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ABSTRACT This work introduces an innovative method for estimating attention levels (cognitive load)
using an ensemble of facial analysis techniques applied to webcam videos. Our method is particularly
useful, among others, in e-learning applications, so we trained, evaluated, and compared our approach on
the mEBAL2 database, a public multi-modal database acquired in an e-learning environment. mEBAL2
comprises data from 60 users who performed 8 different tasks. These tasks varied in difficulty, leading to
changes in their cognitive loads. Our approach adapts state-of-the-art facial analysis technologies to quantify
the users’ cognitive load in the form of high or low attention. Several behavioral signals and physiological
processes related to the cognitive load are used, such as eyeblink, heart rate, facial action units, and head pose,
among others. Furthermore, we conduct a study to understand which individual features obtain better results,
the most efficient combinations, explore local and global features, and how temporary time intervals affect
attention level estimation, among other aspects. We find that global facial features are more appropriate
for multimodal systems using score-level fusion, particularly as the temporal window increases. On the
other hand, local features are more suitable for fusion through neural network training with score-level
fusion approaches. Our method outperforms existing state-of-the-art accuracies using the public mEBAL2
benchmark.

INDEX TERMS Attention estimation, behavioral analysis, cognitive load, deep learning, e-learning,
eyeblink, facial action units, head pose detection, heart rate detection, multi-modal learning.

I. INTRODUCTION
Attention is defined as the ability to focus, specifically,
to exert on a conscious cognitive effort regarding a specific
task or stimulus at a given moment [1], [2]. Therefore, it is
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used as a measure of the exerted effort. The level of attention
can vary from a state of high attention, where a person is
highly concentrated and experiences high levels of cognitive
load and mental effort, to low levels, where a person is
distracted or uninterested.

Attention estimation has proven to be of great value in
important areas such as driver fatigue detection [3], [4],
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FIGURE 1. Examples of different real students’ attention levels during an
e-learning session. (Top) High attention image sequence. (Bottom) Low
attention image sequence.

advertising and product design [5], mental health disor-
ders [6], lie detection [7], [8], human-computer interfaces [9],
education [10], etc.
Attention estimation is particularly valuable in e-learning

environments [11], [12] because it offers feedback on
students’ cognitive and emotional states during online
sessions. This is significant as attention is defined as the
cognitive effort exerted on a task [1] and plays a pivotal
role in ensuring accurate comprehension during learning.
In e-learning environments, there are challenges compared
to face-to-face education, with one of the most important
being the lack of direct contact between the teacher and
the student. This results in the teacher being unaware of
the student’s study difficulties, like high or low levels
of attention. Video-based attention estimation technologies
overcome this limitation [13], representing a valuable tool to
enhance both face-to-face and online education.

Facial gestures often provide subtle indicators of an
individual’s attention level or cognitive load.When people are
intensely focused or experiencing high cognitive demands,
their facial expressions can change, reflecting the strain or
concentration they are undergoing (see Fig. 1). Automatic
attention estimation through image processing is a chal-
lenging task still under development. In this regard, the
recent advances in face analysis techniques based on deep
learning have also helped to improve attention estimation
based on computer vision methods. The most advanced
multimodal systems for attention estimation have reached
around 80% accuracy, outperforming the majority of existing
monomodal systems [12], [14]. Multimodal systems stand
out for considering multiple variables that affect attention
in the learning process, which allows a more global and
complete perspective [15].
Taking into consideration all of the above, the main

contributions of the present paper are:

• We present a novel multimodal learning framework
for attention estimation through image processing. This
framework performs facial analysis to relate high and
low levels of attention with behavior and physiological
processes such as eyeblink, face gestures, and head pose,
among others.

• Our framework consists of 5 modules built on Con-
volutional Neural Networks (CNNs) that are trained
to extract facial features that potentially correlate with
attention. The most relevant modules for attention
estimation and their effective combinations are iden-
tified within the e-learning context of the mEBAL2
database.

• The results indicate that in multimodal attention estima-
tion systems using score fusion, global features provide
additional discriminating information compared to local
features. However, multimodal attention estimation
systems based on score fusion with neural network
training generalize better with local features.

• Our approach outperforms the state of the art, achieving
a classification accuracy in attention level estimation of
85.92% on the mEBAL2 database.

A preliminary version of this article was presented in [12].
This article significantly improves [12] in various aspects:

• Compared to MATT [12], we now add a new module
for heart rate estimation and study its relationship with
attention estimation.

• The mEBAL2 [16] database for attention estimation
is used to train and evaluate the proposed system.
In comparison with MATT [12] (which used the
first mEBAL version with 22 users [17]), we now
use the new version, mEBAL2, including 60 students
with approximately 1800 minutes of video recordings.
This represents a significant increase, with around
1140 additional minutes of recordings in comparison
to [12].

• We add new comprehensive experiments including
analysis of global and local features for each facial
module. We introduce a new method of score-level
fusion through neural network training and a new
architecture based on feature selection.

• Unlike MATT [12], which utilized a one-minute time
frame, we explored three time windows of 30, 60, and
120 seconds.

• Finally, our method outperforms the method presented
in MATT [12], achieving an error reduction of 28.5% in
the mEBAL2 database.

The rest of the paper is organized as follows. Section II
summarizes works related to attention level estimation.
Section III describes the materials and methods, including
the database, proposed technologies and features to estimate
attention levels. Section IV presents the experiments and
comparison with other state-of-the-art approaches. Finally,
section V provides conclusions and future investigations.

II. RELATED WORK
A. BRAIN ACTIVITY MEASUREMENT
Attention estimation has been widely studied and currently
there are different methods that come along with certain
benefits and limitations [18]. Some of the most popular ones
are:
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1) ELECTROENCEPHALOGRAPHY (EEG)
The EEG records the electrical activity of the brain through
electrodes placed on the scalp. It measures neural activity
by detecting changes in the voltage fluctuations generated
by brain cells, specifically, the ones produced usually by
synaptic excitations of the dendrites of pyramidal cells in
the top layer of the brain cortex [19], [20]. The strength
of the signals primarily relies on the synchronized firing of
numerous neurons and fibers. Thousands or even millions of
neurons are required to capture information effectively [18].
EEG data is recognized as one of the most efficient and
unbiased approaches in estimating attention levels [21], [22],
since these signals are sensitive to mental effort, cognitive
demands, and mental states such as learning, deception,
perception, and stress. Therefore, EEG provides real-time
information about brain activity and it’s particularly useful for
capturing quick changes in attention. EEG can be condensed
to of five different signal types that reflect different
mental states and activities. These signals are classified
into different frequency bands: δ (< 4Hz), θ (4-8 Hz),
α (8-13 Hz), β (13-30 Hz), and γ (> 30 Hz). However,
the main disadvantage of this method is its intrusiveness,
requiring precise tools to be placed on the student’s head,
which becomes impractical in e-learning environments with
thousands of students.

2) PHYSIOLOGICAL
This category associates attention with physiological
responses like heart rate [23], [24], eyeblink [11], [12], [16],
[17], eye pupil size [25], [26], electrodermal activity [27],
etc. To measure these physiological signals and then correlate
themwith attention, specific sensors are used for eachmethod
that are then combined to obtain higher accuracy in attention
estimation.

3) BEHAVIOR
In comparison with the physiological category, this category
analyzes the user’s noticeable patterns and behaviors to
deduce attention levels. It’s based on external behavior
observation that has proven to have a close relation with
attention. Some of these behaviors are head pose [14], [28],
[29], [30], gaze tracking [31], [32], facial expressions [33],
[34], [35], physical actions that happen to be related with
attention (e.g., leaning closer to the screen) [36], etc.

B. ATTENTION ESTIMATION METHODS BASED
ON IMAGE PROCESSING
Here we employ images obtained from the webcam to infer
the attention level of the users. The main advantage of
this approach is that it doesn’t require specialized sensors
more than a webcam, which makes it particularly attractive
in areas like education, where accessibility is important.
Currently there are monomodal systems like ALEBK [11]
and multimodal ones like MATT [12]. For example, MATT
combines physiological and behavior estimations (pulse,

facial analysis, etc). Multimodal systems have proven to be
more efficient in attention estimation.

The article [37] proposed 2 monomodal methods to detect
cognitive load in car driving environments. The used database
defined 3 states of cognitive load (high, medium, and low),
which corresponded to variable difficulty activities (based on
n-back task) that drivers had to perform; and the database had
a total of 92 users. The proposed methods were based on the
eye state, starting with the first method that focused on the eye
pupil’s position estimation (using face detection, landmark
detection, etc) with Hidden Markov Models (HMMs) to
estimate cognitive load. The second approach was based on
Convolutional Neural Networks with 7 convolutional layers,
and the input was a temporally-stacked sequence of raw
grayscale eye region images. The HMMs approach reached
an average precision of 77.7% while the CNN got 86.1%.
The main issue was the cognitive load assumption without
validating it using specific sensors, like EEG for example.

ALEBk [11] represents a monomodal approach based on
the relation between eyeblink and cognitive activity. Several
studies have found clear evidence [11], [17], [38], [39] that
lower eyeblink rates are associated with high attention levels,
and vice versa. Based on this assumption, ALEBk [11]
uses an eyeblink detector supported by convolutional neural
networks to obtain the eyeblink frequency using RGB
videos. With this information, the system classifies between
high or low attention. The network was trained using the
mEBAL [17] database with 22 users performing tasks in an
e-learning environment. Attention ground truth was obtained
with an EEG band and the system reached a maximum
accuracy (1-EER) of 70% approximately.

The multimodal approach presented in [14] used a Kinect
One sensor to perform attention estimation. It only used
behavior features, specifically gaze point, body posture
and facial movements. The features were obtained from
the signals of the Kinect SDK. This process included
normalizing and filtering the signals using z-scores and an
11s-wide Gaussian filter. Subsequently, a 7-feature vector
was selected by combining these signals. Finally, a 3-level
attention classification was made (low, medium, high) using
different classifiers like decision tree, K-nearest neighbors,
Subspace K-NN, etc. This study used a database captured
in an e-learning environment of 18 users with a length of
122 minutes in total. The way how the attention level ground
truth was obtained is the main problem of this database,
since it was through human observers, which can generate
a lack of reliability in the results. Obtained results show a
maximum accuracy of 75% with a considerable variability
between users.

In [13], a multimodal system is presented to estimate
attention in a learning environment. This system extracted
features from the face and also head movements, like mouth
features (speaking or smiling), eye aspect ratio [40], leaning
closer to the screen, etc, to estimate attention. It’s a simple
system that uses a landmark detector to obtain the previously
mentioned features from facial landmarks. Then, statistical
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TABLE 1. mEBAL2 database: sensors.

measures like max, min, mean, variance, range and spectral
entropy of face and head features are used for a random
forest regression model, that predicts mean attention in a
10-second window. The used database consisted of recorded
videos (176 minutes) of 7 middle school students while they
interacted with an online tutoring system, along with EEG
data. The authors reported an average RMSE of 12.66 and
indicated that both face and head movements provided useful
information for attention estimation.

The authors of [41] proposed a multimodal attention
estimation system for classrooms with several students
to improve learning. The artificial vision approach used
features like head pose, gaze direction and facial expression
(facial action units) obtained with OpenFace [42] and
regression models to estimate attention were trained with
them. The approach classified the student’s commitment
level as ‘‘attentive’’ and ‘‘non-attentive’’ in one-second time
frames. The database was obtained from university seminars
with 52 students recorded with 3 cameras, even though the
automatic approach used only 30 users. The attention level
labels used as ground truth were obtained by evaluators that
observed each student’s behavior throughout sessions. The
head pose feature got the least correlation regarding manual
scores, and the highest correlation was reached with the
combination of all 3 modules (r=0.61).

MATT [12] represents a multimodal approach that uses
a simple webcam and it’s based on different Convolutional
Neural Network modules that extract behavior and physi-
ological features (head pose, eyeblink, facial action units,
etc). For each module, a Support Vector Machine (SVM)
is used as a binary classifier to determine high or low
attention levels and at the end, all modules are combined
with a score sum. Similar to ALEBk [11], this approach
was trained and evaluated on mEBAL [17] database with
22 users and obtained a maximum accuracy (1-EER) of 82%
approximately.

C. MULTIMODAL MACHINE LEARNING
Multimodal systems have demonstrated great potential
to improve the performance of unimodal systems [15],
[43], due to their enhanced comprehension capabilities.
By integrating various data sources, these systems can
leverage the redundancy and complementarity of information
to achieve more accurate and robust results. Specifically,
in attention estimation, analyzing a single facial feature

1https://store.neurosky.com/pages/mindwave
2https://www.intelrealsense.com/wp-content/uploads/2020/06/Intel-

RealSense-D400-Series-Datasheet-June-2020.pdf

category is typically not discriminative enough to classify
attention levels [11], [12], [13], [14]. In contrast, multimodal
systems show superior performance in estimating attention
by integrating different unimodal systems based on diverse
facial categories, such as eyeblinks and heart rate [12],
[13], [14]. Various fusion strategies have been proposed
in the literatures [15], [16], [43], [44], [45], [46], and
[47], including feature level fusion, score level fusion, and
model level fusion. Feature level fusion involves combining
data or signals at the feature level before they are input
into a classification or regression model [15], [43], [44],
[48]. Leng et al. [44] employed Dual-Source Discriminative
Power Analysis (DDPA) to assess the discriminative power
of features from two different information sources, based
on inter-class and intra-class variation, and subsequently
fused them. Score level fusion, on the other hand, involves
combining outputs from multiple models to reach a final
decision. Various strategies are employed, including score
sum, weighted sum, and voting, among others [15], [45],
[48]. Other works [16], [46], [47] have implemented model
level fusion. Yao et al. [47] proposed an extension of
the conventional Vision Transformer (ViT). This approach
applied a strategy for fusing through a structure that integrates
extended visual transformers and Cross-Modality Attention
(CMA), thus incorporating modality fusion directly into the
model processing stages.

III. MATERIALS AND METHODS
A. DATABASE
To carry out this study, we selected the public database
mEBAL2 [16], a Multimodal Database for EyeBlink
Detection and Attention Level Estimation. It’s the first
database that we’re aware of being captured in an e-
learning environment, providing information on attention
levels and eyeblink samples. mEBAL2 is a public database
obtained in a real e-learning environment using the research
platform edBB [10], [32], [49]. We used this database,
which includes data from 60 students who performed various
carefully designed tasks to induce changes in cognitive load.
These tasks were designed to induce changes in students’
attention and evaluate the cognitive load associated with
each situation. Among the tasks included in the acquisition
protocol, the task of committing fraud/copying was included,
as previous research demonstrated that this activity requires
a higher cognitive load [8]. Students were presented with
diverse scenarios to engage in copying responses, like
using different electronic devices (mobile phones, laptops),
employing ‘‘cheat sheets,’’ interacting with peers to obtain
answers, and more. The database also induced an altered
state in the students, to observe how it affected their
attention during the e-learning session. During a specific
moment, students engage in physical exercise, inducing
an altered state that affects their heart rate, simulating
a state of nervousness/stress. Afterward, they resume the
session.
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FIGURE 2. Probability density function of obtained attention with EEG
band from 60 students in the mEBAL2 database [16], along with our
attention levels classification (high, normal, low) with used thresholds
(τL, τH ).

mEBAL2 contains signals from multiple sensors, includ-
ing face video and electroencephalogram (EEG) data. The
data was captured with the following sensors (see Table 1):
An Intel RealSense composed of 1 RGB camera and 2 NIR
cameras, along with an EEG band provided byNeuroSky. It is
worth mentioning that previous studies have also utilized this
EEG headset to gather EEG and attention signals [20], [50],
[51], as EEG measurement is considered one of the most
effective methods for attention estimation. The information
from the EEG band includes 5 EEG signals (δ, θ , α, β,
γ ). Through the official NeuroSky SDK, mEBAL2 includes
information regarding attention and meditation level, and
a temporal sequence with eyeblink strength. Attention and
meditation levels are assigned values ranging from 0 to
100. We employed the attention levels acquired from the
EEG headset as ground truth to both train and evaluate our
image-based attention level estimation approach. Addition-
ally, mEBAL2 [16] provides 10550 eyeblink samples, the
largest existing public eyeblink database for research.

To summarize, mEBAL2 [16] includes data from 60 stu-
dents who participated in e-learning sessions that lasted
between 15 to 30minutes. These sessions consisted of various
activities related to mental load, visual attention, etc., such as
filling in registration forms, answering logical and multiple-
choice questions, performing visual exercises (describing
images, finding differences), and more. Additionally, some
of the students took part in events related to changes in
attention, such as fraud/copying, physical exercise (see [49]
for a video demonstration3). All participants gave written
informed consent. The study is in accordance with the
Declaration of Helsinki.

Fig. 2 shows the Probability Density Function of the
attention levels of the 60 students, with an average attention
level around 50%, and the most frequent attention level being
55%.

B. FACE ANALYSIS MODULES
Our proposed DeepFace-Attention estimates attention
through the facial analysis of images captured by a webcam.

3https://www.youtube.com/watch?v=JbcL2N4YcDM

FIGURE 3. Feature extraction from the landmark detection module.
On the right eye, we show Eye Aspect Ratio (EAR) calculations. We also
display the landmarks used to extract the width and height of the nose
and head.

Different modules based on convolutional networks are
used to extract facial features based on behavior as well
as physiological signals, which have proven to estimate
attention [12], [14], [16], [52]. Fig. 4 shows our proposed
system of attention estimation. The used modules are as
follows:

1) FACE DETECTION MODULE
Our approach detects 2D facial images using a state-of-the-
art RetinaFace Detector [53]. This robust single-stage face
detector was trained using the Wider Face dataset [54]. Once
the facial position in the image is obtained, it is used as input
for the subsequent modules.

2) LANDMARK DETECTION MODULE
We use the SAN landmark detector [55] to acquire facial
landmarks, which comprises a 68-landmark detection system
based on VGG-16 plus 2 convolutional layers trained on the
300-W dataset [56]. The facial landmarks serve as a dual
purpose in our approach. Firstly, these landmarks are used
to extract facial features that have demonstrated relevance in
attention estimation. Secondly, they are employed to locate
the eye region of interest, which subsequently serves as input
to the EyeBlink module.

Through facial landmarks, we obtain features related to
attention estimation. Firstly, we focus on the eye state,
specifically the Eye Aspect Ratio (EAR) [40] for each eye,
which is related to the eye opening.

The EAR is calculated following the next equation:

EAR =
∥P1 − P5∥ + ∥P2 − P4∥

2 ∥P0 − P3∥
(1)

where P0, . . ., P5 are the eye landmarks shown in Fig. 3. The
denominator is multiplied by 2 because only one distance is
calculated for horizontal eye landmarks.
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FIGURE 4. Block diagram of the proposed multimodal approach for attention estimation (DeepFace-Attention). The dashed line represents the ground
truth used for training the SVMs. The two strategies used, global features (fG) and local features (fL), are shown. The feature vectors from each module
are denoted as f y

x , and the score for each SVM is denoted as s y
x . Here, x ∈ {L,G} specifies whether the features are global or local, and y represents the

facial feature category, y ∈ {EB,HP,EAR, . . .}. Finally, sF represents the fusion of scores.

We calculate the EAR parameter for each eye, so, two EAR
features are obtained per frame.

The other 4 features are related to the student’s distance
from the screen, as previous studies have shown its usefulness
in attention estimation [13]. We obtain the Width and Height
of the Head and the Nose by simply subtracting the following
landmarks:

HW = P8x − P6x (2)

HH = P9y − P7y (3)

NW = P12x − P10x (4)

NH = P13y − P11y (5)

where P6, . . . ,P13 are the eye landmarks shown in Fig. 3.
Finally, we normalize all the values using z-score [57],

resulting in four features for each frame corresponding to
the facial feature categories of Head Size (HS) and Nose
Size (NS).

This landmark processing is in line with our previous
works, see [58] and [59] for more details.

3) HEAD POSE ESTIMATION MODULE
The head pose is estimated using 2D facial images obtained
from the facial detection module. To achieve a balance
between speed and precision, we used a Convolutional
Neural Network (ConvNet) based on [60]. This head pose
estimator was trained with data from the Pointing 04 [61]
and Annotated Facial Landmarks in the wild [62] databases.
This architecture calculates the vertical (pitch) and horizontal
(yaw) angles, enabling us to infer the 3D head pose from 2D
facial images. This module obtains the two angles that define

the 3D head pose for each frame, forming the facial feature
category Head Pose (HP).

4) EYEBLINK DETECTION MODULE
The eye state has proven to be one of the most relevant
indicators for attention estimation. We use an eye state
classifier on each RGB frame, distinguishing between
‘‘open’’ or ‘‘closed’’ states, which is commonly employed
as a blink detector in frame sequences. Our architecture is
based on the approach presented in ALEBk [11], and we
trained it from scratch using the mEBAL database [17], with
RGB images only. The output values range between 0 and 1
and the input consists of two cropped images of the right
and left eye. We apply the following approach to obtain the
region of interest: i) face detection, ii) landmark detection,
iii) face alignment using the Dlib library, iv) data quality
assessment: we use the detectors’ probabilities to evaluate
the ROI quality from which we decide to maintain or not the
alignment, or discarding the frame, and v) eye cropping: we
crop the region of each eye and resize it to 50 × 50. This
module obtains a value between 0 and 1 as a feature per frame
for the facial feature category EyeBlink (EB).

5) FACIAL EXPRESSION MODULE
This module is based on the work by Zhang et al. [65],
who created a new architecture based on the subtraction
of two embeddings to extract a disentangled feature space
where the facial expression embedding was compacted, and
the user’s identity was ignored. The two branches are two
FaceNet-Inception architectures pretrained with VGGFace2,

111348 VOLUME 12, 2024



R. Daza et al.: DeepFace-Attention: Multimodal Face Biometrics for Attention Estimation With Application to e-Learning

TABLE 2. Features extracted from the face analysis modules for our proposed system. Wl is the time window size (in seconds) analyzed to extract global
or local features.

TABLE 3. Description of the gk
n (k = 1, . . . , 28) global features of the global vector gn extracted from each time series used in this work. Adapted

from [63] and [64].

where the first branch is fixed to preserve the identity
information and the second branch is retrained with Google
Facial Expression Comparison (FEC) dataset [66] to improve
the facial expression features. The model follows the same
experimental protocol proposed in [65] using the triplet loss
function to obtain the disentangled facial expression space.
The result is 16 features per frame for the facial feature
category of Facial Expression (Exp).

6) HEART RATE DETECTION MODULE
We employ the DeepPhys model to estimate the human
heart rate using remote photoplethysmography (rPPG) based
on the facial video sequences. This model is based on
the Convolutional Attention Network created by Chen and
McDuff in [67] and implemented by Hernandez-Ortega et al.
in [68], where the DeepPhys architecture was trained on the
COHFACE database [69]. The model comprises two parallel
Convolutional Neuronal Networks branches that extract
temporal and spatial information from videos: (i) Motion
branch designed to realize a short-time video analysis to
detect pixel changes over the scene, and (ii) Appearance
branch designed to create attention masks based on the
subject’s appearance to help the motion model. This module
outputs fH ∈ R1×Wl , which corresponds to a heart-rate

estimation every second of the time window at hand (of size
Wl seconds).

C. FEATURE EXTRACTION APPROACHES:
LOCAL VS GLOBAL
Considering that the analysis of long temporal sequences
increases the complexity of classification algorithms based
directly on the time sequences, here we study to what
extent are useful and efficient global features that integrate
the information across time. To integrate the temporal
information from the video sequences, we have adapted the
global features proposed in [63] and [70].

The face analysis modules presented in the previous
section are used to extract local and global features (see
Table 2). We then apply two different feature processing
approaches for the extraction of local and global relation-
ships.

First, to characterize the local relations we use the method
presented in MATT [12]. The features obtained from each
module, denoted as fx,y, where x ∈ {1, . . . ,N } represents the
specific feature and y represents the facial feature category
y ∈ {EB,HP,EAR, . . .}, are used to obtain local feature
vectors. For each facial feature category, a local feature vector
is generated, capturing the changes in the facial attributes
for high and low attention, as follows: i) the facial analysis
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FIGURE 5. Block diagram using an approach of selection and fusion of global features for attention estimation. The dashed line represents the
ground truth used for training the SVM. The global feature vector is denoted as f y

G, where y represents the facial feature category,
y ∈ {EB,HP,EAR, . . .}. fSG represents the vector of selected global features. Finally, the score obtained from the SVM is denoted as sG.

module’s features fx,y are averaged for each second of video,
generating f̄x,y, and ii) for each facial feature category, a local
feature vector fyL ∈ RN×Wl is obtained by concatenating the
1s averages f̄x,y across the time window of size Wl (30, 60,
or 120 seconds), making N ×Wl the dimension of the vector,
where N is the number of features per second. These local
feature vectors are used to estimate the attention level every
second.

Second, the characterization of global relationships
proposed in this work (one of the novelties here in
DeepFace-Attention with respect to MATT [12]) involves
extracting statistical features from the outputs of the face
analysis modules, which have previously demonstrated their
effectiveness in other classification tasks [63], [70]. For each
facial feature category, a global feature vector fyG is extracted
from a sequence of features fyL ∈ RN×Wl , where Wl is
the time window size (in seconds) and N is the number of
features per second. This sequence fyL is formed as before
in the local representation by concatenating the 1s averages
f̄x,y. The global feature vector fyG for each feature category
y ∈ {EB,HP,EAR, . . .} is now defined as a set gn ∈ R28

with n ∈ {1, 2, . . . ,N } where N is the number of features per
second as described in Table 3.

D. ATTENTION LEVEL ESTIMATION BASED ON
FACIAL FEATURES
Based on the facial features presented in previous sections,
we propose a binary classifier to estimate periods of high or
low attention.

The attention levels in the mEBAL2 dataset range from
0 to 100; however, for our study, we performed binary
classification (high, low). Additionally, the attention levels

vary for each student. To address these aspects, we followed
the protocol proposed by ALEBk and MATT [11], [12],
where two thresholds were defined for high and low
attention periods segmentation: high attention (attention
higher than a threshold τH ) and low attention (attention
lower than a threshold τL). In our case, the thresholds were
obtained through the probability density function (PDF)
of the attention levels from the 60 students (see Fig. 2).
Specifically, we considered low attention as the values below
the 10th percentile (τL) and high attention as the values
above the 90th percentile (τH ), as these percentiles have been
shown in previous works to be separable in high and low
attention.

The attention levels from the EEG band are provided
every second (1 Hz). However, our approach focuses on
longer temporal windows to gather enough behavioral and
physiological features that can effectively classify attention.
Specifically, here we study three different sliding windows of
30s, 60s, and 120s. This means that attention was estimated
every second, based on the characteristics extracted from
the frame sequence within the time window of size Wl
seconds.

We then calculated the band attention level per window
(reducing the impact of possible errors and obtaining a more
accurate value of the captured attention by the band) and
assigned a high or low label. After obtaining the labels,
we analyzed the video sessions using all modules. For each
facial feature category, we generated two vectors of both local
and global features for the applied windows.

We trained two Support Vector Machine (SVM) binary
classifiers for each facial feature category, one using local
and other using global features as described in Section III-C
(see Fig. 4).
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FIGURE 6. Probability density distributions of the confidence scores obtained by our attention estimation systems for the best approach in each of the
three time windows considered (from left to right: 30s, 60s, and 120s) using local features. In order to simplify the performance analysis/comparison,
our experimental discussion is focused on binary classification into low/high attention using the score threshold that maximizes classification accuracy.

All SVMs were trained with a linear kernel, employing
a squared L2 penalty with a regularization hyper-parameter
C ranging from 1e−8 to 1e2 with steps in powers of 10.
Additionally, a tolerance of 1e−3 is set for the stopping
criterion. It is important to mention that this work also
evaluated the performance of RBF kernel SVM and Random
Forest. However, the differences in the performance of
the three proposed algorithms were marginal. For greater
clarity, the paper only presents the results of the linear SVM
classifiers.

To obtain the multimodal approach, we applied score
level fusion with different combinations of the monomodal
attention level estimation classifiers, therefore, we sorted out
our systems into unimodal and multimodal attention level
estimation. The training process works as follows:

1) UNIMODAL ATTENTION LEVEL ESTIMATION
i) Each frame is processed through the 5 facial analysis
modules described in section III-B. ii) Output features fx,y
are averaged for each second of video f̄x,y. iii) A vector
fyL for local and fyG for global features are obtained for the
time window at hand. The extraction process follows the
steps described in the previous section III-C. Finally, we have
the following vectors {fEBL , fEARL , fNSL , fHL , fHSL , fHPL , fExpL } and
{fEBG , fEARG , fHSG , fNSG , fHG, fHPG , fExpG }. iv) Two SVMs for each
facial feature category are trained to classify between
high and low attention, one using local features fyL and
the other using global features fyG as input. The scores
for local features are denoted as syL, which include
{sEBL , sEARL , sHL , sNSL , sHSL , sHPL , sExpL } and for global features as
syG, which include {sEBG , sEARG , sNSG , sHSG , sHPG , sHG, sExpG }.

2) MULTIMODAL ATTENTION LEVEL ESTIMATION
The proposed multimodal systems involve combining uni-
modal facial analysis systems based on either local or global
features. The scores from previously trained unimodal facial
analysis are combined using different strategies: i) a score
sum strategy and ii) training a simple neural network with
two hidden layers. The architecture consists of dense layers

with ReLU activation. The first hidden layer has 16 units
and processes the input, which includes 7 scores, each
corresponding to the output from the SVM binary classifiers
for individual facial feature categories. This is followed
by another dense layer with 8 units, and an output layer
with one unit (sigmoid activation). A dropout of 0.5 is
employed. For both fusion strategies, the process was carried
out individually for local features syL and for global features
syG, obtaining two combined scores sFL or sFG. Finally, these
scores were compared with a threshold τ to determine the
attention level (high or low).

We also propose another multimodal system for global
features, based on feature selection and fusion using a
single SVM classifier (see Fig. 5). The protocol is the
same as previously explained; however, instead of training
an SVM for each facial feature category, we perform
a feature selection and fusion inspired by the work of
Leng et al. [44]. We merged global features into a vector
{fEBG , fEARG , fHSG , fHG, fNSG , fHPG , fExpG } and calculate the Discrim-
ination Power (DP), which is a measure based on the

inter-class and intra-class variation DP =
σ 2
inter

σ 2
intra

. Finally,

we select the features that are in the top 90th percentile of
DP. This new vector fSG is used as input to train a single SVM
to classify between high and low attention.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL PROTOCOL
We follow the protocol proposed in ALEBK [11] to classify
between high and low attention levels, as detailed in the
previous section III-D. In total, we obtain 10376, 8309, and
5605 periods for timewindowsWl of 30, 60, and 120 seconds,
respectively, from all 60 students in the database. The
samples are evenly distributed between low and high attention
levels.

We employ the leave-one-out cross-validation protocol,
where one user is left out for testing, and the remaining ones
are used for training and this process is repeated with all
users. The decision threshold is chosen at the point where the
classification accuracy is maximized.
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TABLE 4. Attention estimation Accuracy (Acc in %) using the mEBAL2
database for the proposed unimodal approaches with local features.
We set the value of τL at 10% and τH at 90%. The values highlighted in
black indicate the best module for each time window (30s, 60s, 120s).

B. UNIMODAL EXPERIMENTS
We initially divided the experiments into local and global
features.

1) LOCAL FEATURES
Table 4 displays the results for each facial analysis module
in terms of attention estimation Accuracy (Acc in %) for all
time windows (30s, 60s, 120s). Fig. 6 shows the probability
density distributions of the scores obtained for the best
method in each window.

The results show that the EyeBlink (EB) and Facial
Expression (Exp) modules achieve the highest accuracy with
better separability between distributions for all time frames.
We noticed that in the 30s and 60s windows, the Exp module
performs the best with an accuracy of 76.66% and 77.28%,
respectively. However, in the 120s window, the EB module
shows a slight improvement over Exp, achieving an accuracy
of 79.16%. The third module (feature category) with the
best results is the EAR feature category, which reinforces
previous findings on the importance of the eye state and facial
expressions in attention estimation [11], [17], [38], [39].
The worst results are obtained from the Heart Rate (H)

module. This suggests that, the variations in Heart Rate do
not present a high correlation with attention levels in this
database.

The Head Pose (HP) module has the second worst result
for 30s and 60s windows; however, even though it is not a
clear attention estimation indicator, it shows that there is a
relationship with attention levels, making it potentially useful
for multimodal approaches. Additionally, it is observed that
as the time window increases, the results improve, reaching
an accuracy of 65.23%. This makes sense, as a larger window
allows capturing more significant patterns and trends in the
student’s behavior andmitigates possible errors from the pose
detection module.

The previous modules show an improvement in the
accuracy metric when the time window is extended, with an
average improvement of around 6.18%. This demonstrates
that increasing the amount of features and context allows
a better classification. The feature categories based on the
eye state are particularly relevant, specifically the EB and
EAR, where we observe an accuracy improvement of 8.62%

TABLE 5. Attention estimation Accuracy (Acc in %) using the mEBAL2
database for the proposed unimodal approaches with global features.
We set the value of τL at 10% and τH at 90%. The values highlighted in
black indicate the best module for each time window (30s, 60s, 120s).

and 7.02% respectively. This makes sense because eyeblinks
are less frequent in e-learning environments compared to
standard behavior [71], [72]. For this reason, a larger window
allows the detection of moments with few eyeblinks (high
attention) or periods with a higher eyeblink frequency (low
attention).

Similar to HP, head-to-camera indicators like Head and
Nose Size, HS and NS respectively, are not strongly
correlated to attention. Unlike previous modules, these
feature categories do not always perform better in the 120-
second window. This makes sense because during e-learning
sessions, students can make fast movements to get closer to
the screen, fixing their visual attention on a specific point on
the screen, indicating strong concentration.

Fig. 6 shows that, in most cases, high attention levels are
easier to recognize than the low ones. Low levels tend to have
amore spread density distribution, making their classification
more challenging. This makes sense in the context of the
monitoring carried out in mEBAL2 [16], where students are
typically focused withmoments of high attention during short
time tasks.

2) GLOBAL FEATURES
We conducted the same experiments as in the previous
section with the global features to understand if they are
more effective in the SVM-based classification and how they
impact each module. This analysis aims to assess whether
the global features can provide additional discriminating
information to improve the accuracy of attention estimation
compared to the local features.

Table 5 shows the results for each module in different time
windows (30s, 60s, 120s). Similar to the previous case, the
probability density distributions of the scores for the best
method in each window are shown in Fig. 7.
The EAR feature category achieves the best results in the

30s and 60s windows, achieving a maximum accuracy of
75.94% and 75.87%, respectively.We can observe significant
improvements in the results of this module in comparison to
local features, achieving an accuracy improvement of 7.42%
and 6.03%, respectively. Once again, the top three feature
categories with the best results are EAR, EB, and Exp.
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FIGURE 7. Probability density distributions of the confidence scores obtained by our attention estimation systems for the best approach in each of the
three time windows considered (from left to right: 30s, 60s, and 120s) using global features. In order to simplify the performance analysis/comparison,
our experimental discussion is focused on binary classification into low/high attention using the score threshold that maximizes classification accuracy.

TABLE 6. Accuracy results (Acc in %) for attention estimation in multimodal systems based on local features, showing the best combinations for score
sum fusion. The first row provides the best unimodal module for the selected time window. The last row displays the results achieved by score fusion via
neural network. The values highlighted in black indicate the best feature categories and the fusion strategy with the best accuracy for each time window
(30s, 60s, 120s).

In the case of the EB module, we can see improvements in
all three windows, but a notable difference in the 120-second
window. The accuracy in this case reaches 80.64%, which is
the highest obtained value.

The Exp module shows a decrease in accuracy results
compared to the local features in all three windows, with
differences of 3.61% for the 30s window, 2.82% for the 60s
window, and 0.72% for the 120s window, noticing an error
reduction as the window size increases.

The Heart Rate module remains an unreliable indicator
for attention estimation, as its classification is almost
random in the considered time windows. The other features
categories, user distance and head pose, exhibit similar
behavior, showing slight improvements in the first window
and deterioration in the subsequent ones when compared to
local features. By themselves do not serve as a clear indicator
for attention estimation. However, as we will see later, the
information provided by these features categories might be
valuable in multimodal systems.

Results show that our best unimodal models improve
their performance as the temporal window increases up
to 120 seconds. The same trend is observed with local
features, highlighting the importance of considering a longer
time period to capture significant patterns and trends in the

students’ behavior. This finding supports the notion that
certain discriminating features may become clearer and more
effective in attention estimation when analyzing a larger
temporal context. By expanding the window, we allow the
modules to detect and utilize more relevant information for
classification, resulting in an enhanced ability to distinguish
between high and low attention levels with greater accuracy.
As we can see, some modules were significantly improved
using global features, such as EAR feature category. Addi-
tionally, the size of the temporal windows has a notable
impact on the results. Global features achieve the highest
accuracy value of 80.64% for the EB module.

Figure 7 also shows that detecting low attention levels can
be more challenging than detecting higher ones, because the
low attention score distribution is more spread than the high
attention one. Although this difference is not as clear in global
features as it is in local ones, it is particularly evident in the
120s window.

C. MULTIMODAL EXPERIMENTS
1) LOCAL FEATURES
Table 6 displays the results from the best combinations of
unimodal for the score sum strategy and the score fusion
results using a neural network.
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TABLE 7. Accuracy results (Acc in %) for attention estimation in multimodal systems based on global features, showing the best combinations for score
sum fusion. The first row provides the best unimodal module for the selected time window. The last row displays the results achieved by score fusion via
neural network. The values highlighted in black indicate the best feature categories and the fusion strategy with the best accuracy for each time window
(30s, 60s, 120s).

FIGURE 8. Receiver Operating Characteristic curve (ROC) obtained for the
most accurate multimodal approach using global features (this occurs in
the 120s window), shown with a blue line and for each of the
monomodal systems that are part of this combination.

The best results in the 30s window for score sum are
achieved combining the EB+Exp modules, with an accuracy
of 77.25%. Compared to the Exp module, which is the best
unimodal module, there is a slight improvement of 0.60%.
We observe that the combination with other modules worsens
the results compared to the Exp module. However, the score
fusion using a neural network achieves the best performance
with 84.25%, marking a significant improvement over the
EB+Exp module combination by 7%, demonstrating the
potential of neural networks for score fusion [43].
The same pattern occurs in the 60s window, making the

EB+Exp combination the best for score sum, showing a
slight improvement over the Exp module alone. The other
combinations result in a worse performance. Once again,

in the 60s window, the Neural Network Fusion (NNF)
achieves the best results, even surpassing those in the 30s
window. NNF outperforms both the unimodal system, with
a significant improvement of 8.59%, and the top-performing
EB+Exp combination by 8.22%.

In the 120s window the best unimodal system is EB, which
is slightly surpassed by three different fusions: EB+Exp,
EB+Exp+HP, and EB+Exp+EAR+H. The best maximum
accuracy is achieved by EB+Exp with 80.52% for score sum.
Once again, NNF outperforms the score sum, achieving an
accuracy of 85.92%. This demonstrates that increasing the
temporal window improves the system combination accuracy,
as expected because a broader temporal context facilitates the
integration of longer and more complex temporal patterns in
the data, resulting in better discrimination. Furthermore, these
results show that score-level fusion with neural networks
is more effective than score sum for local features in the
mEBAL2 database.

The EB and Exp unimodal modules are the most effective
in attention estimation, appearing in all combinations that
improved results. Additionally, the best values are consis-
tently obtained in the 120s window, having the most potential
for improvement due to the wider amount of information.
This highlights the challenge of attention estimation through
image processing, requiring longer windows to capture
relevant behavioral and physiological processes.

2) GLOBAL FEATURES
Table 7 presents the results of the best combinations with
global features for score sum and neural network fusion.
Fig. 8 shows the ROC curve for the best multimodal system,
along with the results of the individual monomodal systems
that compose it.

With global features, more effective combinations are
achieved for score sum and lower performances are obtained
for NNF. In the 30s window, the best unimodal result
is 75.94%, and all combinations shown in the table
(combining with the EAR feature category) outperform it,
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including the combination of all modules. The best one
is EB+Exp+EAR+HP+HS with 77.39%, representing an
average improvement of 1.65% in accuracy. Furthermore,
this combination slightly outperforms (0.14%) the best result
with local features, which was EB+Exp in the 30s window.
However, EB+Exp requires only two modules, making it
faster and more practical. NNF achieves better performance
than the best combination by score sum, with a slight
improvement of 1.87%. However, its performance is inferior
to the results obtained for local features in all windows.

In the 60s window, we observe a similar pattern for the
score sum. The unimodal EAR feature category achieves an
accuracy of 75.87% and all the combinations outperform
it when combined with the same feature category. The
best combination is EB+Exp+EAR+HP+NS, similar to the
previous one, with an accuracy of 79.23%. This combination
shows a significant improvement of 3.36% in accuracy.
This highlights that the user distance and pose feature cat-
egories contain valuable information in multimodal systems,
especially in short-duration windows. Furthermore, the best
combination of global features surpasses the results of the
best combination with local features, EB+Exp, by 1.58%
in accuracy, demonstrating a considerable improvement.
However, for NNF, the results are similar to those in the 30s
window. For the first time, this method is inferior to the best
combination for score sum, though almost equal. Once again,
the results obtained by NNF for global features are inferior to
those achieved with local features.

For the 120s window, we found out that the combination
of EB+Exp significantly outperformed the best unimodal
approach, which was EB. On the other hand, EB+Exp
achieves 83.34% resulting in a remarkable improvement of
2.7% in accuracy. Furthermore, global features also surpass
the best combination with local features for score sum by
2.82%, showing that global features continue to achieve
a better combination of modules, especially in the 120s
window where the best results are obtained. Additionally,
in this window, the best combinations for both local and
global features are EB+Exp, indicating that, under similar
conditions, the most effective system is achieved with global
features. Additionally, this also highlights the importance
of facial units and EyeBlink in attention estimation. NNF
achieves its lowest performance with an accuracy of 74.01%,
which is 9.33% lower than the best combination of EB+Exp.
It has been observed that score fusion using global features
has worse generalization compared to local features

Figure 8 presents the ROC curve for the unimodal and
multimodal approaches based on global features and 120s
window (best approaches). The curve shows significant
improvement when combining Facial Expressions and Eye-
Blink.

3) GLOBAL FEATURES: SELECTION AND FEATURE LEVEL
FUSION
Fig. 5 shows the proposed architecture for feature selection
and fusion (for more details, see Section III-D). Table 8

TABLE 8. Best results of accuracy for global features in unimodal system,
score level fusion, and feature level fusion with the best accuracy for
each time window (30s, 60s, 120s).

TABLE 9. Comparison with the state of the art. Attention level estimation
results on the mEBAL2 dataset [16] including 60 students. Our best
approach is compared with Peng [13], ALEBk [11] and MATT [12]. The
same training and evaluation protocol is employed for all methods
following our experimental protocol. *We have adapted the method
Peng [13] for classifying between high and low attention levels. This
method was designed to work with global features extracted from the
head pose module and the facial landmark module. **We have adapted
the methods proposed in [11] and [12] incorporating the global and local
features proposed in this work. The results obtained for the 120s time
frame are shown, which exhibited the highest accuracy for the
best-performing approaches.

presents the best results achieved for unimodal systems,
score level fusion, and feature level fusion using global
features.

The results show that the proposed architecture for feature
selection and fusion outperforms unimodal systems in all
windows. However, it produces inferior results compared
to the top-performing multimodal systems achieved through
score fusion. However, our feature level fusion architec-
ture only utilizes 10% of the global features (reducing
from 728 features to 73) and uses only an SVM to
obtain a direct score without the need to train a neural
network, which requires more careful optimization. This
demonstrates that the results of this architecture are highly
competitive.

D. EXPERIMENTS: COMPARISON WITH EXISTING
APPROACHES
We now compare ourselves with three recent state-of-the-
art approaches: Peng [13], ALEBk [11], and MATT [12].
ALEBk and MATT were previously trained and evalu-
ated on the first version of mEBAL [17]. To perform
the comparison here, we train again all the methods on
mEBAL2 with 60 users under identical conditions, using
the same attention classification percentile, and employing
the leave-one-out cross-validation protocol. Table 9 presents
a benchmark with the best results obtained in attention
estimation on the mEBAL2 dataset [16] by different state-
of-the-art approaches, compared to our proposal here:
DeepFace-Attention.
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The approach proposed in Peng et al. [13] is a multimodal
system based on global features of head posture and
movements of the eyes, head, and mouth (see Section II-B
for more information). This approach was based on a
random forest model to estimate attention in 10s windows.
We adapted this model to predict high and low attention in
30s, 60s, and 120s windows. The results obtained are inferior
compared to the methods ALEBk [11], MATT [12], and our
method. Regarding global features, our method improves the
performance by 17.06% over Peng et al. [13] and by 19.64%
over our best method based on local features.

ALEBk [11] is a monomodal system that estimates
attention based on the eyeblink rate per minute. An enhanced
version of that system was used, incorporating an SVM for
high and low attention classification, using local and global
features, obtained from the eyeblink detector, rather than
simply applying a blink rate per minute threshold. While
ALEBk achieved an accuracy of 74% for the first version
of mEBAL, the improved version obtains 79.16% when
applied to mEBAL2 with 60 users. Furthermore, the results
of employing global features have been also evaluated over
ALEBk, achieving an accuracy of 80.64%.

MATT [12] presented unimodal and multimodal
approaches to classify between high and low attention levels.
Its best-performing approach was the multimodal one, which
combined EyeBlink, Head Pose, and Facial Expression, using
local features. This method achieved an accuracy of 80.32%
with local features and 74.43% with global features. Better
results are obtainedwith local features compared to the global
ones, in contrast to the outcomes achieved by ALEBk.

As seen on Table 9, our approach outperforms previous
approaches. Our best multimodal approach is EB+Exp score
sum combination for global features and NNF for local
features. The best results are achieved with local features,
surpassing the latest version of ALEBk by 6.8%, resulting in
a relative reduction in error rates of 32.4%. Regarding the best
version of MATT, corresponding to the use of local features,
an improvement of 5.6% in accuracy is obtained, leading to a
relative reduction in error rates of 28.5%. Our global feature
system based on score sum also outperforms state-of-the-art
proposals using global features with a relative reduction in
error rates of 14% for ALEBk and 34.8% for MATT.

Furthermore, our multimodal system based on score sum
requires only two modules (EB+Exp), while the MATT
approach requires three (EB+Exp+HP), resulting in reduced
time and resource usage.

Table 10 presents the results of the average inference
speed for each processed frame by different facial modules
using an Intel Core i5-7600 CPU, 32GB of RAM, and a
NVIDIA GTX 1080 GPU with 8GB of VRAM, providing
a computational comparison of the various modules. It also
presents the inference times per processed frame for our
methods and the state-of-the-art methods: Peng et al. [13],
ALEBk [11], and MATT [12]. The Head Pose module is
the slowest, followed by the landmark module. Although the
EyeBlink module only takes 15.94 ms, using the landmark

TABLE 10. Comparative Inference Times for Attention Estimation using
an Intel Core i5-7600 CPU, RAM 32GB of RAM, and a NVIDIA
GTX 1080 GPU with 8GB of VRAM. This table includes inference times of
the facial analysis modules and a comparison with state-of-the-art
methods. Our best approach is compared with Peng et al. [13],
ALEBk [11], and MATT [12].

module is necessary to identify the eye region, thus the total
time of 57 ms. As we can see in Table 10, the slowest
methods are the systems that utilize the Head Pose, such
as Peng et al. [13], MATT [12], and our local features NNF
method. The fastest method is ALEBk [11], which only uses
the eyeblink and landmark modules.

Note that our objective in this research was not to
enhance the system’s speed but rather to evaluate whether
deep learning-based facial analysis modules can accurately
determine high or low attention levels. For future work,
resource-optimized modules can be used to reach real-time
operation if needed.

V. CONCLUSION
We have presented various approaches to estimate high
or low attention levels, applied to a realistic e-learning
environment of 60 students. State-of-the-art technologies
were used, based on deep learning, to perform facial analysis
of behavioral features and physiological processes related to
attention [12], [14], [16]. To understand which features are
more efficient in attention estimation, we designed unimodal
systems based on SVM classification using the following
information: eyeblink, heart rate, facial expressions, head
pose, and head distance. We also have investigated the impact
of local features and well-known global features on accuracy.
Additionally, we examined the effects of temporal windows
on attention estimation, with three different options: 30,
60, and 120 seconds. We proposed multimodal systems for
attention estimation, demonstrating their ability to enhance
existing methods for attention estimation.

Some interesting findings are as follows: eye state features
(EAR, EyeBlink) and facial expressions are the most useful
with a clear correlation with attention. We also observed
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that the best attention estimation systems improved as
the time window size increases. Head pose and distance
features were not clear indicators of attention; however,
in multimodal systems, they provided relevant information
for classification. The results of the Heart Rate module, both
unimodal and combined, showed that it is not a reliable
indicator of attention. Global features were more effective
for multimodal systems based on score sum, obtaining the
best combination with Eyeblink and Facial Expressions with
an accuracy of 83.34%. The best results in this study were
achieved with local features using score level fusion through
neural network training with an accuracy of 85.92%. We also
analyzed an architecture based on the selection and fusion
of global features, outperforming unimodal systems with
slightly less accuracy than our full score fusion, but only
necessitating 10% of the features.

Our best approach, called DeepFace-Attention, have
outperformed three state-of-the-art methods: Peng et al. [13],
ALEBk [11], andMATT [12]; achieving a significant relative
improvement in error reduction of approximately 50.6% for
Peng et al. [13], 32.4% for ALEBk (an enhanced version of
the system proposed in [11]), and 28.5% for MATT.

In the future, we will explore the combination of local
and global features during the training process. Moreover,
we aim to analyze how attention estimation can be affected
when students perform different types of tasks. Additionally,
we will explore alternative indicators that have shown a direct
relation with attention levels, such as eye pupil size [25], [26],
gaze tracking [31], [73], keystroking [74], [75], [76], among
others. Predicting the level of attention within a continuous
range is a more challenging task than predicting high or low
attention levels, and it is also planned for future work.
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