
Received 13 July 2024, accepted 30 July 2024, date of publication 9 August 2024, date of current version 12 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3441109

Future Air Quality Prediction Using Long
Short-Term Memory Based on Hyper
Heuristic Multi-Chain Model
KALYAN CHATTERJEE 1, (Member, IEEE), SAMLA SURAJ KUMAR2, (Student Member, IEEE),
RAMAGIRI PRAVEEN KUMAR 1, ANJAN BANDYOPADHYAY 3, SUJATA SWAIN 3,
SAURAV MALLIK4, (Member, IEEE), AMAL AL-RASHEED 5, MOHAMED ABBAS6,
AND BEN OTHMAN SOUFIENE 7
1Department of Computer Science and Engineering, Nalla Malla Reddy Engineering College, Hyderabad 500088, India
2Department of Artificial Intelligence and Machine Learning, Nalla Malla Reddy Engineering College, Hyderabad 500088, India
3School of Computer Science and Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
4Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
5Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh
11671, Saudi Arabia
6Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
7PRINCE Laboratory Research, ISITcom, Hammam Sousse, University of Sousse, Sousse 4000, Tunisia

Corresponding author: Ben Othman Soufiene (soufiene.benothman@isim.rnu.tn)

This work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R235),
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors extend their appreciation to the Deanship of Research
and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/549/45.

ABSTRACT Air pollution is a critical global concern, demanding precise air quality forecasting to mitigate
its severe consequences. Our study introduces Future Air Quality Prediction using Long Short-Term
Memory based on Hyper Heuristic Multi-Chain Model (H2MCM) to project future air quality, considering
various meteorological factors (MFs) and pollution-related variables like atmospheric pressure, temperature,
humidity, and wind patterns. Leveraging 12 units of Long Short-Term Memory neural networks (LSTMs),
H2MCM accurately predicts forthcoming air pollutants (APs) concentrations such as particulate matter with
diameter 2.5 µm (PM2.5), carbon monoxide (CO), and nitrogen dioxide (NO2). Additionally, it accounts
for spatiotemporal correlations between these APs and MFs, which significantly influence the air quality
prediction for the next immediate time interval. H2MCM utilizes a multi-chain mechanism, employing
1-hour prediction models to forecast air quality hourly, enabling approximations for the next 12 hours.
Also, for an efficient model selection, Akaike Information Criterion (AIC), Schwarz Bayesian Information
Criterion (SBIC), Hannan-Quinn Information Criterion (HQIC), and corrected AIC (AICc) tools are used
based on their ability to balance model fit and complexity. Furthermore, it demonstrates the ability to
enhance the performance of any predictor. Experimental results substantiate H2MCM’s superiority over
various models, including the Support Vector Regressor (SVR), Multi-Layer Perceptron (MLP), Recurrent
Air Quality Predictor (RAQP), and Valchogianni models. H2MCM achieves impressive up to 75% better
accuracy and consistency compared to SVR, 60% better than MLP, 38% better than RAQP, and 70% better
than Valchogianni models.

INDEX TERMS Air quality, air pollutant concentrations (APCs), deep learning (DL), heuristic, machine
learning (ML), meteorological factors (MFs), multi-chain, regressors.

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

I. INTRODUCTION
This urban development and industrialization have led to
a severe air pollution problem in urban areas, posing
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significant risks to human health and the environment and
impacting global economic systems. According to the World
Health Organization (WHO), excessive air pollutants cause
approximately 4.2 million deaths annually, with 9 out of
10 people suffering from breathing problems due to these
pollutants [1]. Therefore, there is an urgent need to develop
an efficient technique for predicting air quality in the coming
hours to aid in environmental cleanup.

Assessing the impact of APs on air quality estimation
presents a significant challenge due to their non-linear and
dynamic nature in real-world processes [10]. The conven-
tional chemical transport model (CTM) [15] for air quality
estimation requires vast data. However, given the demand for
advanced models capable of handling non-linearity in real-
world processes, deep learning-based regression algorithms
like LSTM, MLP and Artificial Neural Networks (ANN)
are increasingly employed to map non-linear inputs (i.e.,
air pollutant concentrations and meteorological factors) to
predicted outputs (i.e., future air quality estimations). Several
studies [5], [13] have presented deep learning-based non-
linear air pollution models, while others [8], [9] have
successfully applied machine learning-based regressors to
predict future air quality. Section VI of this study presents
a performance analysis of these models.

This study investigates various regression techniques using
ML/DL to predict future air quality. Experimental results
indicate that the ML-based support vector regression (SVR)
[24] technique performs well for short time intervals due
to strong correlations among air pollution components
(APCs) and meteorological factors (MFs) [10]. However, this
correlation weakens as the time intervals increase, rendering
SVR [24] unreliable for long-term predictions. Consequently,
the focus shifts to the DL-based LSTM regression technique.

The study’s notable contributions are as follows:

1) Introducing the heuristic per hour mechanism and
noise injection to build the required time-series big
dataset for future air quality prediction.

2) Developing 12 1-hr Prediction Models to create the
multi-chain H2MCM model. Each 1-hr Prediction
Model is needed to create the chain architecture of the
H2MCM model.

3) Defining short-, medium-, and long-term predictors
by assessing the internal spatiotemporal correlation
between APCs and MFs.

4) Combining the heuristic multi-chain H2MCM model
with the LSTM regressor to capture non-linear relation-
ships among APCs and MFs.

To construct the big dataset, random sampling techniques
are used, and noise/outlier sets [14] are added to the original
dataset [4], [19] as described in subsection VI-A. Manual
injection of noise/outlier sets serves two purposes: enhancing
the capacity of the utilized regressors and improving predic-
tion accuracy and consistency over extended time intervals.

The remaining structure of this study is organized as
follows: Firstly, the relevant literature survey is presented

in Section II. Following that, in Section III, the system
model & problem formulation are introduced. The next
section, Section IV, covers predictors based on ML/DL.
The proposed H2MCM model is detailed in Section V.
Subsequently, in Section VI, the performance evaluation is
conducted, comparing the H2MCM model with state-of-the-
art methodologies. Section VII described the discussion of
this study. Finally, the study concludes and discusses future
work in Section VIII.

II. LITERATURE SURVEY
The development of algorithms for air quality prediction
has evolved significantly, driven by the need to mitigate the
harmful effects of air pollution through accurate forecasting.
Traditional theory-based approaches, which rely on complex
mathematical expressions, often fall short in addressing the
intricacies of APCs, the variability in emission rates, and the
lack of comprehensive data on pollution sources. In response,
ML/DL algorithms have emerged as powerful tools, offering
enhanced capabilities in modeling and predicting air quality
dynamics.

A. AIR QUALITY PREDICTION USING ML/DL ALGORITHMS
Intelligent prediction systems play a vital role in mini-
mizing the harmful effects of air pollution through short-,
medium-, and long-term forecasting. However, the intricate
nature of APCs, insufficient data on pollution sources,
and constantly changing emission rates pose significant
obstacles to creating these systems. ML/DL algorithms have
demonstrated tremendous success in tackling the intricate
nature of APCs, along with insufficient data on pollution
sources and constantly changing emission rates, which pose
significant obstacles in creating these systems compared to
theory-based approaches relying on complex mathematical
expressions.

B. EARLY DEVELOPMENTS OF NEURAL NETWORKS AND
TIME-SERIES ANALYSIS
The introduction of neural networks (NNs) and ML/DL
methods marked a significant breakthrough in the field of
air quality prediction. These methods, particularly artificial
neural networks (ANNs), were employed to evaluate levels of
various air pollutants and categorize air quality. Initial studies
demonstrated that NNs could effectively handle the nonlinear
and complex relationships inherent in air pollution data [34],
[35], [33].

Recurrent Neural Networks (RNNs) [39], with their ability
to link and train multiple layers of neurons with predefined
weights, became instrumental in analyzing time-series data.
RNNs excel in capturing temporal dependencies, making
them suitable for forecasting future air quality based on
historical pollutant levels. Research leveraging RNNs has
shown significant promise in improving the accuracy of
air quality predictions by considering past data trends and
patterns [36], [37], [38].
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TABLE 1. Existing research works on air pollution prediction using various ML- & DL-based regression algorithms.

FIGURE 1. Architecture of the proposed H2MCM model.

C. ADVANCEMENTS IN URBAN AIR QUALITY PREDICTION
MODELS
Urban air quality prediction models can be broadly
categorized into theory-driven physical processes and
data-driven statistical approaches. Each approach has its
computational demands, but data-driven methods, partic-
ularly those using ML/DL techniques, have proven to
be more adaptable and cost-effective as emphasized in
Table 1.

The rapid advancement in data collection technologies has
enabled the accumulation of vast amounts of urban big data,
which in turn has fueled the development of sophisticated
data-driven models [6], [23]. The Long Short-Term Memory
(LSTM) networks [7] and Gated Recurrent Units (GRUs)
[31] have shown exceptional capabilities in managing
sequential time-series data, a common requirement in air

quality prediction. These models excel at capturing long-term
dependencies and have been widely adopted in air pollution
research [7], [11], [31], [32].

Researchers have also integrated LSTM networks with
Convolutional Neural Networks (CNNs) and Graph Convolu-
tional Networks (GCNs) to capture both temporal and spatial
patterns in air quality data [11], [32]. This hybrid approach
has enhanced the accuracy and robustness of predictions
by leveraging spatial correlations among monitoring sta-
tions [29], [30]. Also, researchers have effectively combined
LSTM with convolutional neural networks (CNN) [30] and
graph CNN [29] to incorporate spatial patterns identified
in monitoring station data. Additionally, the use of neural
attention networks has further improved model performance
by identifying and focusing on the most relevant features in
the data [27], [28].
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D. RECENT TRENDS IN FUSION AND ENSEMBLE
STRATEGIES
In recent years, there has been a shift towards using
fusion and ensemble strategies in DL models to improve
long-term air quality predictions. These strategies combine
multiple models to capture the spatiotemporal characteristics
of air pollution and weather datasets more effectively.
By integrating diverse models, researchers can enhance
prediction accuracy and reliability, addressing the challenges
posed by incomplete or noisy data [25], [26].

Despite these advancements, predicting long-term air
pollution remains a formidable challenge. The limited avail-
ability of comprehensive and high-quality air pollution data,
along with the inherent noise andmissing values, continues to
hinder the development of highly accurate models. Ongoing
research focuses on refining these models, improving data
preprocessing techniques, and exploring novel architectures
to overcome these limitations.

Therefore, the development of algorithms for air quality
prediction has progressed from basic neural networks to
sophisticated ML/DL models capable of handling complex
temporal and spatial dependencies. The integration of
advanced techniques such as LSTM, GRU, CNN, GCN,
and attention mechanisms has significantly improved the
accuracy and robustness of air quality forecasts. However,
challenges remain, particularly in long-term prediction, due
to data limitations. Continued research and innovation in
this field are essential to further enhance the predictive
capabilities and reliability of air quality prediction models.

III. SYSTEM MODEL & PROBLEM FORMULATION
The expansion of power systems, networks, electric vehicles,
and advanced high-speed technologies has been identified
as a major factor contributing to the continuous increase
in air, water, and food pollution. Among these types of
pollution, air pollution has gained considerable attention from
governments and the public due to its significant global
impacts. As a result, there is an urgent need for an accurate
model capable of monitoring and predicting air quality to
protect the planet. To meet this demand, ML [18], and
DL [20], [21], [22] have emerged as powerful tools, as evident
from their increasingly widespread use.

A. SYSTEM MODEL
System architecture of the H2MCM model is illustrated in
Figure 1. This model comprises a multi-chain architecture
with 12 units of 1-hr Prediction Model designed to forecast
the APCs 12 hours ahead from the present time, as detailed in
Table 2. The creation of each 1-hr Prediction Model involves
employing a per hour heuristic multi-chain mechanism.

Table 2 shows that the accuracy and consistency of the
H2MCM model display improvement with an increasing
number of 1-hr Prediction Models. Each 1-hr Prediction
Model exhibits higher values for PLCC and RMSE, indicating
enhanced performance, while lower values of the Delta Rule

TABLE 2. Number of 1-hr Prediction Model for the construction of
H2MCM model.

signify reduced network errors. However, beyond 12 units of
1-hr Prediction Models, the accuracy improvement becomes
negligible. Adding 13 units results in only a 0.5% accuracy
improvement; subsequent units do not yield significant
enhancements. Moreover, with the inclusion of more units,
the computational complexity of the model continues to rise.
Consequently, we conclude that the optimal choice is to
employ 12 units of 1-hr Prediction Model for constructing
our multi-chain H2MCM model.

B. MODEL SELECTION
Model selection is crucial in ensuring that the chosen
model effectively represents the data and provides accurate
future predictions. In this context, information criteria such
as Akaike Information Criterion (AIC), Schwarz Bayesian
Information Criterion (SBIC), Hannan-Quinn Information
Criterion (HQIC), and corrected AIC (AICc) are valuable
tools for comparing and selecting the most appropriate
model. These information criteria are used to strike a balance
between model fit and model complexity. They penalize
overly complex models, encouraging the selection of models
that are both parsimonious and predictive. They can signif-
icantly aid in the decision-making process when choosing
among competing models. Table 3 presents selection criteria
of our proposedDL-based future air quality predictionmodel.

Lower values for AIC, SBIC, HQIC, and AICc indicate
better model fit and more fabulous parsimony. In the context
of these criteria, a lower value represents a more favorable
trade-off between model fit and complexity.

LSTM-based H2MCM has the lowest AIC, SBIC, HQIC,
and AICc values among all models, suggesting that it is the
most parsimonious and predictive model according to these
criteria.

RAQP-based H2MCM also performs well, with the
second-lowest values across all criteria. It is a strong
contender and may be considered for further analysis.

SVR-based H2MCM, MLP-based H2MCM, and
Vlachogianni-basedH2MCMhave higher AIC, SBIC, HQIC,
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TABLE 3. Model comparison using various information criteria.

and AICc values, indicating a relatively poorer trade-off
between model fit and complexity. These models may be
considered less parsimonious according to these criteria.

It is important to note that the specific interpretation of
these criteria can vary depending on the context and the
complexity of the compared models. The model with the
lowest values across all four criteria is often considered the
best trade-off between model complexity and fit. Therefore,
from Table 3, we observed the lowest values across all four
criteria for LSTM-based H2MCM and hence, select LSTM-
based H2MCM to design our proposed future prediction
model:H2MCM.

C. PROBLEM FORMULATION
This study aims to develop a dependable and accurate air
pollution model capable of predicting the hourly levels of
APCs and MFs for the next 12 hours. To achieve this goal,
we have defined our objective function using the following
Equation (1).

( fi : 1← n)
Hyper heuristic multi−chain LSTM
−−−−−−−−−−−−−−−−−−−→ ( gi : 1← n)

(1)

Here, f and g are the real functions which represent the input
and output. n is the total number of samples. i is the total
number of iterations.

IV. ML- AND DL-BASED PREDICTION
Within this section, we have presented two regression
algorithms to tackle the issue of predicting future air quality.
Specifically, SVR [24] represents the ML-based prediction
approach, while LSTM [7] represents a DL-based prediction
approach.

A. SUPPORT VECTOR REGRESSOR (SVR)
The support vector regression (SVR) approach is an extension
of the support vector machine (SVM) [24]. SVR [24] is
well-suited for handling non-linear data and, in this context,
is used to formulate the objective function for the ML-based
prediction approach.

Let, DSTr = {(xi, yi)} be the training samples, where, i ∈
R, xi = [ x11, x

2
2, x

3
3, . . . . . . ., x

n
n] ∈ Rn represents the ith feature

input and yi ∈ R denotes the ith real target output.

The forthcoming Equation (2) illustrates the general form
of SVR using a hyperplane function.

H ( xi) =< υ,X ( xi) > +ψ (2)

Here, the <, ,> operator denotes the inner product, while
X (, .), defines a non-linear function. The variables υ

denotes feature inputs and ψ represent the target output
parameters, respectively. The value of H can be normalized
by min(, |υ|2),. To incorporate margin of errors for SVR,
two variables, namely a1 and a2, are used. Based on the
above discussion, we can represent our objective function as
a concave optimization problem, as shown in Equation (3):

min

 |υ|2 + c ∗ n∑
j=1

(a1 + a2)

 e
−→


H − yi ≤ e+ a1
yi − H ≤ e+ a2
a1, a2 ≥ 0 ∈ aj

(3)

Here, the variable e signifies computational errors, while c
represents the regularization constant, whose value must be
greater than 0. In the absence of regularization, the objective
function is minimized by the variables a1 and a2, where j =
1, 2, . . . .,m. To mitigate the issues of under- and over-fitting,
we set c = |υ|2/2, and aim tominimize e = c∗

∑n
j=1(a1+a2).

To achieve an optimal learned solution, we also take into
account the kernel function. The kernel function is expressed
by the following Equation (4):

K ( xi, xj) =< g( xi) , g( xj) > (4)

Here, the function g maps X (xi ∈ X ∈ R) to the hyperplane
and generates Y (yi ∈ Y ∈ R). The sigmoid kernel
(K (xi, xj) = tanh(γ ∗ xTi ∗ xj + r)) is used to establish
ML regression models. The hyperparameters γ and r are
determined through training samples.

To predict air quality using an ML-based regressor, we use
the SVR method. This method uses the initial values of
MFs and APCs (Base 1-hr Prediction Model at time t=0) to
forecast air quality from t=1 hour to t=12 hours.

Based on the findings in Table 4, it is evident that
the SVR regressor exhibits higher average PLCC values
and lower average RMSE values for shorter time intervals.
However, as the prediction horizon extends beyond 5 hours,
the SVR’s performance deteriorates, indicated by a sharp
drop in average PLCC and an increase in average RMSE.
This decline is attributed to weak correlations among the
involved air contaminants and MFs over longer time periods.
Consequently, we deduce that the ML-based SVR approach
is more suitable as a short-term predictor, prompting us
to explore the DL-based LSTM technique for improved
prediction accuracy.

B. LONG SHORT-TERM MEMORY (LSTM)
The Long Short-TermMemory (LSTM) network [7] is a type
of recurrent neural network (RNN) [39] that is well-suited
for time-series prediction problems. Unlike traditional RNNs,
LSTMs can effectively capture long-term dependencies in
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TABLE 4. Compared ML-based SVR Model DL-based LSTM Model.

sequential data due to their unique architecture, which
includes memory cells that can maintain information over
extended periods.

An LSTM network is composed of a sequence of LSTM
cells. Each cell in the LSTM network processes an input
sequence, xi, to produce an output, hi, and maintains a cell
state, ci. The LSTM cell consists of three gates: the input gate,
the forget gate, and the output gate, which regulate the flow
of information through the cell.

The equations governing the operations of an LSTM cell
are as follows:

1) FORGET GATE

ft = σ (Wf · [ht−1, xt ]+ bf ) (5)

Here, ft is the forget gate activation, σ is the sigmoid function,
Wf is the weight matrix, ht−1 is the previous hidden state, xt
is the current input, and bf is the bias.

2) INPUT GATE

it = σ (Wi · [ht−1, xt ]+ bi) (6)

c̃t = tanh(Wc · [ht−1, xt ]+ bc) (7)

Here, it is the input gate activation, c̃t is the candidate cell
state,Wi andWc are weight matrices, and bi and bc are biases.

3) CELL STATE UPDATE

ct = ft ⊙ ct−1 + it ⊙ c̃t (8)

Here, ct is the updated cell state, and⊙ denotes element-wise
multiplication.

4) OUTPUT GATE

ot = σ (Wo · [ht−1, xt ]+ bo) (9)

ht = ot ⊙ tanh(ct ) (10)

Here, ot is the output gate activation, ht is the hidden state,
Wo is the weight matrix, and bo is the bias.
The LSTM network leverages these gates to control the

flow of information, thereby addressing the vanishing gradi-
ent problem commonly encountered in traditional RNNs.

To predict air quality using an LSTM-based approach,
the initial values of meteorological factors (MFs) and air
pollution components (APCs) are used as inputs to the LSTM
network (Base 1-hr Prediction Model at time t=0). The
LSTMnetwork is trained to forecast air quality from t=1 hour
to t=12 hours.

By incorporating LSTM networks, which are adept at
capturing long-term dependencies and temporal patterns,
we aim to achieve improved prediction accuracy over longer
time horizons. The performance of the LSTM-based model
is evaluated using metrics such as the PLCC and RMSE.
Based on our findings, the LSTM approach exhibits higher
PLCC values and lower RMSE values compared to traditional
ML models, particularly for longer prediction intervals,
demonstrating its suitability for medium- and long-term air
quality forecasting.

V. PROPOSED LSTM-BASED HYPER HEURISTIC
MULTI-CHAIN MODEL (H2MCM)
The H2MCM model is our proposed solution for medium-
and long-term air quality prediction. To achieve the required
prediction accuracy, we develop 1-hr Prediction Models and
use an error computation mechanism based on transformer-
based multi-chain hyper-heuristic rules. This approach is
taken because integrating transformer models directly into
H2MCM has certain limitations. Therefore, to leverage the
accuracy advantages of transformer models in time-series
air quality data, this study formulated the transformer-based
multi-chain hyper-heuristic rules.

A. LIMITATIONS OF INTEGRATING TRANSFORMER
MODELS WITH H2MCM

1) Computational Complexity:

a) Transformers: Transformer models, such as
those discussed in [40] and [41], are compu-
tationally intensive due to their full attention
mechanism. This mechanism exhibits quadratic
complexity relative to the sequence length, lead-
ing to high memory consumption and slower
training times, particularly for long sequences.

b) H2MCM (LSTM-based): LSTM models are
generally more efficient at handling long
sequences because they process sequences
sequentially and maintain a manageable com-
putational complexity.

2) Hyperparameter Tuning:

a) Transformers: Transformers require careful tun-
ing of many hyperparameters, such as the number
of layers, attention heads, and size of the feed-
forward network. This makes the training process
more complex and time-consuming.

b) H2MCM (LSTM-based): While LSTM models
also require hyperparameter tuning, the pro-
cess is relatively more straightforward than

VOLUME 12, 2024 123683



K. Chatterjee et al.: Future Air Quality Prediction Using Long Short-Term Memory

transformers. The primary hyperparameters
include the number of LSTM units, the number
of layers, and the dropout rate.

3) Interpretability:

a) Transformers: Due to their complex architec-
ture, transformer models, such as those dis-
cussed in [40]and [41], can be less inter-
pretable than LSTM models. Understanding and
explaining transformers’ internal workings and
decision-making processes can be challenging.

b) H2MCM (LSTM-based): LSTM models, while
still complex, offer more straightforward inter-
pretability through their gate mechanisms (input,
forget, and output gates) and the sequential
processing of data.

4) Spatiotemporal Correlations:

a) Transformers: While transformers handle spa-
tial dependencies well due to their attention
mechanism, capturing temporal correlations
requires additional architectural modifications,
such as incorporating temporal embeddings.

b) H2MCM (LSTM-based): LSTM models are
inherently designed to capture temporal depen-
dencies, making them well-suited for time series
data like APCs and MFs.

Thus, while transformer models, such as those discussed
in [40] and [41], offer advanced capabilities and have
shown superior performance in various dynamic systems,
their integration into the H2MCM model presents several
challenges. These include higher computational complexity,
more significant data requirements, and the need for extensive
hyperparameter tuning. On the other hand, the LSTM-based
H2MCM is well-suited for handling temporal dependencies
in time series data, offering a more efficient and interpretable
approach with lower computational demands. However,
recognizing the strengths of transformer models, such as their
ability to capture global dependencies and handle spatial
correlations effectively, we have designed our multi-chain
hyper-heuristic rules based on transformer models.

B. TRANSFORMER-BASED MULTI-CHAIN
HYPER-HEURISTIC RULES
Let M be the total number of chains. Each chain i has a set
of transformer hyperparameters denoted by Hi, where i =
1, 2, . . . ,M .

The transformer-based objective function for the hyper-
heuristic optimization is defined as:

Objective Function:min(f (H )) = H ∈ H1,H2, . . . ,HM
(11)

Here, H is the set of all transformer hyperparameters across
all chains.

The solution space for the multi-chain hyper-heuristic is
the union of all chain-specific solution spaces:

Solution Space: S =
M⋃
i=1

Hi (12)

The optimization process aims to find the best combination
of transformer hyperparameters that yield the optimal perfor-
mance for the proposed H2MCM model.

The transformer-based multi-chain hyper-heuristic lever-
ages the power of transformer networks to capture spatiotem-
poral dependencies in the air quality time-series data, and the
hyper-heuristic optimization explores the solution space to
find the optimal transformer hyperparameters for each chain.

Therefore, by maintaining these multi-chain heuristic
rules, our proposed H2MCMmodel can enhance the accuracy
and consistency of air quality prediction. Algorithm 1
outlines the proposed transformer-based multi-chain hyper-
heuristic rules to develop the H2MCM model.

Algorithm 1 Proposed Transformer-Based Multi-Chain
Hyper-Heuristic Rules
1: Initialize the total number of chains M
2: Initialize the maximum number of iterations Niter
3: Initialize the set of transformer hyperparameters for each chain:

H1,H2, . . . ,HM
4: Initialize the best hyperparameters: H
5: Initialize the best objective function value: f =∞
6: for i← 1 to M do
7: for j← 1 to Niter do
8: Randomly generate transformer hyperparameters Hi
9: Train transformer model with hyperparameters Hi on

training data
10: Evaluate the objective function value: f (Hi)
11: if f (Hi) < f then
12: Update the best hyperparameters: H←Hi
13: Update the best objective function value: f ∗ ←

f (Hi)
14: end if
15: end for
16: end for
17: Output: The best set of transformer hyperparameters H∗ that

yield the optimal performance for air quality prediction.

C. TRAINING OF THE H2MCM MODEL
Training of the H2MCM model involves summing every
12 units of the 1-hr Prediction Model and is described as
follows:

1) TRAINING OF THE BASE 1-HR PREDICTION MODEL
TheBase 1-hr PredictionModel is trained using the following
inputs: a) Outliers, b) Initial Features, and c) Label1. The
output, Predicted Feature of Base 1-hr Prediction Model,
is used as the input for subsequent 1-hr Prediction Models.

2) TRAINING OF THE 1-HR PREDICTION MODEL1
It uses the following inputs: a) Predicted Feature of Base
1-hr Prediction Model, b) Current Features, c) Outliers, d)
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Label1 (corresponding to the instance of the next hour from
the current adjacent time), and e) heuristic rules.

After training, the 1-hr Prediction Model1 evaluates the
errors using iterative heuristics and a feed-forward weight
adjustment algorithm, Delta-Rule. This H2MCM model
predicts the APCs and MFs after 1 hour.

3) TRAINING OF THE 1-HR PREDICTION MODEL2
For the second-hour prediction, 1-hr Prediction Model2’
is trained using: a) the outputs of Predicted Feature of
Base 1-hr Prediction Model and ‘Predicted Feature of 1-hr
Prediction Model1’, b) current features, c) outliers, d) Label2
(corresponding to the 2-hour time interval from the current
adjacent time), and e) heuristic rules.

The 1-hr Prediction Model2’ computes errors and predicts
the APCs and MFs after 2 hours. This process is repeated
for n-hr Prediction Modeln’ to predict features after 12 hours,
and the results are summed to achieve APCs and MFs after
12 hours.

Algorithm 2 outlines our proposed H2MCM model.

Algorithm 2 Proposed H2MCMModel
1: Gather historical air quality data and relevant features from the

constructed Big dataset
2: Pre-process the constructed Big dataset (e.g., handle missing

values, scale features)
3: Define the H2MCM model architecture
4: Split the big dataset into training, testing, and validation sets
5: Set the number of epochs and batch size for training
6: Train H2MCM model:
7: Initialize H2MCM model with hyperparameters
8: for each epoch do
9: Feed training data to the H2MCM model
10: Update model weights using backpropagation
11: end for
12: Make predictions:
13: Input the constructed Big Dataset
14: for each future time step do
15: Use the trained H2MCM model to predict air quality
16: Apply transformer-based multi-chain hyper-heuristic rules

using Algorithm 1
17: end for
18: Evaluate the H2MCM model:
19: Compare predicted air quality with actual values on the test

set
20: Calculate performance metrics (e.g., PLCC, RMSE)
21: Output: H2MCM model for future air quality prediction

By incorporating transformer-based methods, the H2MCM
model aims to leverage recent advancements to improve the
accuracy and robustness of air quality predictions.

VI. EXPERIMENTAL RESULT
This section deals with the performance of our proposed
H2MCM model.

A. BIG DATASET
We utilized air quality and weather datasets obtained from
Kaggle [4], [19]. The air quality dataset consists of hourly

and daily concentration values for various APCs. Meanwhile,
the weather dataset contains hourly and daily values for
different meteorological factors (MFs), such as temperature
(in Celsius), humidity, wind speed (in km/h), wind bearing
(in degrees), visibility (in km), and cloud cover. The datasets
were sourced from multiple sensors, comprising a total of
1,001,976 samples.

To create the required time-series dataset, we merged
and pre-processed the air quality and weather datasets,
followed by data normalization. Additionally, we integrated
a noise dataset, generated by randomly sampling from the air
quality and weather datasets. During training, we iteratively
introduced 1,001,976 noise samples as outliers in each 1-
hr Prediction Model. Thus, every 1-hr Prediction Model
comprises 1,001,976 samples. As a result, the constructed
dataset contains a total of 14,027,664 samples, which exhibit
high heterogeneity, representing varying volumes, variety,
and dynamics of the APCs.

B. SENSITIVITY ANALYSIS
In order to create a precise and reliable prediction model for
the APCs, we construct a time-series big dataset by merging
noise, air quality, and weather datasets, which demonstrate
internal correlations. To assess the variability level of
this combined dataset, we employ the squared correlation
coefficient (R2) metric, a standard tool for sensitivity analysis.
The computation of the R2 metric is as follows:

R2 = 1−

∑M
i=1(obi − ˆpdi)

2∑M
i=1(obi − ōb)2

(13)

Here, obi denotes the observed value, ˆpdi represents the
predicted value, ōb is the mean of the observed values, and
M is the total number of data points. The symbol

∑
indicates

the sum over all i data points.
In order to create an accurate air quality predictor, it is

crucial to assess the present fluctuation levels of various
participating air contaminants, as illustrated in Equation (13).
Thus, a dependable predictor becomes indispensable to
effectively handle these fluctuations and ensure precise
forecasts of future air quality. Figure 2 depicts the current
fluctuation levels of various participating air contaminants
i.e., PM2.5, CO, and NO2.
The fluctuation levels of different participating air con-

taminants can be represented mathematically as follows: Let
Ccontaminant(t) be the concentration of a specific air contami-
nant at time t . The fluctuation level of this contaminant can be
calculated using the standard deviation σcontaminant and mean
µcontaminant as:

Fluctuation level of contaminant: Fluccontaminant

=
σcontaminant

µcontaminant
(14)
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FIGURE 2. (a) Current fluctuation level of PM2.5. (b) Current fluctuation level of CO. (c) Current fluctuation level of NO2.

TABLE 5. Best hyperparameter configuration.

where:

σcontaminant =

√√√√ 1
M

M∑
tm=1

(Ccontaminant(tm)− µcontaminant)2

µcontaminant =
1
M

M∑
tm=1

Ccontaminant(tm)

Here,M represents the total number of data points (time steps
(tm)) for the specific air contaminant.

C. EXPERIMENTAL SETUP
The experiments were executed on a server with an Intel
i5 CPU and an NVIDIA Geforce RTX 3070 Ti GPU.
Python 3.7 along with the required Anaconda environments
served as the software environment for the experiments.
To demonstrate the exceptional performance of our proposed
H2MCM model, we utilized the hyperparameter setup that
yielded the best results, as indicated in Table 5.

D. EVALUATION METRICS
Our objective is to address the internal correlations among the
participating APCs and MFs to achieve accurate predictions.
To assess prediction accuracy, we have chosen the Pearson
Linear Correlation Coefficient (PLCC)metric. PLCC is a real
number ranging from ‘−1 to+1,’ indicating the strength and
direction of correlation between the APCs and MFs. A value
of ‘+1’ indicates a powerful positive correlation, while ‘−1’
signifies a strong negative correlation.

FIGURE 3. Mean of future air quality prediction using the H2MCM model
for 12 hours.

FIGURE 4. Partial regression of the H2MCM model for 12 hours.

For evaluating prediction errors, we utilize the Root Mean
Square Error (RMSE), which is a standard deviation with a
range of ‘0 to 1’. A lower error is represented by ‘0’, while a
higher error is indicated by ‘1’. As a measure of prediction
consistency, we employ RMSE as one of our evaluation
metrics. Hence, a good prediction model should exhibit
PLCC and RMSE values close to ‘1’ and ‘0’, respectively.

RMSE and PLCC can be computed as follows:

RMSE = e

√√√√(1/M )
M∑
i=1

(pdi − obi)2 (15)

PLCC =
M∑
i=1

∑M
i=1(pdi − pdi) ∗ (obi − obi)

e
√∑M

i=1(pdi − pdi)2 ∗
∑M

i=1(obi − obi)2

(16)
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FIGURE 5. Future air quality prediction using the H2MCM model for
12 hours.

Here, M represents the total number of samples. pd and ob
refer to the predicted and observed values. pd and ob denote
the mean of pd and ob, respectively.
The following models have been employed for comparison

in this study: i) Vlachogianni model [9]: This model utilizes
step-wise multiple linear regression for air quality prediction.
ii) RAQP model [17]: The RAQP model applies recurrent
support vector regression (SVR) for air quality prediction.
iii) SVR model [12]: This model employs support vector
regression for air quality prediction. iv)MLPmodel [13]: The
MLPmodel is based on a multilayer perceptron for air quality
prediction.

A comparison scheme was applied to all the regressors,
utilizing the same features for evaluation.

E. EVALUATION OF THE H2MCM MODEL
Performance evaluation of our proposed H2MCM model is
done by measuring the loss of the H2MCM model through
the mean square error (MSE) and mean absolute error (MAE)
metrics. Figures 6(a) and 6(b) depict the MSE and MAE loss
of the H2MCM model, respectively.

F. PARSIMONY OF THE H2MCM MODEL
To assess the parsimony of the H2MCM Model, we used the
Occam’s razor principle. Occam’s razor principle involves
evaluating the model’s complexity, simplicity, and adherence
to the principle that the simplest explanation or model is often
the best. Algorithm 3 describes the parsimony assessment of
our proposed H2MCMModel.
Table 6 presents the parsimony comparison among all used

models with our proposed H2MCM model.

G. PERFORMANCE EVALUATION
The big dataset was partitioned randomly into training, test-
ing, and validation sets to effectively assess the performance
of the 1-hr Prediction Model. The training, testing, and
validation sets contained 80%, 10%, and 10% of the data,
respectively. The evaluation process was repeated 300 times,
and the average PLCC and RMSE values for each APCs were
computed from t=1 hr to t=12 hrs. The corresponding results
are shown in tables 7 and 8.

Algorithm 3 Parsimony Assessment of the H2MCMModel

1: procedure ComputeParsimony(H2MCMModel)
2: ComplexityScore(CS)← 0
3: InterpretabilityScore(IS)← 0
4: PerformanceScore(PS)← 0
5: CS ← EvaluateModelComplexity(H2MCM Model)
6: IS ← EvaluateInterpretability(H2MCM Model)
7: PS ← EvaluatePerformance(H2MCM Model)
8: TotalParsimonyScore← CS + IS + PS
9: if TotalParsimonyScore is high then
10: Output: The H2MCM model is considered parsimo-

nious according to Occam’s razor principle.
11: else
12: Output: The H2MCMmodel may need further simpli-

fication or improvement.
13: end if
14: end procedure

Figure 3 displays the mean of future air quality predictions
using the H2MCM model, while Figure 4 depicts the partial
regression of the H2MCM model. Additionally, Figure 5
illustrates the future air quality predictions of the H2MCM
model.

Figure 9 clearly demonstrates the improved performance
of our proposed H2MCMmodel, accurately predicting future
air pollution levels with PLCC and RMSE values close to
1 and 0, respectively. In contrast, the SVR, MLP, RAQP,
and Vlachogianni models perform well only for shorter
time intervals due to multi-chain hyper heuristic rules and
the high correlation between APC and MF values. As a
result, H2MCM outperforms all the compared SVR, MLP,
RAQP, and Vlachogianni models, as shown in Figures 7
and 8. We also consider the error caused by high internal
correlations during each neighboring moment and find that
our H2MCM model achieves a 100% level of accuracy,
making it one of the most reliable predictors for short-term air
quality prediction. However, in reality, various uncontrollable
natural factors like acid rain, cloudiness, humidity, and wind
patterns prevent us from achieving 100% accurate forecasts.

Upon analyzing Figures 7 and 8, we observed that all mod-
els perform well for short-term air quality predictions due
to the strong internal correlation between the participating
APCs and MFs. However, as the time interval increases to
medium- and long-term, the internal correlation weakens,
leading to a decline in model performance. To address
this limitation, H2MCM incorporates multi-chain heuristic
rules, which may result in some loss of information during
prediction computation. To account for errors due to the
accumulation and diffusion of information, we use standard
metrics. Based on our findings, we can conclude that
H2MCM effectively handles the internal correlation between
the participating APCs and MFs, outperforming other SVR,
MLP, RAQP, and Vlachogianni models, and predicts future
air quality with high accuracy.

Both ML- and DL-based regressors face error accumula-
tion and diffusion issues due to noise/outlier features. How-
ever, our proposed H2MCM model leverages advancements
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FIGURE 6. (a) MSE of H2MCM Model. (b) MAE of H2MCM Model.

TABLE 6. Parsimony comparison among all models.

FIGURE 7. (a) Comparison of prediction accuracy of PM2.5 from time step t=1 hr to t=12 hrs. (b) Comparison of Prediction Accuracy of CO from time
step t=1 hr to t=12 hrs. (c) Comparison of Prediction Accuracy of NO2 from time step t=1 hr to t=12 hrs.

FIGURE 8. (a) Comparison of prediction consistency of PM2.5 from time step t=1 hr to t=12 hrs. (b) Comparison of Prediction Consistency of CO from
time step t=1 hr to t=12 hrs. (c) Comparison of Prediction Consistency of NO2 from time step t=1 hr to t=12 hrs.

in both the 1-hr Prediction Model and deep techniques to
overcome these issues and performs better than the SVR
and MLP strategies. The results are validated in Figures 7
and 8, which demonstrate the superiority of our H2MCM
model over other SVR, MLP, RAQP, and Vlachogianni
models. Nonetheless, due to the 1-hr Prediction Model and
unavoidable natural factors like acid rain and volcanoes,
the H2MCM model may not perform well for certain time
intervals.

Table 6 presents the compared parsimony results of five
different models: SVR, MLP, RAQP, Vlachogianni, and
H2MCM models. The evaluation is based on three criteria:
Complexity Score, Interpretability Score, and Performance
Score, with a Total Parsimony Score being the sum of these
three scores. The Parsimony Evaluation column provides a
simple evaluation based on the total score, where a higher
total score indicates less parsimony and a lower score
indicates greater parsimony of models.
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FIGURE 9. PLCC and RMSE values of the H2MCM Model for 12 hours.

TABLE 7. PLCC comparison among ML-based SVR, DL-based MLP, RAQP, H2MCM, and Vlachogianni models.

TABLE 8. RMSE comparison among direct ML-based SVR, direct DL-based MLP, RAQP, H2MCM, and Vlachogianni models.

SVR, RAQP, and H2MCM models are considered parsi-
monious because they have relatively lower total parsimony
scores, indicating that they strike a better balance between
complexity, interpretability, and performance. On the other
hand, theMLPmodel is not considered parsimonious because
it has the highest total parsimony score, indicating that
it is relatively more complex, less interpretable, or has

lower performance according to the chosen criteria. Vla-
chogianni model is also considered parsimonious, with a
score similar to SVR, RAQP, and H2MCM models. The
H2MCM model provides greater parsimony among all
compares models. Therefore, from Table 6, we can say
that the H2MCM model is superior among all compared
models.
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H. SO-WHAT ASPECT
Our research introduces the Hyper Heuristic Multi-Chain
Model (H2MCM), a novel and highly advanced approach for
air quality forecasting. This is not just an academic exercise;
it has real-world implications and significance. The so-what
aspect of our research can be framed as follows:

1) Public Health and Environmental Protection:
H2MCM’s accurate predictions have the potential
to significantly improve public health by helping
individuals avoid exposure to harmful air pollutants.
By extension, this can lead to a reduction in healthcare
costs and an enhancement in the quality of life for the
population.

2) Mitigating Climate Change: Improved air quality
forecasting contributes to our understanding of the
relationship between air pollutants and climate change.
The model can support initiatives aimed at reducing
greenhouse gas emissions and mitigating climate
change.

3) Urban Planning and Infrastructure Development:
City planners can use precise air quality forecasts to
optimize the placement of urban infrastructure, mini-
mizing residents’ exposure to pollution and improving
the overall quality of life in cities.

4) Emergency Response: H2MCM’s accuracy is crucial
for emergency response during environmental disas-
ters. It can provide timely information for evacuations
and resource allocation, potentially saving lives.

5) Economic Benefits: Accurate air quality predictions
have economic implications. They can lead to cost
savings by reducing healthcare expenses, increasing
worker productivity, and minimizing damage to crops
and buildings, resulting in economic benefits for both
individuals and businesses.

6) Influencing Policy and Regulation: Policymakers
can utilize the findings from H2MCM to develop or
modify air quality regulations and policies, ultimately
improving air quality standards and protecting the
environment.

7) Future Research and Innovation: This research
paves the way for future studies and innovations in air
quality prediction. It can inspire the development of
new technologies, sensors, and data sources to advance
our understanding of air quality and environmental
sustainability.

8) Local and Global Impact: The research is significant
both at the local and global levels. It addresses specific
air quality challenges in the region where it is applied,
but it also contributes to the global effort to address air
quality issues and environmental sustainability.

The so-what aspect of this research goes beyond the
technical details of the model. It highlights the practical
significance and real-world impact of accurate air quality
forecasting, emphasizing the benefits to public health, the

environment, the economy, and decision-making at various
levels of society.

VII. DISCUSSION
In this study, we introduce a novel per hour heuristic multi-
chain mechanism, applicable in industrial scenarios, such as
acoustic compression, to predict the concentration of various
air contaminants. Our methodology incorporates multiple
features, including adjacent time intervals, temperature,
relative humidity, wind speed, pressure, CO, NO2, and PM2.5
to achieve efficient and precise forecasts. Each feature is
computed independently for its immediate succeeding time
interval, and the overall air quality score is determined based
on the anticipated APCs after several hours. By employing
this multi-chain process, we can predict APCs and air
quality index (AQI) several hours in advance. Our assessment
results validate the accuracy and precision of the H2MCM
model compared to other models. However, the H2MCM
model might exhibit reduced performance due to the utilized
compression technique and the prediction gap between the
1-hour prediction models and perfect 100% performance.
To bridge this gap, we propose an ensemble learning
method that integrates various learning algorithms such
as XGBoost, LSTM, GRU, and BGRU, known for their
robust memorization and performance-boosting capabilities.
Through this ensemble approach, we enhance the predictive
performance of our H2MCM model.

VIII. CONCLUSION AND FUTURE WORK
Our study addresses the urgent concern of air quality
prediction, which requires immediate attention. To tackle
this challenge, we introduce an innovative heuristic hourly-
based multi-chain strategy. Also, for an efficient model
selection and decision-making process, this study uses the
Akaike Information Criterion (AIC), Schwarz Bayesian
Information Criterion (SBIC), Hannan-Quinn Information
Criterion (HQIC), and corrected AIC (AICc) tools due to
their ability to balance model fit and complexity. These
criteria provide a quantitative measure to compare different
models based on their goodness of fit while penalizing
the number of parameters in the model. By considering
both the fit and complexity of the models, we can select
the best model to balance explaining the data well and
avoiding overfitting. In essence, AIC, SBIC, HQIC, andAICc
help researchers identify the most parsimonious model that
adequately explains the observed data, thereby aiding in
selecting models likely to generalize well to new data. The
effectiveness of our H2MCM model in predicting air quality
is well-established, as evident from its impressive PLCC
and RMSE metrics. Through experimentation, we have
demonstrated that the H2MCM model surpasses SVR, MLP,
RAQP, and Vlachogianni models by 75%, 60%, 38%, and
70%, respectively.

However, we acknowledge that while the H2MCM model
exhibits exceptional performance, it may not always be the
optimal choice for every scenario. Thus, our future plans
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involve delving deeper into the non-linear properties of APCs
and MFs using real datasets from urban areas. Furthermore,
we are enthusiastic about validating our 1-hr predictionmodel
using IoT sensors within extensive real-world datasets. This
endeavor will enable us to iteratively refine and augment
the H2MCM model’s functionalities, making it more adept
for real-world applications. Also, we want to incorporate
the insights from ‘‘Long-range dependence and heavy tail
characteristics for remaining useful life prediction in rolling
bearing degradation’’ into the H2MCM model by following
these steps:

1) Feature Integration: Extract features related to
long-range dependence and heavy tail characteristics
from the used dataset. These features could include sta-
tistical measures capturing the distributional properties
of the degradation process, such as skewness, kurtosis,
and autocorrelation.

2) Model Adaptation:
• To adapt the H2MCM architecture to incorporate
features related to long-range dependence and
heavy tail characteristics, adjustments to the input
layer and heuristic selection mechanism are neces-
sary as described below:
– Adjusting the Input Layer: Expand the input

layer of the H2MCM model from 12 to 24 for
accommodating the new features derived from
long-range dependence and heavy tail charac-
teristics.

– Integrating Features into Heuristic Selection:
We modify the heuristic selection mechanism
based on feature gating to incorporate infor-
mation from the newly added features to
dynamically adjust its heuristic choices based
on the values of these features.

3) Training and Validation:
• Reconfigure the training process by changing the
hyperparameter setup to include the new features
and ensure that the H2MCMmodel learns to utilize
them for prediction effectively.

• Validate the adapted H2MCM using 10-fold cross-
validation techniques, considering its performance
on historical data and its ability to generalize to
unseen data.

4) Evaluation and Comparison:
• Evaluate the performance of the adapted H2MCM
model against the original version and other
relevant models based on the PLCC and RMSE
metrics.

• Compare the predictive accuracy, robustness, and
efficiency of the adapted H2MCMmodel with and
without incorporating long-range dependence and
heavy tail characteristics.

By following these steps, we can effectively incorporate
the insights from the referenced study into the H2MCM
model and potentially enhance its predictive capabilities

for remaining useful life prediction in rolling bearing
degradation.

APPENDIX A
EXPLANATIONS OF THE USED ABBREVIATIONS
Table 9 describes concise explanations for all the abbrevia-
tions utilized in this study.

TABLE 9. Abbreviations and explanations.
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