. It is an efficient alternative to traditional
mutex implementations when the contention is expected to
be low. A potential reason for the considerable latency
is that, on a virtual machine, the high number of futex
system calls may be due to the high contention on shared-
memory resources, leading to many threads waiting on
futexes. Another possible reason for high futex system calls is
lock contention. A detailed analysis of the system calls will
be presented in the following sections, providing individual
discussions and insights.

2) PROCESSES MAKING SYSCALLS
The information about the processes that make system calls
provides valuable insights into the most active processes
during the registration procedure. By observing the changes
in latency and frequency of the system callsmade by a process
as the number of UEs increases, we can identify processes
that have a high probability of becoming bottlenecks. The
information can be used to make several mitigation decisions,
such as allocating more resources or dedicated resources to
a given process or Network Function (NF), optimising the
usage by the NF or process, and examining the configuration
of the process, among other things.

Figure 5 compares the system call frequency of the top
six active processes for each core network as the number
of UEs increases, revealing that the frequency increases for
all networks, but at different rates. The figures also review
the processes that are most active during registration and de-
registration procedures, with their rate of increasing eluding
to the processes that can potentially become a bottleneck for
the system.

Furthermore, from the results in Figure 4, we can see
that Open5GS has the least number of system calls and
where it is the most performant. Being the most performant
implementation, we can use its system call patterns as a
reference guide. We will also compare its pattern against best
practices to further improve its performance.

In the next section, we examine the most active system
calls on the systems, and analyse how the processes make
use of the system calls as the number of UEs increases. This
analysis will help us gain valuable insights into the specific
actions performed by a process, and enable us to identify
opportunities for optimising these processes. We will also
consider how each core network makes use of each of the
system calls. We analyse the pattern to identify improvement
points, i.e., the system calls that should not be made use of,
the system calls that should be used instead and the change in
configurations needed, among other things.

3) EPOLL/POLL/SELECT
The system calls epoll/poll/select implement I/O multiplex-
ing, which enables the simultaneous monitoring of multiple
input and output sources in a single operation. The main
advantage of multiplexing I/O operations is that it avoids

VOLUME 12, 2024 113345



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

TABLE 5. Socket states and blocking/non-blocking calls.

FIGURE 4. Systems calls across the system.

TABLE 6. Comparision of I/O multiplexing operations.

blocking read and write, where a process will wait for data
while on the CPU. Instead, one waits for the multiplexing I/O
system calls to determine which files are ready to be read or
written to.

Table 6 compares various types of I/O multiplexing system
calls, with epoll demonstrating the best performance, while

select and poll are better suited for small numbers of
active connections [44], [45]. epoll offers two modes: level-
triggered (LT) polling and edge-triggered (ET) polling. In the
level-triggered mode, notifications are received whenever a
file descriptor is ready, while in the edge-triggered mode,
notifications are received whenever a change occurs. Suppose

113346 VOLUME 12, 2024



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

FIGURE 5. Processes making system calls.

that we have a buffer with 2KB of data, and only 1KB can be
read at a time, LT and ET will both trigger when the 2 KB
data is received. After reading the first 1KB, LT will trigger
again, whilst ET will not trigger. Therefore, ET reduces the
number of epoll system calls.

From the results in Figure 6a, we observe that free5GC
and Open5GS have a significantly higher number of
epoll/poll/select system calls than OAI. These figures show
the sum of all the system calls made by all processes running
on a core network. For more details on how the system
call usage and frequency vary for each process, see Figures
published on our webpage [20].

In certain cases, the high frequency of system calls can
be unnecessary, which can impact the performance of the
system. Some of the potential reasons for this include:

1) The number of ready file descriptors exceeds the
maxevents parameter specified in the epoll_wait. This
means that there are more files ready to be read from or
written to than can be provided by a single epoll_wait
system call. In this case, the system call iterates through
them in a round-robin fashion. To verify this, one
can compare the number of file descriptors provided
by epoll_wait with the maxevents parameter. Using
bpftrace, we developed a tool ( epolldiff . bt) [20] to
inspect two kernel tracepoints to values for maxevents
and the ready file descriptors returned.

2) The presence of a signal handler that interrupts
epoll_wait/ poll/ select, leading it to return with an error
code (EINTR). It may be necessary to check for this
error and retry the epoll_wait system call. To validate

VOLUME 12, 2024 113347



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

FIGURE 6. I/O Multiplexing systems calls across the system.

this, we executed the command in Listing 1, which
generates a list of failed system calls.

3) The timeout value for epoll_wait is too low. To inves-
tigate this, we examine a histogram of the epoll_wait
timeout and analyse the range of timeout values versus
the ready events returned. By correlating these values
with the number of returned values, we can determine
if the duration of the timeout is a contributing factor.
We provide a bpftrace tool epolltime . bt [20] to inspect
the values and make the corresponding changes.

4) The buffer used to read data from ready sockets is
too small. As a result, the epoll_wait keeps triggering
because the available data have not been fully read.
This can be resolved by running epoll in ET; we
recommend the developers to run the epoll in ETmode.
We can inspect the epoll file descriptors to check if it
is in ET mode in two steps: (i) get the file descriptors
for epoll and then (ii) check if the flags are set on
the file descriptor. The commands to execute these
actions are given in Listing 1. We can also obtain
further information or confirmation by monitoring the
respective system calls reading the file descriptors, e.g.,
read, rcv etc.

The OAI makes limited use of I/O multiplexing system
calls. This means that it does not take advantage of the
performance benefits from I/O multiplexing system calls.
Since the core network involves communication between
NFs and the 5G base station (gNB), without using I/O

LISTING 1. Syscalls returning errors

multiplexing, the OAI core network will have to use
blocking system calls, as we will see in the later results
sections. Although not the most performant, free5GC has the
highest frequency of I/O multiplexing system calls, namely
epoll_pwait. The free5GC developers should inspect further
on the configurations and usage of the system call to ensure
that it is not making unnecessary calls by following the
steps described earlier. On the other hand, from the results
in Figure 6a Open5GS calls the poll the most. As discussed
above, epoll demonstrates the best performance, especially
with high active connections. The Open5GS developers can
verify that the system will not benefit from adopting epoll
instead of poll.

4) NANOSLEEP/CLOCK_NANOSLEEP
The nanosleep and clock_nanosleep system calls are used to
allow the calling thread to sleep for a specific interval with

113348 VOLUME 12, 2024



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

nanosecond precision [46]. The clock_nanosleep differs from
nanosleep in two ways. Firstly, it allows the caller to select
the clock against which the sleep interval is to be measured.
Secondly, it enables the specification of the sleep interval
as either an absolute or a relative value. Using an absolute
timer is useful to prevent timer drift issues mentioned about
nanosleep [46].

The clock_nanosleep and nanosleep system calls cause
the thread or process to give up the remainder of its time
slice and enter the ‘‘Not Runnable’’ state for the specified
duration. The system calls are mostly used in polling use
cases, where a program goes to sleep to wait for specific
events to occur and wakes up periodically to check if those
events have taken place. If any events are detected, then the
program automatically services them before going back to
sleep. It is important to note that the system may resume the
thread before the sleep time is complete, resulting in an error
code of EINTR. Developers must check for this error code
and recall clock_nanosleep again if necessary. This could be
one of the reasons for more clock_nanosleep system calls
than desired, as in this case in Figures 7a and 7b. Whenever
the system resumes a thread before sleep time is complete,
it would mean a minimum of two clock_nanosleep system
calls. We can confirm this by examining the return codes of
the system calls using the BCC tool argdist as depicted in
Listing 2.

LISTING 2. Inspect threads calling sleep syscall

From Figure 7, free5GC uses the sleep systems calls more
than the other core networks. Furthermore, the usage of
nanosleep by free5GC increases linearly with the increase
in UEs. In general, sleep is used to wait for an event to
occur or a process to finish. Ideally, as the number of
events increases, more events should be waited on the same
interval, thus increasing the number of sleep intervals with a
decreasing rate. The free5GC developers should look into the
possibility of bulk waiting or batch processing. On the other
hand, proportioning the free5GC results in Figure 7a and
Figure 7b, we can notice that clock_nanosleep has a higher
latency compared to nanosleep. Therefore, unless Open5GS
and OAI are using the clock_nanosleep specific features, they
should consider making use of the nanosleep system call
instead.

Figures 7 show the combined system call usage of all
processes running on a core network. For more details
on how the system call usage and frequency vary for

each process, see Figures published on the project’s
webpage [20].

5) FUTEX
The futex() system call offers a mechanism to wait until
a specific condition becomes true. It is typically used
as a blocking construct in the context of shared-memory
synchronisation. Additionally, futex() operations can be
employed to wake up processes or threads that are waiting
for a particular condition [47]. The main design goal of
futex is to manage the mutex keys in the user space to
avoid context switches when handling mutex in kernel space.
In the futex design, the kernel is involved only when a thread
needs to sleep or the system needs to wake up another
thread. Essentially, the futex system call can be described as
providing a kernel side wait queue indexed by a user space
address, allowing threads to be added or removed from the
user space [48]. A high frequency of calls to the futex system
may indicate a high degree of concurrent access to shared
resources or data structures by multiple threads or processes.

We can get further details on the usage of futex syscalls
by tracing how they are being produced and the return value.
This can tell us the source of the futex syscalls and the state
of the syscalls when they return. One of the sources of futex
calls is when locks are being used. The high futex calls
may indicate lock contention. We obtain statistics on mutex
locks by tracing the mutex events. Additionally, we can count
mutex-related events in process threads (pthreads) to get an
idea of how often the mutexes are being called. We use the
BCC tool deadlock.py to get an idea of potential deadlocks
from the locks. Lastly, we gain further insight by looking
at the code path that leads to futex syscalls per process and
further draw flame graphs for the code paths. The Listing 3
gives the commands that can be used to get the information
discussed in this paragraph.

LISTING 3. Inspect usage of futex syscall

From Figure 8, we can see that free5GC uses the futex
system call more than the other core networks. Futex helps in
protecting concurrent access to resources. In general, access-
locked resources affect the system performance; therefore,
the results in Figure 8 show that the performance of
free5GC is affected by resource contention. This supports the
difference in performance between free5GC and Open5GS.

VOLUME 12, 2024 113349



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

FIGURE 7. Sleep systems calls across the system.

The results in Figure 8 show the aggregate system call
usage of all processes running on a core network. For more
details on how the system call usage and frequency vary for
each process, please see Figures published on the project’s
webpage [20].

6) READ/WRITE
The read() system call [49] is used to retrieve data from a file
stored in the file system, while the write() system call [50] is
used to write data from a buffer to a file. Both system calls
take into account the ‘‘count’’, which represents the number
of bytes to read or write. Upon successful execution, these
system calls return the number of bytes that were successfully
read or written. By default, these system calls are blocking
but can be changed to non-blocking using the fnctl system
call. Table 5 describes the difference between blocking and
non-blocking calls. Blocking is a problem for programs that
should operate concurrently, since blocked processes are
suspended. There are two different, complementary ways
to solve this problem. They are nonblocking mode and
I/O multiplexing system calls, such as select and epoll
[51]. The architectural decision to use a combination of
multiplexing I/O operations and non-blocking system calls
offers advantages depending on the use cases. Some scenarios
where this approach is beneficial include situations where
small buffers would result in repeated system calls [51], when
the system is dedicated to one function, or when multiple I/O
system calls return an error [44].

We can examine the size of the buffer and compare it
with the number of bytes successfully read or written. Given
this information, we can determine whether the buffer size is
small. We can also check if the operations are interrupted,
which would result in a higher frequency of the system
calls. To do this, we wrote bpftrace scripts, readinfo.bt and
writeinfo.bt, which gives the buffer size versus the bytes read
or written per process and file descriptor.

From the results in Figure 9, we see that OAI makes
the most use of the read/write system calls. To reduce the
performance impact of the read/write system calls, the system
calls should be used in conjuction with the I/O multiplexing
system calls, and can optionally be set to non-blocking system
calls. In the earlier sub-section VII-B3, we already saw that
OAI does not make use of the I/O multiplexing system
calls. Therefore, it would benefit from using I/Omultiplexing
system calls for better performance.

Figures 9 show the combined system call usage of all
processes running on a core network.

7) RECV, RECVFROM, RECVMSG, RECVMMSG
recvfrom(), recvmsg() and recvmmsg() are all system calls
used to receive messages from a socket. They can be
used to receive data on a socket, whether or not it is
connection-orientated. These system calls are blocking calls;
if no messages are available at the socket, the receive
calls wait for a message to arrive. If the socket is set to
non-blocking, then the value -1 is returned, and errno is

113350 VOLUME 12, 2024



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

FIGURE 8. Systems calls for resource contention across the system.

set to EAGAIN or EWOULDBLOCK [52]. Passing the
flag MSG_DONTWAIT to the system call enables non-
blocking operation. This provides behaviour similar to setting
O_NONBLOCK with fcntl except MSG_DONTWAIT is per
operation.

The recv() call is normally used only on a connected socket
and is identical to recvfrom() with a nil from parameter.

To improve the performance of a system with too many
recv() system calls, we can:

1) Read multiple messages in a single system call through
recvmmsg. Notably, this may not result in significant
improvements [53], [54], [55].

2) Use non-blocking sockets. By checking the number of
recv system calls that returned 0, we can get an idea
of the wasted blocking time. We use a simple bpftrace
inline script to get the number of syscalls that return 0,
for (i) recvfrom (ii) recvmsg and (iii) recvmmsg. We can
also inspect the sockets when they are being created to
see if they are set to non-blocking mode. To achieve
this, we modified the BCC tool argdist to give us the
name of the process creating the sockets. We can then
use the modified argdist determine if the (i) client
side sockets and (ii) server side sockets are set to
non-blocking mode. The commands for obtaining the
information are given in Listing 4.

3) Use I/O multiplexing system calls. These system calls
allow one to wait for data to arrive on multiple sockets

at once. The absence of I/O multiplexing will likely
result in a large number of recv calls returning 0.
We further inspect whether I/O multiplexing is being
employed by printing the stack trace for the system
calls recvfrom(), recvmsg() and recvmmsg().

4) Use a combination of non-blocking sockets and I/O
multiplexing [51]

LISTING 4. Inspect usage of recv syscalls

VOLUME 12, 2024 113351



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

FIGURE 9. Systems calls for reading and writing to files across the system.

From the results in Figure 10a, we can see that Open5GS
makes more receive system calls. Proportionally comparing
the performance of free5gc and Open5GS, Open5GS likely
has room for improvement in regards to the receive system
calls. We also see from Figure 10a and Figure 10b that
some of the system calls are made by process that are
not part of the registration or de-registration procedure.
Therefore, Open5GS can reduce the number of system calls
by enabling the deployment of the core network with network
functions relevant to the usage scenarios. The figure shows
the aggregated results for all the processes active on a system
call.

8) SEND, SENDTO, SENDMSG, SENDMMSG
The send() call may only be used when the socket is in a
connected state (so that the intended recipient is known). The
send() is similar to write() with the difference of flags. The
sendto and sendmsgwork on both connected and unconnected
sockets. The sendmsg() call also allows sending ancillary data
(also known as control information) [56].

The approaches to optimise the send(s) system calls are
similar to the discussed approaches for the recv(s) system
calls. These include I/O multiplexing, using the system calls
in non-blocking mode, and sending multiple messages in a
single system call where possible.

From the results in Figure 11, we can see that OAI has the
most send system calls called on sockets. The information is
important for developers to look further into how the system
calls are used. On the other hand, we see that Free5gc has

a linear increase of the send system call. Depending on how
the system call is being used, Free5gc can potentially benefit
from batch send system calls, and I/O multiplexing where it
is not being used.

9) SCHED_YIELD
The sched_yield system call is used by a thread to allow
other threads a chance to run, and the calling thread
relinquishes the CPU [57]. Strategic calls to sched_yield() can
improve performance by giving other threads or processes
an opportunity to run when (heavily) contended resources,
such as mutexes, have been released by the caller [57]. The
authors of [58] were able to improve the throughput of their
system by employing the sched_yield system call after a
process processes each batch of packets before calling the
poll. On the other hand, sched_yield can result in unnecessary
context switches, which will degrade system performance
if not used appropriately [57]. The latter is mainly true in
generic Linux systems, as the scheduler is responsible for
deciding which process runs. In most cases, when a process
yields, the scheduler may perceive it as a higher priority and
still put it back into execution, where it yields again in a
loop. This behaviour is mainly due to the algorithm and logic
used by Linux’s default scheduler to determine the process
with the higher priority, as explained in the forum [59] by
Linus Torvalds. That is, on a generic Linux system, the use
of sched_yield often implies unnecessary system calls and
indicates poor design or legacy software.

113352 VOLUME 12, 2024



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

FIGURE 10. Systems calls for socket receive across the system.

From the results in Figure 12c, we see that it is majorly
free5GC which makes use of the sched_yeid system call.
It also affects the performance of a system. The free5GC
developers need to look at the necessity of the sched_yield
system call. In the case that it is legacy software, the
developers should consider upgrading it, and in the case that
it is not, the developers should consider removing it.

VIII. DISCUSSION
Our study and analysis reveal three key factors that signif-
icantly contribute to system performance as measured by
micro-benchmarking: (i) the rate at which a particular system
call increases as the load or number of UEs (User Equipment)
increases, (ii) the total number of system calls, and (iii) the
time it takes to execute a system call, which we also refer to
as the latency of system calls.

The rate at which a system call increases can be interpreted
as the gradient of the line that connects the number of calls
versus the number of UEs. For multiplexing system calls like
epoll_wait and wait system calls like nanosleep, a higher
gradient is undesirable, as it indicates excessive resource
usage. For blocking system calls, such as write or recvmsg,
a gradient significantly greater than 1 suggests that system
calls increase disproportionately to the increase in load or
UEs, potentially affecting performance.

An excessive number of system calls generally degrades
system performance. However, this depends on the type of

system call. A high number of multiplexing system calls
may actually save the need for an even higher number of
blocking system calls, such as recvmsg or read. Therefore, the
interpretation of call numbers should be context-dependent,
considering the specific system call.

The time required to execute a system call contributes to
the latency of a process or operation. A slow system call can
cause delays in processing, affecting overall performance.
Processes can use alternative system calls, such as nanosleep
and clock_nanosleep, to optimise performance. In addition,
underlying issues or implementation problems can lead to
excessive system call latency. This is exemplified by the case
of futex system calls, which exhibited high latency due to
inherent limitations.

Figures 13a and 13b provide a summary of system call
usage patterns. The x-axis represents the cumulative number
of calls for a specific system call across various UE counts.
The y-axis indicates the rate of increase in the number
of calls as the number of UEs increases. In Figure 13a,
each bubble represents a particular system call. Conversely,
in Figure 13b, each bubble represents a specific process.
In both cases, the radius of the bubbles corresponding to
the latency of the system calls. By comparing the macro-
benchmarking results of the overall system in Figure 1
with the micro-benchmarking summary, we can observe a
correlation. Open5GS, the most performant core network
according to macro-benchmarking, exhibits system calls
concentrated in the lower left quadrant of Figure 13a, and

VOLUME 12, 2024 113353



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

FIGURE 11. Systems calls for socket send across the system.

FIGURE 12. Systems calls for sched_yield across the system.

most of its processes, with the exception of two, reside in the
lower left quadrant of Figure 13b. This implies that, compared

to other core networks, Open5GS’s software architecture
scales its underlying resources proportionally or with a lower

113354 VOLUME 12, 2024



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

FIGURE 13. System resource usage patterns.

proportion to the increase in UEs. In other words, it uses the
same resources for new UEs or less. Furthermore, compared
to other core networks, it initiates system resource usage
(through system calls) less frequently.

Comparison of free5GC and OAI reveals that both have
processes and system calls in the right quadrants, indicating
a high number of system calls. As stated previously, the
higher number of calls should be interpreted differently
depending on the system call. Although both have elevated
numbers, the axis is in logarithmic form, and the magnitude
difference between processes or system calls at the edge of
the axis is proportionally larger than depicted. OAI issues
the blocking read system call twice more frequently than
free5GC issues its system calls in the right quadrants. This
magnitude difference aligns with the observed performance
disparities between these two systems. Additionally, free5GC
utilisesmultiplexing system calls in the right quadrant, which,
as previously discussed, can indicate resource conservation.

Despite the performance differences observed among the
core networks, which are linked to their underlying resource
usage patterns through system calls, all core networks
can enhance their resource utilisation by implementing the
recommended strategies and conducting further analysis,
as described in the results section. Our detailed analysis and
actionable recommendations offer a valuable contribution
to the advancement of open-source 5GC, benefiting the
broader open-source community. These improvements hold
the potential to enhance the accumulation of network users,
for example, during mobility management scenarios.

IX. CONCLUSION
This study presents a framework to evaluate the feature
support of 5G Core (5GC) networks. We assess the feature
support against the Network Function (NF) operations and
5G procedures from Release 17. The resulting framework
produces a wealth of artefacts detailing the supported 5G
NF operations and the resulting 5G procedures that are
fully or partially supported. Due to the large number of
results generated, they have been made available on a
website. This framework for feature support assessment can

assist researchers and network administrators in selecting a
5GC that meets their research or deployment needs and in
evaluating the maturity of open-source implementations of
5GCs.

In addition to the feature support assessment, this study
provides a comprehensive evaluation of the runtime perfor-
mance of open-source 5G core networks during UE registra-
tion and de-registration, with a particular focus on control
plane network functions. By assessing the performance of
the 5GC implementations using macro-benchmarking and
micro-benchmarking approaches, this study provides insight
into the software architectural design of each 5GC and
identifies areas for performance improvement. Based on
these evaluations, the study provides recommendations for
software architectural changes that can minimise perfor-
mance degradation resulting from the virtualisation of 5GC
networks. These recommendations can be implemented by
both open-source projects and 5GC vendors to optimise their
5G core network solutions.

The results indicate that 5GC implementations can
improve their design by optimising their usage of I/O
multiplexing system calls. Additionally, the implementations
can improve their use of shared memory and locks to
reduce resource contention on shared memory resources
or lock contention. The study also identified the use of
sched_yield system call by free5GC, which on Linux
platforms may be unnecessary and/or indicate the use of
legacy software. Within the limits of our study, the time
taken to register a given set of UEs increases linearly with
the number of UEs registered. This can be improved by
redesigning the usage of I/O multiplexing and using non-
blocking system calls, among other approaches detailed in
the study. Overall, the performance difference among the
5GCs can be correlated with their relative usage patterns
and choice of system calls. The study proposes that by
implementing the recommendations and suggestions in this
study, the performance gap between the core networks can be
reduced. Furthermore, this study incorporates comprehensive
tutorials and related source codes to enable replication of the
benchmarking experiments.

VOLUME 12, 2024 113355



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

FIGURE 14. Open5GS: UE Registration procedure.

Complementing the recommendations, this study delves
into the relationship between macro-benchmarking results,
which reflect overall system performance, and micro-
benchmarking results, which illuminate the underlying
resource utilization patterns of the core networks. The
discussion section examines the distribution and usage
patterns of system calls to explain the observed performance
discrepancies among the core networks.

One important area of future work is to include macro
and micro benchmarking as part of a continuous integration

(CI) pipeline that runs on major software changes. This will
help to ensure that performance regressions are detected early
and that new features do not introduce new performance
bottlenecks.

Another important area of future work is to align the
micro-benchmarking procedure with the standard specifi-
cation for benchmarking, for example, Network Function
Virtualization (NFV) Release 3; Testing; Specification of
Networking Benchmarks and Measurement Methods for
NFVI. This will make the results of the benchmarking more

113356 VOLUME 12, 2024



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

FIGURE 15. free5GC: UE Registration procedure.

comparable to other studies and more useful to the 5GC
community.

Furthermore, it is important to evaluate the other control
plane-related procedures on top of the current registration
and de-registration procedures evaluated in the study. This
will provide a more complete picture of the performance
of 5GC implementations and help to identify other areas
where improvements can be made. Finally, in the next steps,
we will compare the Open5GCore from FOKUS with the
other implementations.

APPENDIX A
REGISTRATION PROCEDURES
In table 3, we show the NF service operations that are
supported or not supported by each core network. The
diagrams in figs. 14 to 16 show the procedure flows for
registration, highlighting the operations that are supported or
not supported by the core network. This gives us an indication
of the capabilities that can be fulfilled by each core network
per procedure. We maintain a list of diagrams for the Release
17 procedures on the GitHub repository [29], where we aim

VOLUME 12, 2024 113357



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

FIGURE 16. OAI: UE Registration procedure.

to continuously update it with the help of the community. The
colour keys for the diagram are as follows:

• Black depicts NAS orNGApplication Protocol (NGAP)
operations which are not evaluated in this study

• Green depicts operations supported by the core network
on the given procedure

• Red depicts operations that are not supported by the core
network per a given procedure

• Grey depicts operations we were not able to evaluate
whether they are supported or not

REFERENCES
[1] ETSI, Standard 3GPP TS 23.501, 2018.
[2] (2020). 3GPP TS 38.401 ETS. Accessed: Jun. 21, 2023. [Online].

Available: https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/
15.02.00_60/ts_123501v150200p.pdf

[3] M. Ahmad, S. U. Jafri, A. Ikram, W. N. A. Qasmi, M. A. Nawazish,
Z. A. Uzmi, and Z. A. Qazi, ‘‘A low latency and consistent cellular control
plane,’’ in Proc. Annu. Conf. ACM Special Interest Group Data Commun.
Appl., Technol., architectures, protocols Comput. Commun., Jul. 2020,
pp. 648–661.

[4] N. Van Tu, J.-H. Yoo, and J. W. Hong, ‘‘EVNF–Hybrid virtual network
functions with Linux eXpress data path,’’ in Proc. 20th Asia–Pacific Netw.
Operations Manage. Symp. (APNOMS), Sep. 2019, pp. 1–6.

113358 VOLUME 12, 2024



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

[5] J. Mwangama and N. Ventura, ‘‘Accelerated virtual switching support of
5G NFV-based mobile networks,’’ in Proc. IEEE 28th Annu. Int. Symp.
Pers., Indoor, Mobile Radio Commun. (PIMRC), Oct. 2017, pp. 1–7.

[6] H. Zhang, Z. Chen, and Y. Yuan, ‘‘High-performance UPF design based
on DPDK,’’ in Proc. IEEE 21st Int. Conf. Commun. Technol. (ICCT),
Oct. 2021, pp. 349–354.

[7] J. Rischke, C. Vielhaus, P. Sossalla, J. Wang, and F. H. P. Fitzek,
‘‘Comparison of UPF acceleration technologies and their tail-latency
for URLLC,’’ in Proc. IEEE Conf. Netw. Function Virtualization Softw.
Defined Netw. (NFV-SDN), Nov. 2022, pp. 19–25.

[8] T. A. N. do Amaral, R. V. Rosa, D. F. C. Moura, and C. E. Rothenberg,
‘‘An in-kernel solution based on XDP for 5G UPF: Design, prototype and
performance evaluation,’’ in Proc. 17th Int. Conf. Netw. Service Manage.
(CNSM), Oct. 2021, pp. 146–152.

[9] A. H. Vasoukolaei, D. Sattar, and A. Matrawy, ‘‘TLS performance
evaluation in the control plane of a 5G core network slice,’’ in Proc. IEEE
Conf. Standards Commun. Netw. (CSCN), Dec. 2021, pp. 155–160.

[10] V. Jain, H.-T. Chu, S. Qi, C.-A. Lee, H.-C. Chang, C.-Y. Hsieh,
K. K. Ramakrishnan, and J.-C. Chen, ‘‘L 2 5GC: A low latency 5G
core network based on high-performance NFV platforms,’’ in Proc. ACM
SIGCOMM Conf., Aug. 2022, pp. 143–157.

[11] OpenAirInterface. (2023). 5G Core Network. Accessed: Apr. 22, 2023.
[Online]. Available: https://openairinterface.org/oai-5g-core-network-
project/

[12] Nat. Chiao Tung Univ. (2023). Free5GC. Accessed: Apr. 22, 2023.
[Online]. Available: https://www.free5gc.org/

[13] (2023). Open5GS. Accessed: Apr. 22, 2023. [Online]. Available:
https://open5gs.org/

[14] Fraunhofer FOKUS. (2023). Open5gcore. Accessed: Apr. 22, 2023.
[Online]. Available: https://www.open5gcore.org/

[15] A. B. Brown, ‘‘A decompositional approach to computer system per-
formance evaluation,’’ Harvard Comput. Sci. Group, Cambridge, U.K.,
Tech. Rep. TR-03-97, 1997, pp. 1–77.

[16] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang, ‘‘The case for application-
specific benchmarking,’’ in Proc. 7th Workshop Hot Topics Operating
Syst., 1999, pp. 102–107.

[17] L. Thomeczek, A. Attenberger, J. Kolb, V. Matousek, and J. Mottok,
‘‘Measuring safety critical latency sources using Linux kernel eBPF
tracing,’’ inProc. 32nd Int. Conf. Archit. Comput. Syst., May 2019, pp. 1–8.

[18] T. Mukute. (2023). 5G Core Network Traffic Generator. [Online].
Available: https://github.com/tariromukute/CoreNetworkTrafficGenerator

[19] S. Shende, ‘‘Profiling and tracing in Linux,’’ in Proc. Extreme Linux
Workshop, vol. 2, 1999, pp. 1–26.

[20] T. Mukute. (2024). Performance Benchmarking of 5G Core Net-
works. [Online]. Available: https://tariromukute.github.io/control_plane_
performance_analysis

[21] (2019). 3GPP Release 15. Accessed: Apr. 22, 2023. [Online]. Available:
https://www.3gpp.org/specifications-technologies/releases/release-15

[22] System Architecture for the 5G System, Standard TS 23.501, 3GPP, 2023.
[23] O. O. Erunkulu, A. M. Zungeru, C. K. Lebekwe, M. Mosalaosi, and

J. M. Chuma, ‘‘5G mobile communication applications: A survey and
comparison of use cases,’’ IEEE Access, vol. 9, pp. 97251–97295, 2021.

[24] System Architecture for the 5G System (5GS), Standard TS 123 501,
V17.8.0, 2023.

[25] Procedures for the 5G System (5GS), Standard TS 123 502, v17.8.0, 2023.
[26] System; Restoration Procedures, Standard TS 123 527, V17.6.0, 2021.
[27] Telecommunication Management; Charging Management; 5G System;

Services, Operations and Procedures of Charging Using Service Based
Interface (SBI), Standard TS 132 290, V17.6.0, 2021.

[28] Security Architecture and Procedures for 5G System, Standard TS 133 501,
V15.16.0, 2021.

[29] T. Mukute. (2023). Completeness Evaluation of 5G Core Networks.
[Online]. Available: https://github.com/tariromukute/5gc-features

[30] J. Struye, B. Spinnewyn, K. Spaey, K. Bonjean, and S. Latre, ‘‘Assessing
the value of containers for NFVs: A detailed network performance study,’’
in Proc. 13th Int. Conf. Netw. Service Manage. (CNSM), Nov. 2017,
pp. 1–7.

[31] R. Rizki, A. Rakhmatsyah, and M. A. Nugroho, ‘‘Performance analysis
of container-based Hadoop cluster: OpenVZ and LXC,’’ in Proc. 4th Int.
Conf. Inf. Commun. Technol. (ICoICT), May 2016, pp. 1–4.

[32] I. O. Ploten, ‘‘Zero copy packet processing,’’ M.S. thesis, Fac. Inf.
Technol., Brno Univ. Technol., Brno, Czechia, 2019.

[33] W. Mauerer, Professional Linux Kernel Architecture. Hoboken, NJ, USA:
Wiley, 2010.

[34] L. Yu, ‘‘Operating system process management and the effect on
maintenance: A comparison of Linux, freebsd, and Darwin,’’ INFOCOMP
J. Comput. Sci., vol. 5, no. 2, pp. 38–44, 2006.

[35] B. Gregg, BPF Performance Tools. Reading, MA, USA: Addison-Wesley,
2019.

[36] W. Stallings and G. K. Paul, Operating Systems: Internals and Design
Principles, vol. 9. New York, NY, USA: Pearson, 2012.

[37] A. Zafeiropoulos, E. Fotopoulou, M. Peuster, S. Schneider, P. Gouvas,
D. Behnke, M. Muller, P.-B. Bök, P. Trakadas, P. Karkazis, and H. Karl,
‘‘Benchmarking and profiling 5G verticals’ applications: An industrial
IoT use case,’’ in Proc. 6th IEEE Conf. Netw. Softwarization (NetSoft),
Jun. 2020, pp. 310–318.

[38] S. M. Pieper, J. M. Paul, and M. J. Schulte, ‘‘A new era of performance
evaluation,’’ Computer, vol. 40, no. 9, pp. 23–30, Sep. 2007.

[39] B. Gregg. (2015). Choosing a Linux Tracer. [Online]. Available:
https://brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html

[40] T. Oberdörfer, ‘‘Characterization of interrupt handling in board manage-
ment controllers,’’ B.S. thesis, Dept. Comput. Sci., ETH Zurich, Zurich,
Switzerland, 2021.

[41] J. Pavela, ‘‘Efficient techniques for program performance analysis,’’ M.S.
thesis, Fac. Inf. Technol., Brno Univ. Technol., Brno, Czech Republic,
Jul. 2020. [Online]. Available: https://www.fit.vut.cz/study/thesis/19092/

[42] (2023). UERANSIM. [Online]. Available: https://github.com/aligungr/
UERANSIM

[43] L. B. D. Silveira, H. C. de Resende, C. B. Both, J. M. Marquez-Barja,
B. Silvestre, and K. V. Cardoso, ‘‘Tutorial on communication between
access networks and the 5G core,’’ Comput. Netw., vol. 216, Oct. 2022,
Art. no. 109301.

[44] Sobyte. (2022). Epoll—Efficiently Handling Large Number of
File Descriptors. Accessed: Apr. 2, 2023. [Online]. Available:
https://www.sobyte.net/post/2022-04/epoll-efficiently/

[45] L. Gammo, T. Brecht, A. Shukla, and D. Pariag, ‘‘Comparing and
evaluating epoll, select, and poll event mechanisms,’’ in Proc. Linux
Symp. 2004, 2004, pp. 1–20.

[46] M. Kerrisk. (2021). Clock Nanosleep(2) Linux Manual Page. Accessed:
Apr. 1, 2023. [Online]. Available: https://man7.org/linux/man-
pages/man2/clock_nanosleep.2.html

[47] M. Kerrisk. (2021). Futex(2)—Linux Manual Page. Accessed:
Apr. 1, 2023. [Online]. Available: https://man7.org/linux/man-
pages/man2/futex.2.html

[48] A. Almeida. (2022). Landing a New Syscall: What is Futex?.
[Online]. Available: https://www.collabora.com/news-and-
blog/blog/2022/02/08/landing-a-new-syscall-part-what-is-futex/

[49] M. Kerrisk. (2022). Read(2)—LinuxManual Page. Accessed: Apr. 1, 2023.
[Online]. Available: https://man7.org/linux/man-pages/man2/read.2.html

[50] M.Kerrisk. (2022).Write(2)—LinuxManual Page. Accessed: Apr. 1, 2023.
[Online]. Available: https://man7.org/linux/man-pages/man2/write.2.html

[51] E. Eklitzke. (2012). Blocking I/O, Nonblocking I/O, and Epoll. [Online].
Available: https://eklitzke.org/blocking-io-nonblocking-io-and-epoll

[52] M. Kerrisk. (2023). Recv(2)—Linux Manual Page. Accessed:
Apr. 4, 2023. [Online]. Available: https://manpages.ubuntu.com/
manpages/bionic/man2/recv.2freebsd.html

[53] G. Ara, L. Lai, T. Cucinotta, L. Abeni, and C. Vitucci, ‘‘A framework
for comparative evaluation of high-performance virtualized networking
mechanisms,’’ in Proc. 10th Int. Conf., 2020, pp. 59–83.

[54] M. Sojka, P. Písa, and Z. Hanzálek, ‘‘Performance evaluation of Linux
CAN-related system calls,’’ in Proc. 10th IEEE Workshop Factory
Commun. Syst. (WFCS), May 2014, pp. 1–8.

[55] I. Marinos, ‘‘Network and storage stack specialisation for performance,’’
Ph.D. dissertation, Fac. Comput. Sci. Technol., Univ. Cambridge, Cam-
bridge, U.K., 2018.

[56] M. Kerrisk. (2021). Send, Sendto, Send Message–Send a Message
on a Socket. Accessed: Apr. 14, 2023. [Online]. Available:
https://www.man7.org/linux/man-pages/man2/send.2.html

[57] M. Kerrisk. (2022). Sched_Yield–Yield the Processor. Accessed:
Apr. 10, 2023. [Online]. Available: https://man7.org/linux/man-
pages/man2/sched_yield.2.html

[58] F. Huici, C. R. E. Matus, G. Tsolis, C. Pisa, S. Salsano, F. Lombardo,
N. Blefari-Melazzi, G. Bianchi, L. Krug, P. Veitch, P. Eardley,
T. Kanceki, E. Curley, J. Thomson, M. Flouris, A. Nanos, X. Ragiadakos,
J. Chesterfield, K. Du, and L. Toms, ‘‘Mechanisms for network service
dynamics and performance,’’ Consorzio Nazionale Interuniversitario per
le Telecomunicazioni, Parma, Italy, DELIVERABLE D5.2, 2018.

[59] L. Torvalds. (2020). No Nuances, Just Buggy Code (Related to Spinlock
Implementation and the Linux Scheduler). Accessed: Apr. 14, 2023.
[Online]. Available: https://www.realworldtech.com/forum/?threadid=
189711&curpostid=189752

VOLUME 12, 2024 113359



T. Mukute et al.: Control Plane Performance Benchmarking and Feature Analysis

TARIRO MUKUTE is a rising Researcher in network performance.
He tackles the challenge of optimising virtualised 5G platforms for enhanced
network function performance. His Ph.D. work with the University of Cape
Town is focussing on designing and implementing a dynamic 5G N6-LAN,
with added focus on improving performance. He has authored several
publications and open-source code contributions. Driven by interests in
computer and mobile networks, 5G core, and future internet technologies,
he actively contributes to testbeds and open-source projects, translating his
research into practical solutions.

LUSANI MAMUSHIANE received the master’s degree in electrical
engineering, specializing in software-defined wide area networks (SDWAN)
from the University of Cape Town (UCT), where she is currently pursuing
the Ph.D. degree.

In her role as a Senior Researcher with the Council for Scientific and
Industrial Research (CSIR), she specialises in programmable networks,
including open EPC and open RAN, leveraging cutting-edge technologies,
such as software-defined networking (SDN) and network function virtual-
ization (NFV). Additionally, her expertise extends to pivotal domains, such
as cloud computing, the Internet of Things (IoT), and artificial intelligence
(AI). Her research focuses on the intersection of machine learning with 5G
and beyond network slicing.

ALBERT A. LYSKO (Senior Member, IEEE) received the Ph.D. degree from
the Norwegian University of Science and Technology, Norway, in 2010.
He was with both academia and industry, in Europe and Africa. Currently,
he is a Principal Researcher with the Council for Scientific and Industrial
Research (CSIR), South Africa. While at CSIR, his leading experimental
research in television white spaces (TVWS) provided internet to over 20,000
users in three countries and enabled setting up the South African National
TVWS regulation and contributed to TVWS regulations in other African
countries and USA. He has authored three patents, a book, two book
chapters, and over 150 research articles, popular science, and news articles.
His research interests include numerical electromagnetics, smart antennas,
dynamic spectrum access, and 5G and 6G. He is a fellow of the South
African Institute of Electrical Engineers. He holds three best paper and
several professional awards. He has several IEEE awards for volunteering.

ELENA-RAMONA MODROIU received the master’s degree in computer
science from Politehnica University Bucharest, Romania, in 2003, and the
Postgraduate degree from the Universitat Politècnica de València, Spain. She
is a Researcher with the Technische Universität Berlin (DE). She has been
actively involved in VoIP/SIP co-founding the Kamailio open-source project
and the SIP server at the core of IMS solutions for 4G/5G open-source based
deployments. Her research work covering the fields of 5G mobile networks
and end-to-end setups, with a focus on core networks and the evolution from
5G toward 6G generation of mobile communications.

THOMAS MAGEDANZ (Senior Member, IEEE) has been the Director
of the business unit software-based networks (NGNI), Fraunhofer Institute
for Open Communication Systems FOKUS (https://www.fokus.fraunhofer.
de/go/ngni), Berlin, since 2003. He has also been a Professor with the
Technische Universität Berlin, Germany, where he has been leading the
Chair for Next Generation Networks (https://www.av.tu-berlin.de), since
2004. For 33 years, he has been a globally recognized ICT expert,
working in the convergence field of telecommunications, internet, and
information technologies understanding both the technology domains and
the international market demands. His current research interests include
software-based networks for different verticals, with a strong focus on public
and non-public campus networks and the evolution from 5G to 6G.

JOYCE MWANGAMA (Member, IEEE) received the B.Sc. degree in
electrical and computer engineering and the M.Sc. and Ph.D. degrees in
electrical engineering from the University of Cape Town, South Africa,
in 2008, 2011, and 2017, respectively. She is currently anAssociate Professor
with the Department of Electrical Engineering, University of Cape Town.
She has published her research work in several peer-reviewed publications.
Her research work has also contributed to the universities for future internet
and the testbeds for reliable smart city machine-to-machine communications
international research collaboration projects.

113360 VOLUME 12, 2024


