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ABSTRACT In the real world, there are only a small amount of data with labels. To make full use of the
potential structural information of unlabeled data to train a better classifier, researchers have proposed many
semi-supervised learning algorithms. Among these algorithms, self-training is one of the most widely used
semi-supervised learning frameworks due to its simplicity. How to select high-confidence samples is a crucial
step for self-training. If the misclassified samples are selected as high-confidence samples, this error will
be amplified in the iterative process, which affects the performance of the final classifier. To alleviate the
impact of this problem, this paper proposes a self-training algorithm with block-similar neighbor editing
(STBSNE). STBSNE calculates the distance between samples by the block-based dissimilarity measure,
which improves the classification performance on high-dimensional data sets. STBSNE defines the block-
estimated neighbor relationship, builds the block-estimated neighbor relationship graph, and proposes the
block estimated neighbor editing method to identify outliers and noise points, and edits them to improve the
quality of the high-confidence sample selected. Experimental results on 16 benchmark data sets verify the
superior performance of the proposed STBSNE compared with seven state-of-the-art algorithms.

INDEX TERMS Semi-supervised learning, self-training, classification, block similar neighbor, data editing.

I. INTRODUCTION
With the development of science and technology, the world
has entered the era of big data. Among these huge amounts of
data, labeled data accounts for a small proportion. Obtaining
all labels of data requires a lot of resources, and in some
cases, it is even impossible. To use the potential information
of unlabeled data, researchers proposed semi-supervised
learning [1], [2], [3] and self-supervised learning [4], [5],
[6]. Semi-supervised classification algorithmsmainly include
outlier detection, graph-based, generative, and discriminative
methods [7], [8], [9], [10], [11], [12], [13], [14], [15], [16].

The authors summarize 29 semi-supervised outlier detec-
tion algorithms and conduct experiments on 95 imbalanced
data sets [7]. The experiments show that the BRM [8]
(Bagging-Random Miner) classifier performs better than the
other 28 algorithms. Semi-supervised learning algorithms
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based on graphs [9], [10], [11] mostly construct graphs
using k-nearest Neighbor. Yuan et al. [12] proposed a semi-
supervised learning algorithm via an adaptive Laplacian
graph termed ALGSSL, which reconstructs the sparse graph
by constructing the laplacian graph instead of directly
using the initial graph. Ma et al. [13] proposed FLGSS,
which extracts global and local feature information together.
Cappozzo et al. [14] proposed a discriminative method
termed AMDA, which employs a Gaussian mixture model
to make the classifier more robust. Representative generative
methods include SSFCM (semi-supervised fuzzy c-means
clustering) [15] and ESFCM [16] (semi-supervised entropy
regularized fuzzy c-means clustering).

Among these semi-supervised classification methods, self-
training [17] has become one of the most widely used frame-
works because of its simplicity. In this case, the performance
of the learned classifier depends on the quality of the selected
high-confidence samples. Once the misclassified samples are
chosen as high-confidence samples, they will always affect
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the subsequent iteration and ultimately affect the performance
of the learned classifier. Therefore, improving the quality of
the selected high-confidence samples is a critical step for self-
training-based algorithms.

To improve the quality of the selected high-confidence
samples, researchers have proposed many methods. Li and
Zhu [18] proposed a boosting self-training framework based
on instance generation with natural neighbors for k nearest
neighbor termed BoostSTIG, which expands the labeled set
using natural neighbors to assign labels for unlabeled samples
and then generates a self-training classifier using an ensemble
method. Piroonsup and Sinthupinyo [19] proposed a semi-
supervised self-training method, which uses semi-supervised
clustering techniques to analyze the sufficiency of labeled
data to improve the performance of the learned classifiers.
Li et al. [20] proposed a framework based on local cores for
self-labeled semi-supervised classification (LCSSC), which
uses the idea of local cores [21] to improve the quality
of the selected high-confidence samples in the self-training
iterative process. However, these self-training algorithms do
not consider the influence of the mislabeled high-confidence
samples.

On the other hand, the state-of-the-art STDP [22],
STDP-DE [23], SNNRCE [24], ENaN [25], ELS [26],
STDPNF [27], STSFCM [28] and MLSTE [29] calculate the
distance between samples using Euclidean distance, which
works well in low-dimensional space, but there will be a
‘‘curse of dimensionality’’ in high-dimensional data sets.
SDTC [30] uses the Mahalanobis distance to calculate the
distance between samples. Compared with the Euclidean
distance, the Mahalanobis distance takes into account the
interrelationships between various characteristics of the data,
but the calculation of the Mahalanobis distance is time-
consuming. However, researchers have proposed that dis-
tance measures lack the critical factor dissimilarity, whereby
two samples in a denser region are less similar than two
samples in a lower-density region. Existing distancemeasure-
ment methods such as Euclidean distance and Mahalanobis
distance do not consider the critical factor of difference in
the calculation process. In this article, we employ the block-
based dissimilarity measure to overcome the shortcomings of
Euclidean distance and Mahalanobis distance.

Through the above analysis, we propose a self-training
algorithm with block-similar neighbor editing termed STB-
SNE, which employs a block-based dissimilarity measure
to calculate the distance between samples. Especially,
we propose a block-similar neighbor editing algorithm to
improve the quality of the selected high-confidence samples.
The main contributions of the STBSNE algorithm are as
follows:

(1) We use dissimilarity measure to calculate the distance
between samples and propose a novel block similar neighbors
search algorithm to find the block similar neighbors of all
samples.

(2) Based on the block-similar neighbors,
we develop a novel Block Similar Neighbors Graph

to improve the quality of the selected high-confidence
sample.

(3) We propose a novel data editing method to improve
the performance of a self-training algorithm, which obtains
a better classifier.

(4) A large number of experiments confirm the effective-
ness of the proposed algorithm.

The remainder of this paper is described as follows. Some
related works are reviewed in the Section II, Section III
describes the details of the proposed algorithm STBSNE,
Section IV includes the experimental setting, and Section V
discusses the experimental results. Section VI provides the
conclusion of this paper.

II. RELATED WORK
In this section, we mainly introduce several state-of-the-art
semi-supervised algorithms based on self-training. Assume
that X = {x1, x2, , · · · , xn} denotes the data set containing n
samples, xi ∈ ℜd×1 denotes the i-th sample and d denotes
the number of features. Y = {y1, y2, · · · , yK } denotes the
label set with K possible classes, yi represents the i-th label.
L denotes the labeled samples set.U represents the unlabeled
samples set.

A. SELF-TRAINING
Semi-supervised learning is performed by combining infor-
mation from unlabeled and labeled data. Self-training [17]
is one of the typical semi-supervised learning frameworks.
First, a base classifier is trained on the labeled data set,
and then the high-confidence samples are selected from
the unlabeled set and added to the labeled set for iterative
training. The self-training algorithm is described as follows:

Self-training algorithm
Input Labeled set L, unlabeled set U
Output Classifier H

1 Initialize high-confidence set S = ∅
2 WHILE U ̸= ∅ or classifier H is not stable DO
3 Train the classifier H on the labeled set L
4 Use classifierH to assign labels to the samples in unlabeled

set U
5 Select some samples with pseudo-labels assigned by H

from the unlabeled set U to form a high-confidence set S
6 Update L ← L ∪ S, U ← U − S, S = ∅
7 END WHILE
8 Return classifier H .

Obviously, how to select high-confidence samples is a key
step for self-training algorithm.

B. SETRED
SETRED [31] uses a specific data editingmethod to eliminate
the effect of mislabeled sample points (noise points) during
the iterative training. SETRED calls the edges connected
between points with different class labels tangent edges by
constructing the related adjacency graph. CEW(Cut Edge
Weight) is added to each iteration of self-training to evaluate
whether the newly labeled samples are high-confidence
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samples or not, and then only the samples with high-
confidence are added to the labeled data set L, and the
optimized classifier H is obtained iteratively.

C. STDP-CEW
STDP-CEW [32] discovers the underlying spatial structure of
the data set using the density clustering algorithmDPC to find
the ‘‘previous’’ sample set L ′ and ‘‘next’’ sample set L ′′ of
the labeled data set L. The ‘‘previous’’ and ‘‘next’’ unlabeled
samples of all the labeled samples in L are labeled, and the
‘‘previous’’ and ‘‘next’’ samples are evaluated with high-
confidence using hypothesis testing with cut-edge weights,
and finally the samples with high-confidence are added to the
labeled data set L, and the optimized classifierH is iteratively
obtained.

D. STDPNAN
STDPNaN [33] uses an integrated classifier to improve the
label prediction capability of the self-training algorithm.
STDPNaN proposes a parameter-free density peak clustering
algorithmDPCNaN by introducing natural nearest neighbors.
DPCNaN discovers the spatial structure of the entire data set
bymaking each sample point to its nearest sample with higher
local density. STDPNaN labels the ‘‘next’’ and ‘‘previous’’
unlabeled samples of all labeled samples in L based on the
data space constructed by DPCNaN, adds the labeled sample
points to the set of labeled samples L, and iterates to derive
the optimized classifier H .

E. BLOCK-BASED DISSIMILARITY MEASURES
Ting et al. [34] proposed a block-based dissimilarity metric,
where F represents the probability density function, D
represents the sample data, and H ∈ 9 (D) represents a
hierarchical partition model that divides the space D into
non-overlapping non-spatial domains. Let xi denotes the ith
sample in D, and let I (•) denotes the indicator function. Let
R

(
xi, xj |H ;D

)
denotes the most minor field under H and D

containing xi and xj:

R
(
xi, xj |H ;D

)
= argmin

h⊂H ,s.t.{xi,xj}∈h

∑
z∈D

1 (z ∈ h) (1)

Let PF (1) denote the probability of 1 computed using
the probability density function F , and let the expected
probability m

(
xi, xj |H ;D

)
of R

(
xi, xj |H ;D

)
be the block-

based dissimilarity of samples xi and xj with respect to F and
D.

m
(
xi, xj |H ;D

)
= E9(D)

[
PF

(
R

(
xi, xj |H ;D

))]
(2)

Let Hb ∈ 9 (D) (b = 1, · · · ,B) be a finite number of
models, and P̃ (R) = 1

|D|

∑
z∈D

I (z ∈ R). Then the block-based

dissimilarity of samples xi and xj with respect to F and D is

me
(
xi, xj |D

)
=

1
B

B∑
b=1

P̃
(
R

(
xi, xj |Hb;D

))
(3)

The state-of-the-art self-training algorithms such as
SETRED, STDPCEW and STDPNaN calculate the distance
between samples using Euclidean distance. However, Eu-
clidean distance is not suitable for high-dimensional data sets.
Thus, we employ the block-based dissimilarity measure to
overcome the shortcomings of Euclidean distance.

III. SELF-TRAINING ALGORITHM WITH BLOCK SIMILAR
NEIGHBOR EDITING (STBSNE)
How to select high-confidence samples is a crucial step
for self-training. If the misclassified samples are selected
as high-confidence samples, this error will be amplified
in the iterative process, which affects the performance of
the final classifier. To alleviate the impact of this problem,
we calculate the distance between samples by the block-
based dissimilarity measure, which considers the distribution
of data. This paper proposes a self-training algorithm with
block-similar neighbor editing (STBSNE). STBSNE defines
the block estimated neighbor relationship, builds the block-
estimated neighbor relationship graph, proposes the block-
estimated neighbor editing method to identify outliers and
noise points, and edits them to improve the quality of the
high-confidence sample selected. Next, we introduce the
proposed algorithm STBSNE in detail.

A. DEFINITIONS
Definition 1 (Similar neighbors): If me(xi, xj) < α, then

xj is a neighbor of xi, whereα is the cutoff distance,α ∈ [0, 1].
Definition 2 (Block similar neighbors): LetMNk (xi) rep-

resent the k nearest similar neighbors of sample xi. The block
similar neighborsMDN (xi) of sample xi is defined as:

MDN (xi) = {xj|
(
xi ∈ MNk

(
xj

))
&&

(
xj ∈ MNk (xi)

)
} (4)

Definition 3 (Outliers): Let MNb(X ) = {g1, g2, · · · , gn},
where MNb(xi) = gi means that there are gi samples have
the same block similar neighbor xi. If MNb(xi) = 0, then, xi
is called an outlier. The set formed by outliers is called the
outlier set,

LQ = {xi |MNb(xi) = 0 } (5)

Definition 4 (Local densities and peaks): The local den-
sity of sample xi is calculated as follows:

ρi =
∑
j̸=i

1
(
lij − ε

)
(6)

1 (ϕ) =

{
1, ϕ < 0
0, ϕ ≥ 0

(7)

In formulas (6) and (8), lij = me
(
xi, xj

)
, and ε represents the

cutoff threshold.
The peak of sample xi is calculated as follows:

δi =

{
max

(
lij

)
,∀j ̸= i, ρj ≤ ρi

min
j:ρj>ρi

(
lij

)
, others (8)
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The peak δi defined as follows: if the point xi has the
highest density, the sample xi is the peak value. In addition,
the density of the sample xi is not the maximum, the point
with the closest distance to the xi, whose density is greater
than xi is the peak value.
Definition 5 (Parent node and root node): We take the

sample with the highest local density as the root node xr . The
parent node of the point xi is its prototype Pi. Prototype Pi of
the sample xi is defined as:

Pi=xj, (9)

where xj is the nearest sample with a greater density with
respect to xi.
Definition 6 (Noise sample): The neighbor label nli of

sample xi is

CM (i) = argmax
k
|FMk | , (10)

nli = yCM(i), (11)

where FMk represents the set of samples in MDN (xi) with
label yk . If the label yi of the sample xi is different from the
neighbor label nli, then xi is considered a noise sample.

B. BLOCK SIMILAR NEIGHBORS SEARCH ALGORITHM
We propose a novel block similar neighbors search algorithm
to find the block similar neighbors of all samples. We use
the KD tree to improve the search speed of k nearest
neighbors [35], [36], [37]. The proposed algorithm is
summarized in Algorithm 1, where MDN (xi) represents the
block similar neighbors of xi, RMNk (xi) represents the k
nearest block similar neighbors of xi, MNb(xi) represents
the number of times that sample xi appears in the block
similar neighbors of another sample, which is the number
of MDN (xi), MNα (xi) represents the similar neighbors of
sample xi, M represents the distance matrix, and α is a
threshold.

Algorithm 1 generates the k Block Similar Neighbors of
each sample.

C. HIGH-CONFIDENCE SAMPLES SELECTION ALGORITHM
To improve the quality of the selected high-confidence
samples, we develop a novel Block Similar Neighbors Graph
algorithm termed MDSG at first. Next, we describe the
proposed MDSG in detail. Let the order record the shortest
path lengths of unlabeled samples to labeled samples with
higher densities in the graph constructed by MDSG. Let ε be
the cut-off threshold. Obviously, the prototype tree PR can be
recursively constructed. MDSG is summarized as follows:

The above MDSG algorithm returns the set order . Here,
we give an example to illustrate the construction process of
Block Similar Neighbors Graph in Figure 1. Squares, circles,
and five-pointed stars represent samples in class 1, class 2,
and class 3, respectively. The solid ones represent labeled
samples, and the hollow ones represent unlabeled samples.

Figure 1(b) is the prototype tree generated using the sample
points in Figure 1(a). A circle with italicized and bold

Algorithm 1 Block Similar Neighbors Search Algorithm
(MDNSearch)
Input Data set X , α, Distance matrix M
Output MDN
1 k = 1, ∀xi ∈ X , MDN (xi) = ∅,MNk (xi) = ∅,
MNb(xi) = 0,RMNk (xi) = ∅
2 Creat a KD tree Tr
3 While not converge
4 For each xi in X , find its k-nearest neighbors xj by Tr
5 IF m

(
xi, xj |H ;D

)
< α

6 MNk (xi) = MNk (xi) ∪
{
xj

}
7 MNb(xi) = MNb(xi)+ 1
8 RMNk

(
xj

)
= RMNk

(
xj

)
∪ {xi}

9 End if
10 End for
11 Calculate LQ by Equation (5)
12 If LQ not change
13 For each xi in X
14 MDN (xi) = RMNk (xi) ∩MNk (xi)
15 End for
16 break
17 Else
18 k = k + 1
19 End if
20 Return MDN

Algorithm 2 Block Similar Neighbors Graph (MDSG)
Input L,U , ε,M
Output order
1 X = [L;U ], count = 1, order = 0
2 For each xi in X
3 order(xi) = 0, calculate the ρi and δi by Equation (6) and (8)
4 End for
5 Calculate the sample prototype with Equation (9) and construct
the prototype tree PR
6 While U ̸= ∅ DO
7 For each xi in U
8 For each xj in L
9 If xj is the prototype of xi
10 L = L ∪ xi,U = U − xi, order(xi) = count ,

count = count + 1
11 Else If xi is the prototype of xj
12 L = L ∪ xi,U = U − xi, order(xi) = count ,

count = count + 1
13 End if
14 End for
15 End for
16 End While
17 Return order

numbers represents a labeled sample, and the other circles
represent unlabeled samples. The number in the upper left
corner of sample xi is order(xi).

The performance of the learned classifier by the self-
training algorithm mainly depends on the quality of the
selected high-confidence samples. We propose an algorithm
MDNE, which compares the neighbor label of each sample
with its label. If the two labels are the same, the sample is
selected as a high-confidence sample, otherwise, the sample
is considered as a noise and deleted. In Algorithm 3, we select
the first order(xi) similar neighbors of xi to generate a new
block similar neighbors set, which is to ensure that each

VOLUME 12, 2024 110421



W. Bai et al.: Self-Training Algorithm With Block Similar Neighbor Editing

FIGURE 1. Block Similar Neighbors Graph.

unlabeled sample has a block-similar neighbors with greater
density.

Algorithm 3 High-confidence samples selection algo-
rithm(MDNE)
Input X ,MDN , order
Output ES
1 ES = ∅
2 For each xi in X
3 Select the first order block similar neighbors samples
4 Calculated nli based on MDN by Equation (11)
5 End for
6 For each xi in X
7 If yi = nli
8 ES = ES ∪ xi
9 End if
10 End for

From Algorithm 3, we can see that MDNE is used to find
the noise points. If a point is identified as a noise, MDNEwill
delete it immediately. Thus, MDNE guarantees the quality

of selected high confidence samples. This is an important
highlight of this article.

D. SELF-TRAINING ALGORITHM WITH BLOCK SIMILAR
NEIGHBOR EDITING (STBSNE)
As discussed above, STBSNE calculates the distance
between samples by using the block-based dissimilarity
measure and builds the block-estimated neighbor relationship
graph. STBSNE uses the block estimated neighbor editing
method to identify outliers and noise points and edits them to
improve the quality of the high-confidence sample selected.
The details of the STBSNE algorithm are summarized as
Algorithm 4:

Algorithm 4 STBSNE algorithm
Input Labeled data L, unlabeled data U , cutoff threshold ε, distance
matrix M
Output Classifier H
1 X = [L;U ], order = ∅,TU = ∅
2 MDN = MDNSearch(X )
3 order = MDSG[L,U , ε,M ]
4 Train the classifier H on the labeled data L
5 count = 1
6 While count < max (order), DO 7 For each xi ∈ U
8 If order(xi) = count
9 TU = TU ∪ xi
10 End if
11 End for
12 Use classifier H assign labels to TU
13 ES = MDNE[TU ,MDN , order]
14 Update the labeled sample set L ← L ∪ ES, unlabeled
sample

set U ← U − ES
15 Train the classifier H on the updated labeled set L
16 count = count + 1
17 End while
18 Return H

E. TIME COMPLEXITY ANALYSIS
In the time complexity calculation in this section, we use
the same base classifier for all algorithms. Therefore, the
time complexity calculation of the base classifier is not
considered. Let n denote the number of samples, d denote the
number of dimensionality, t denote the number of iterations
and k be the number of clusters. The time complexity of
the STBSNE algorithm to calculate the sample distance
matrix is O

(
dn2

)
. The time complexity of finding block

similar neighbors is O (n log n). And the time complexity
of the high-confidence sample selection algorithm is O (n).
So the overall time complexity of the STBSNE algorithm is
O

(
dn2 + tn+ n log n

)
.

IV. EXPERIMENTAL METHODOLOGY
All the experiments in the paper are conducted with 32G
RAM, 64-bit Windows 10, and Inter Core i9 processor. All
the codes are implemented with MATLAB 2019b. We use
Accuracy as classification evaluation metrics, which can be
calculated from the confusion matrix [38]. The related state-
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TABLE 1. Data sets details.

of-the-art SETRED, LSEdit, DE, STDPCEW, STDPNaN,
STDP, and ENN [39] are selected as the comparison
algorithms.

A. DATA SETS
The data sets used in the experiments are all public [40]. The
details of these data sets are shown in Table 1.
Among in the 16 data sets, AR [41], COIL20 [42], ORL1,

Palm2, FERET32 × 32, Yeast and YaleB [43] are all image
data sets. Solar3 is the solar flare data set. Sona is the sonar
data set. The data set Yeast is a data frame of 112 observations
of 50. FERET32 × 32 has 1400 samples that is a subset of
FERET [44]. We also used six small data sets and the details
of each data set can be found from UCI database 4.

B. DATA EDITING TECHNIQUES
This section describes the contrasting data editing techniques
used in this paper.

1) DEPURATION DATA EDITING (DE)
Sanchez et al. [45] proposed a clean data editing technique
named DE, which first searches the k-nearest neighbors of
each labeled sample xi to form a set Nxi . If there are more
than k ′ samples in Nxi whose labels are y, then let yi = y,
where (k+1)

2 ≤ k ′ < k . DE modify the labels of mislabeled
samples and filter noisy data during training.

2) LOCAL SETS EDITION
Li et al. [46] proposed a local set editing technology LSEdit.
LSEdit constitutes a local set searching the natural neighbors
of each sample, and then uses the noise factor function to
evaluate whether each sample is a noise sample, and adds the
edited samples with labels to the edit set to filter the noise
data.

1http://www.uk.research.att.com/facedatabase.html.
2https://www.gwern.net/Crops.
3https://www.kaggle.com
4https://archive.ics.uci.edu/ml/data sets.

3) RELATIVE NEIGHBORHOOD GRAPH EDITION
Reference [47] constructed adjacent undirected graphs G =
(V ,E), where V = X , and E is the set of edges. If ∀xk ∈
X , k ̸= i, j,

(
xi, xj

)
∈ E ⇔

∥∥xi − xj∥∥2 ≤ ∥xi − xk∥2 +∥∥xj − xk∥∥2, xi and xj are called graph neighbors. RNGE gives
the definition of related adjacent graph edges, if∀xk ∈ X , k ̸=
i, j,

(
xi, xj

)
∈ E ⇔

∥∥xi − xj∥∥ ≤ max(∥xi − xk∥ ,
∥∥xj − xk∥∥).

4) CUT EDGES WEIGHT STATISTIC
Reference [48] constructed a related adjacency graph G, and
the edge connected between two points with different class
labels in G is called a tangent edge. For each sample xi in G,
the set of sample connected to it is called the nearest neighbor
set Ni of xi, and the samples with the nearest neighbor set
Ni have the same class label. If there are multiple cut edges
between a sample and its neighbors, the sample is called
noise, and finally, the local cut edge weight is used for
hypothesis testing.

C. EXPERIMENTAL SETTINGS
In the experiments, we choose KNN as the base classifier.
We employ the accuracy as evaluation metric to evaluate
the classification performance. Computing the block-based
dissimilarity measure, we set the height of each tree to 8 and
the total number of trees is 100. We conducted the Wilcoxon
signed ranks test at the level of confidence of 95%. The
symbol ‘‘ +’’, ‘‘−’’, and ‘‘∼ ’’ respectively indicate that the
algorithm STBSNE proposed is significantly better, worse or
equivalent with the comparison algorithms.

We select similar SETRED [31], STDP-CEW [32],
STDPNaN [33] and STDP [22] algorithms for comparative
experiments. To verify the denoising ability of the proposed
algorithm, we conduct comparative experiments with data
editing techniques ENN [39], DE [45] and LSEdit [46] under
the self-training framework. The operating parameters of
the comparison algorithm are set according to the original
articles. And the specific conditions are as follows: in
the SETRED, STDP-CEW and STDP algorithms, α is the
distance interception threshold in the DPC algorithm, θ is
the confidence level threshold, we set α = 2 and θ = 0.1.
In algorithm DE, we set k = 3, k ′ = 2. For the STBSNE
algorithm, ε = 0.5 and α = 0.5. For ENN, K = 3.

V. RESULTS AND DISCUSSION
A. CLASSIFICATION PERFORMANCE AND ANALYSIS
In the real world, labeled data often accounts for a relatively
small proportion. Therefore, according to the published
papers [19], [27], [28], we randomly select 10% of the
samples as training sets for experiments. To avoid the
randomness of the experimental results, all experiments in
this paper were carried out 50 times. The experimental results
are shown in Table 2.
We can draw the following conclusions from the experi-

mental results in Table 2:
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TABLE 2. Accuracy of each algorithm on 16 data sets (mean± std).

(1) On all 16 data sets, the classification performance of
the proposed algorithm STBSNE is higher than that of DE,
LSEdit, ENN, SETRED, STDP-CEW, STDPNaN and STDP.
The reason is the proposed STBSNE selects higher quality
high-confidence samples to train the classifier. As a result,
the learned classifier has a better performance.

(2) On the five image data sets of AR, COI, FER, ORL,
and YAL, the classification performance of the proposed
algorithm STBSNE exceeds 90%, which verifies the good
classification performance of the proposed STBSNE for
high-dimensional data sets.

(3) Compared with DE, ENN, SETRED, STDP-CEW,
STDPNaN, and STDP, the experimental results of statistical
testing at the 95% confidence level show that STBSNE can
significantly improve the classification performance of the
learned classifier.

(4) The proposed STBSNE has achieved good experimen-
tal results on data sets with rich types and different sizes,
which proves the effectiveness of the algorithm.

B. IMPACT OF LABELED SAMPLE RATIO ON
CLASSIFICATION PERFORMANCE
To estimate the impact of the proportion of labeled samples on
the classification performance of the algorithm.We randomly

selected the proportion of samples with labels from 10%
to 90% with the step of 10 %, and conducted experiments
on 16 data sets. The experimental results are shown in
Figures 2 and 3.

We can draw the following conclusions from Fig-
ures 2 and 3:

(1) As the proportion of labeled samples increases, the
proposed algorithm STBSNE consistently outperforms the
comparison algorithms DE, LSEdit, ENN, SETRED, STDP-
CEW, STDPNaN, and STDP on AR, ORL, CAR, YAL,
and FER data sets, which shows the excellent classification
performance of the proposed algorithm. These five data sets
are all image data sets, which reflects the good performance
of STBSNE for high-dimensional data sets.

(2) The proposed algorithm STBSNE obtains a higher
accuracy when the proportion of data with labels is very
small. Therefore, the proposed algorithm STBSNE is more
suitable for the situation where there are only a few labels in
a large number of data sets. Experimental results show that
our proposed algorithm is more suitable for real-life scenes
where the proportion of labeled data is relatively small.

(3) The classification performance of the proposed algo-
rithm STBSNE on the ten data sets including AR, COI, HEA,
BUP, ORL, PAL, CAR, SON, AUS, and YAL is relatively
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FIGURE 2. Classification performance of each algorithm under different labeled sample ratios.
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FIGURE 3. Classification performance of each algorithm under different labeled sample ratios.
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FIGURE 4. The influence of noise ratio on each algorithm.
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FIGURE 5. The influence of noise ratio on each algorithm.
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TABLE 3. The running time of each algorithm on 16 data sets.

stable as the proportion of labels increases. Under different
label ratios, the classification performance curves of the
STBSNE algorithm are relatively smooth, which shows the
robustness of the proposed STBSNE.

C. NOISE EXPERIMENT ANALYSIS
To verify the denoising ability of STBSNE, we conducted
noise experiments. We randomly select 20% of the labeled
samples in the 16 data sets. Among them, [1%, 10%]
of the data are given the wrong labels. Then, carry out
the experiment. The accuracy is chosen as the evaluation
metric of classification performance. Each algorithm was run
50 times on each data set. The experimental results are shown
in Figures 4 and 5.

As can be seen from Figures 4 and 5:
(1) The classification performance of the proposed algo-

rithm STBSNE is higher than 90% on AR, COI, FER, ORL,
PAL,and YAL data sets, and higher than 80% on CLE, Zoo
and YEA data sets. This can prove the good denoising ability
of the proposed algorithm STBSNE. The experimental results
show that the proposed editing algorithm has good denoising
ability.

(2) The classification performance of the proposed algo-
rithm STBSNE is far better thanDE, LSEdit, ENN, SETRED,
STDP, STDPCEW, STDPNaN and STDP algorithms on
11 data sets including AR, CLE, HEA, FER, AUS, ORL,
PAL, CAR, SON, VEH and YAL, which proves the denoising
performance of the STBSNE algorithm. There are seven
image data sets in these 11 data sets, which shows that
the STBSNE algorithm has a good performance for high-
dimensional data sets.

(3) Once the misclassified samples are chosen as high-
confidence samples, they will always affect the subsequent
iteration, and ultimately affect the performance of the learned
classifier. The result proves that the performance of STBSNE
is better than the compared algorithms.

D. RUNTIME ANALYSIS
The overall time complexity of the STBSNE algorithm is
O

(
dn2 + tn+ n log n

)
. SETRED needs to construct related

adjacency graphs and the overall time complexity isO
(
tdn3

)
.

The time complexity of the STDP-CEW algorithm is
O

(
tdn3

)
. The STDPNaN algorithm finds the spatial structure

and the natural nearest neighbor using DPC with O
(
n2

)
and O (n log n), respectively. Therefore, the overall time
complexity of STDPNaN is O

(
n2

)
. The DE and ENN

algorithms mainly search for the k-nearest neighbors of the
sample, and the time complexity is O

(
tn2

)
. The LSEdit

algorithm is mainly to find the natural nearest neighbor
NaN, and the time complexity is O (n log n). The STDP
algorithm mainly uses DPC to discover the spatial structure,
and the time complexity is O

(
tn2

)
. We have carried out the

experiments on running time, and the experimental results are
listed in Table 3.

Table 3 shows that: On 16 data sets, the running time
of the proposed algorithm STBSNE is higher than that of
STDP, DE, ENN, LSEdit, and lower than that of STDPNaN,
SETRED, and STDPCEW, which is consistent with the
theoretical analysis. In general, the time complexity of
the proposed algorithm STBSNE is lower than that of
STDP-CEW and SETRED, and higher than the other five
comparison algorithms.

VI. CONCLUSION
Most of the current semi-supervised machine learning
algorithms under the self-training framework use Euclidean
distance to calculate the distance between samples, which
is not suitable for applications in high-dimensional data
scenarios. To solve this problem, we propose a self-training
algorithm with block-similar neighbor editing method STB-
SNE based on the block dissimilarity measure. The STBSNE
algorithm uses the dissimilarity measure to calculate the
distance matrix, which improves the classification perfor-
mance of the algorithm in high-dimensional space. The
STBSNE algorithm searches the block estimation neighbors
of the samples, determines the relationship between the
samples according to the local density and peak value
of the samples, and builds the block estimation neighbor
relationship graph. A new high-confidence sample selection
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algorithm is proposed, which can not only deal with
noisy data conveniently, and high-quality high-confidence
samples can be selected for iterative training. Compared with
other algorithms based on the self-training framework, the
STBSNE algorithm has good classification performance on
the data set with a labeled sample ratio of 10%. Compared
with other algorithms, the classification performance of
the STBSNE algorithm is not significantly improved on
data sets with labeled sample data increases. Therefore,
STBSNE is more suitable for the situation with less labeled
data, and the comparative experiments on 16 data sets can
fully demonstrate the good classification performance of
the proposed algorithm STBSNE. In the noise experiment,
the classification performance of the STBSNE algorithm is
better than other comparison algorithms under different noise
sample ratios, and the performance is stable, which shows the
good data editing ability of the STBSNE algorithm.

The STBSNE algorithm mainly relies on the block to
estimate the neighbor relationship graph, so the accuracy of
the relationship graph construction affects the classification
performance of the STBSNE algorithm. In future work,
we plan to study the construction of a higher-accuracy graph
and the adaptability of the STBSNE algorithm to multiple
classifiers.
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