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ABSTRACT Accurate models of zenith tropospheric delay (ZTD) is crucial in meteorology as well as in
navigation and positioning. In this study, we employ Convolutional Neural Network (CNN) and Random
Forest (RF) models to establish six direct or compensation models for estimating ZTD in Chinese mainland
and surrounding areas. The modeling process utilizes ZTD data from 205 stations spanning the period
2013 to 2018. Model validity is assessed using ZTD data from 202 stations in 2019. Comparative analysis,
considering the overall Root Mean Square Error (RMSE), is conducted between these newly proposed
CNN/RF-based models and Saastamoinen, A&N, GPT3 and RF-based models constructed by the methods
presented in the previous study (ZTD-RF1, ZTD-RF3). The results demonstrate the superiority of the six
CNN/RF-based models over the previously proposed models. In general, compensation models exhibit an
improvement over direct models, and models incorporating meteorological parameterisation outperform
models without such parameterisation. When the meteorological data are available, our proposed model
provided a good representation of the instability of water vapour pressure in the ZTD, especially in monsoon
climates. The optimal model is identified as the RF-based compensation model (ZTD-RF4). The ZTD-RF4
model achieves an overall RMSE of 3.24 cm, representing a 29.47% reduction of the RMSE compared
to the Saastamoinen model (4.60 cm), a 26.75% reduction compared to the A&N model (4.43 cm), and
slightly superior to the ZTD-RF3 model (3.28 cm). When the meteorological data are unavailable, the
optimal choice is the CNN-based compensation model (ZTD-CNN2), which exhibits an overall RMSE of
4.21 cm, indicating a 7.89% reduction compared to the GPT3 model (4.57 cm) and significantly superior to
the ZTD-RF1model (4.34 cm). In contrast to current machine learning (ML)-based ZTD calculation models,
we introduce the idea of compensation based on traditional models and a new CNN structure is constructed,
which all proved to be capable of better performance in ZTD modeling.

INDEX TERMS Convolutional neural network, Chinese mainland and surrounding areas, GPT3 model,
random forest, Saastamoinen model, zenith tropospheric delay.

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry .

I. INTRODUCTION
Tropospheric delays caused by refraction in the neutral atmo-
sphere are one of the major sources of error in Global
Navigation Satellite System (GNSS) measurements. Beyond
their impact on positioning accuracy, these delays serve as a
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valuable data source for assessing atmospheric water vapor
levels. The accuracy of zenith tropospheric delay models
directly affects the accuracy of weather forecasts and the
convergence rate of high-precision positioning [1], [2]. Zenith
tropospheric delay consists of zenith hydrostatic delay (ZHD)
caused by dry gases and induced polarized moment of water
vapor, and zenith wet delay (ZWD) caused by water vapor.
In this study, we focus on the accurate modeling of ZTD.

The exact ZTD value can be obtained by integrating refrac-
tivity in the zenith direction, from the station altitude to the
top of the lower atmosphere [15]. However, due to the absence
of data far above the station, this exact ZTD is difficult
to obtain. Therefore, a series of approximation models [3],
[4], [5], basing only on data of the station altitude, have
been established. To estimate the ZTD with these models,
the surface meteorological data should be provided. In cases
where surfacemeteorological data are unavailable, the Global
Pressure and Temperature (GPT) models [6], [7], [8], [9]
can be utilized to provide an approximation of these mete-
orological data. In the main text, we call models that use
surface meteorological data as ‘‘models with requiring mete-
orological data’’. Models, which incorperate GPT, that don’t
need direct meteorological data are called ‘‘models without
requiring meteorological data’’.

In 1969, the Hopfield model was developed by analyz-
ing and validating measured meteorological soundings from
18 stations around the world [3]. Then in 1973, the Saasta-
moinen model was constructed based on the U.S. Standard
Atmosphere Model (SAM). This model divided the tro-
posphere into two layers and integrated them separately,
accounting for changes in gravitational acceleration in the
calculations [4]. Modeling ZWD is exceptionally difficult
due to the uneven and rapidly changing distribution of water
vapor in the atmosphere over time. To address this, Askne
and Nordius (A&N) developed a more accurate model by
estimatingmean temperature weightedwithwater vapor pres-
sure (Tm) and water vapor decrease factor (λ) in 1987 [5].
These models mentioned in this paragraph are based on
meteorological data at the stations. To use these models for
ZTD estimation, it is necessary to obtain the information at
the station including the float day of year (doy), the latitude
(lat), the longitude (lon), the ellipsoid height (hs) and the sur-
face meteorological data at the station including the surface
pressure (Ps), the surface temperature (Ts), the surface partial
pressure of water vapor (es).
In the absence of surfacemeteorological dataTm,Ps,Ts, es,

Boehm et al. [6] developed an empirical model called the
Global Pressure and Temperature (GPT) model to predict
these meteorological data. This model, constructed using
the accumulation of meteorological data and employing
ninth-order spherical harmonic functions, was developed
based on 40 years of reanalysis data from the European
Centre for Medium-Range Weather Forecasts (ECMWF).
Following that, the GPT2 model [7] was realized using
monthly mean profiles of ERA-Interim data, the GPT2w
model [8] and the GPT3 model [9] were developed by

adopting the functional formulations with the predefined
periodic form to account for climatological mean and sea-
sonal variations of meteorological parameters and their
vertical distribution. They were realized mainly based on
the monthly reanalysis data of the numerical weather model
(NWM). Therefore, these models without requiring surface
meteorological data are unsuitable for accurately forecasting
the nonstationary patterns or short-term fluctuations in the
neutral atmosphere. Moreover, due to the limited spatial
resolution of NWM data and the usage of predefined func-
tional formulation, the global empirical troposphere models
cannot well represent complex variation in the tropospheric
wet delay for the regions with specific climate patterns.
When using these models for ZTD estimation, only the
doy, lat, lon, hs of the station are needed.
The models mentioned above all depend on using sin-

gle functions for modeling and fitting, which may not deal
with complex nonlinear variations of ZTD accurately. How-
ever, regression analysis based on machine learning methods
excels in modeling nonlinear features through using a large
amount of historical data. Hence, machine learning methods
have been widely applied to various fields, including the
fields of meteorology and satellite geodesy such as weather
forecasting [10], ionospheric parameter modeling [11] and
modeling ZTD. Xiao et al. used improved back propaga-
tion neural network (BPNN) to construct a tropospheric
zenith total delay (ZTD) spatial forecast model for Japan
based on 11-day tropospheric data provided by National Cen-
ter Atmospheric Research(NCAR), achieved an root mean
squared error(RMSE) of 8.52mm which significantly supe-
rior to four-parameter model the paper mentioned [12].
Lu et al. developed TropNet model based on a deep spa-
tiotemporal neural network for 6 hours of ZWD forecasting
by combining information provided by the Geostationary
Operational Environmental Satellite-R series and the global
forecast system (GFS), showing an overall improvement of
15.5% when compared to the GFS ZWD [13]. Li et al.
developed BPNN-based and random forest(RF)-based ZWD
models for Chinese mainland through regression analysis of
seven-year radiosonde data, obtained an overall accuracy of
4.7cm for models without requiring surface meteorological
data and an overall accuracies of less 3.7cm for models
with meteorological parameterization [14]. Li et al. proposed
improved GPT3 model for spatiotemporal ZWD forecasting
in Japan by adopting radial basis function (RBF) to offset
the error between the ZTD estimates calculated by GPT3
model and the GNSS-derived ZTD,obtained ameanRMSE of
37.8mm [15]. Li et al. analyzed the relationship between the
residuals of GPT3-derived ZTD minus GNSS-derived ZTD
and the spatiotemporal information by using RF to model
ZTD for spatial ZWD forecasting in Chinese mainland,
achieved an significant improvement compared to GPT3
model and BPNN-based model [16]. Crocetti et al. built a
global spatial ZWD forecast model based on Extreme Gradi-
ent Boosting (XGBoost), which achieved an RMSE squared
error of 8.1mm [17].
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Up to now, few studied have focused ZTD modeling based
on machine learning in Chinese mainland and surrounding
areas. Therefore, for better estimating and forecasting the
ZTD in Chinese mainland and surrounding areas, convolu-
tional neural network (CNN) and random forest (RF) with
a strong nonlinear ftting ability are adopted to model ZTD
using historical radiosonde data at 205 stations from 2013 to
2018 in this study. Six different models, direct or compen-
sated, with or without requiring surface meteorological data,
are established to meet the demand for high-precision calcu-
lation of ZTD in Chinesemainland and the surrounding areas.
Compared with the existing machine learning based ZTD
calculation models [14], [18], the main advancement of this
study can be summarised as: (1) we construct a new structure
of CNN; (2) introducing CNN approach to the ZTDmodeling
problem; (3) ideas for the construction of ZTD compensation
models based on machine learning (surface meteorological
data is available or not) are provided; (4) our models can be
used to forecast ZTDmore accurately than developed models
including Saastamoinen, A&N, GPT3 models and RF-based
models constructed by the methods presented in the previous
study [14]; (5) the established ZTD models was analysed for
full performance in space, time and altitude.

The rest part of this paper is organized as follows.
In Section II, we introduce the sources of data and some pre-
processing and utilization methods. Subsequently, we detail
the calculation of the ‘‘exact’’ ZTD value, which involves
integrating radiosonde data to approximate the ZTD value.
Following that, we present three traditional models (Saas-
tamoinen, A&N, and GPT3) that solely rely on surface
data at the station, yielding approximations of the ‘‘exact’’
ZTD. Section III outlines the construction of six new
CNN/RF-based ZTD models. In Section IV, we validate the
effectiveness of the proposed ZTD models to estimate ZTD
at 202 stations for 2019. The results are compared with the
Saastamoinen, A&N, GPT3, ZTD-RF1 and ZTD-RF3 mod-
els. Finally, we elaborate on and summarize the conclusions
in Section V.

II. DATA AND CALCULATION OF ZTD
In this section, we describe the data source used to build
the new ZTD models and some methods of data quality
control. Then, we describe the process of calculating the
‘‘exact’’ ZTD by using radiosonde data. Moreover, ZTD
determination using the GPT3 [9] and models proposed by
Saastamoinen [4], and Askne and Nordius [5] is also pre-
sented.

A. DATA SOURCE AND PREPROCESSING
The radiosonde data used in this study were provided
by the Integrated Global Radiosonde Archive (IGRA).
The IGRA radiosonde data we used can be downloaded
at https://www.ncei.noaa.gov/pub/data/igra/. The radiosonde
data provides vertical profiles of meteorological variables,
which include air temperature, total pressure, relative humid-
ity, geopotential height, wind speed, etc., at a series of signifi-

cant isobaric levels [19] covering the troposphere. This study
selected 205 stations in the range of 8◦ N−62◦ N and 68◦ E−

142◦ E . Due to the partial absence of IGRA data, the fol-
lowing data quality control methods were used in this study:
(1) the sounding records with two adjacent pressure levels
exceeding 200 hPa were removed; (2) the sounding records
containing a top pressure layer exceeding 300 hPa have been
excluded; (3) the sounding records with a top partial pressure
of water vapor exceeding 0.1 hPa have been excluded.

B. CALCULATION OF THE ‘‘EXACT’’ ZTD
ZTD value can be obtained by integrating refractivity in the
zenith direction, from the station altitude to the top of the
lower atmosphere [20]. ZTD can be divided into ZHD, caused
by dry air, and ZWD, caused by water vapor. Since there is
a gap between the top altitude that can be reached by the
soundings and the top altitude involved in ZHD, ZHD can be
calculated using the radiosonde data and using Saastamoinen
model in the top layer of the radiosonde data. This calculation
method was based on previous studies, which showed that the
ZHD results of Saastamoinen model agreed with ray tracing
results at the sub-millimetre level [21], [22]. Therefore, ZHD
can be calculated by the formula:

ZHDradio = 10−6
·

∫ htop

hgeo
Nhdh

+
0.0022768 · Ptop

1 − 0.0026 · cos(2 · lat) − 0.00028 · htop
.

(1)

Here hgeo and lat are the station’s geopotential height (unit:
m) and latitude, respectively. htop and Ptop represent geopo-
tential height (unit: m) and pressure (unit: hPa) at the top layer
of the radiosonde data, respectively. Nh is the hydrostatic
refractivity in the lower atmosphere. It can be expressed
approximately as [20]:

Nh = k1 ·
Pd
T

· Z−1
d , (2)

Z−1
d = 1+Pd ·

[
57.96·10−8

(
1+

0.52
T

)
−9.4611·10−4

·
TC
T 2

]
.

(3)

Here Pd , T and TC = T − 273.15 are the partial pressure
of dry air (unit: hPa), the absolute temperature (unit: K) and
Celsius temperature (unit:◦C) at a certain sounding level of
the radiosonde data, respectively. Since the partial pressure
of water vapor at the top layer in the radiosonde data is very
small, the part of the zenith wet delay above the top layer can
be ignored. ZWD can be calculated using the radiosonde data
by the formula [20]:

ZWDradio = 10−6
·

∫ htop

hgeo
Nwdh, (4)

Nw =

[(
k2 − k1 ·

Mw

Md

)
·
Pw
T

+ k3 ·
Pw
T 2

]
· Z−1

w ,

(5)
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Z−1
w = 1 +

1650Pw · T ∗
C

T 3 . (6)

Here Nw is wet refractivity in the lower atmosphere and
T ∗
C = 1 − 0.01317TC + 1.75 · 10−4T 2

C + 1.44 · 10−6T 3
C .

Pw is the partial pressure of water vapor (unit: hPa) at a
certain sounding level of the radiosonde data. k1 = 77.69,
k2 = 71.2952 and k3 = 375463 are atmospheric refraction
coefficients, Zd and Zw are compressibility factors for dry air
and water vapor, respectively. Md = 18.0152 and Mw =

28.9644 are molar mass (unit: g/mol) for dry air and water
vapor, respectively. Note in (2-6), data P = Pd + Pw, T , Pw
are all related to the height h.where P is the total pressure
(unit: hPa) at a certain sounding level of the radiosonde data.
These data can be obtained from the radiosonde data.

Since the altitude used for the station height is differ-
ent from the standard of geopotential height used in the
radiosonde data, we convert the altitude of the station to the
geopotential height by the formula [23]:

hgeo =
Ys(lat)
Y45

·
R(lat) · hs
R(lat) + hs

, (7)

Ys(lat) = 9.780325 ·

[
1 + 0.00193185 · sin2(lat)

1 − 0.00669435 · sin2(lat)

]0.5
, (8)

R(lat) =
6378.137

1.006803 − 0.006706 · sin2(lat)
, (9)

where lat and hs are the latitude and the ellipsoid height
at the station. Ys(lat) is the normal gravity (unit: m/s2) on
the surface of the ellipsoid of revolution for latitude, R(lat)
represents an effective radius (unit: m) of the earth for latitude
lat , Y45 = 9.80665 is the normal gravity (unit: m/s2) on
the surface of the ellipsoid of revolution for latitude 45◦. The
surface meteorological data at the station can be derived from
the radiosonde data if the station’s geopotential height does
not coincide with any layer in the radiosonde data [24].

Using numerical integration in the calculation process
of (1) and (4), we can obtain the ‘‘exact’’ ZTD value, Tradio,
from the radiosonde data by

Tradio = ZHDradio + ZWDradio. (10)

C. TRADITIONAL MODELS
Here, we present the traditional models commonly used for
calculating ZTD when only surface data at the station is pro-
vided. If meteorological data is available, the Saastamoinen
or A&N models can be employed to estimate ZTD. The
expression for ZTD in the Saastamoinenmodel can be written
as [4]

Tsaas =
0.0022768 · [Ps + (1255/Ts + 0.05) · es]
1 − 0.0026 · cos(2 · lat) − 0.00028 · hs

. (11)

Here Ps is the surface pressure, Ts is the surface temperature,
es is the surface partial pressure of water vapor.

In order to establish a more accurate ZTDmodel, the A&N
model was built through estimating water vapor decrease
factor (λ) and the mean temperature (Tm), weighted with

water vapor pressure. In the A&Nmodel, ZHD and ZWD can
be calculated by [5]:

ZHDA&N =
0.0022768 · Ps

1 − 0.0026 · cos(2 · lat) − 0.00028 · hs
, (12)

ZWDA&N = 10−6
·

[(
k2 − k1 ·

Mw

Md

)
+

k3
Tm

]
·

Rd
(λ + 1) · gm

· es, (13)

where Rd and gm are the gas constant for dry air and the
gravitational acceleration (unit: m/s2) at the mass center of
the vertical column of the atmosphere, respectively. The ZTD
value calculated by the A&N model, TA&N , can be written as

TA&N = ZHDA&N + ZWDA&N . (14)

If the surface meteorological data is unavailable or
incomplete, we can use the GPT3 model to estimate the
surface meteorological data at the station. Substitute the esti-
mated meteorological data into the A&N model, then we
can get the ZTD estimation of the GPT3 model (Rd =

287.0464JK−1kg−1 and gm = 9.80665m/s2) [9]. The GPT3
model TGPT3 uses global grids of the mean and seasonal
amplitude coefficients for meteorological parameters to esti-
mate the surface meteorological data at a specific station. The
horizontal resolution of the grid in the GPT3 model had been
classified as 1◦

× 1◦ or 5◦
× 5◦, this study adopted a 1◦

× 1◦

grid which is more accurate.

III. NEW ZTD MODELS BASED ON CONVOLTIONAL
NEURAL NETWORK AND RANDOM FOREST
The main objective of this study is to build two types of ZTD
models using 2013-2018 radiosonde data from 205 stations in
Chinese mainland and surrounding areas: the CNN/RF-based
ZTD direct models and the CNN/RF-based ZTD compen-
sated models. CNN and RF are two well-known models for
data regression analysis. One should provide a large group of
dataset for training or testing. Each set of data should include
the input variables and the corresponding target variable.
For models with meteorological parameterization, the input
variables include the float day of year (doy), the latitude (lat),
the longitude (lon), the ellipsoidal height (hs), the surface
pressure (Ps), the surface temperature (Ts) and the surface
partial pressure of water vapor (es). Meanwhile, It is known
that Ps and es can be converted by the relative humidity
(RH): es = Ps · RH . However, since RH varies with time
and location, if the estimation of RH is used to establish the
relationship between Ps and es, choosing either Ps or es as
an input parameter will introduce the estimation error of RH
into the estimation of the ZTD. Therefore, we choose both
Ps and es as the exact input parameters to avoid unnecessary
errors caused by the conversion between the two during
the modeling process. For models without meteorological
parameterization, the input variables only include doy, lat ,
lon and hs. For direct models, the target variable is set to be
the ‘‘exact’’ ZTD, while for ZTD compensation model, the
target variable is set to be the difference between the ‘‘exact’’
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ZTD and the ZTD estimates computed by the baseline model.
In this study, six different models are constructed to meet the
demands of different applications. The ZTD-CNN1 schemes
are the direct models without requiring surface meteorologi-
cal data based on CNN, can be expressed as

TZTD−CNN1= fZTD−CNN1(doy, lat, lon, hs); (15)

the ZTD-CNN2 and ZTD-RF2 schemes are the GPT3-
compensated models without requiring surface meteorolog-
ical data based on CNN and RF, can be expressed as

TZTD−CNN2/RF2−TGPT3= fZTD−CNN1/RF1(doy, lat, lon, hs);

(16)

the ZTD-CNN3 scheme is the direct models with requiring
surface meteorological data based on CNN, can be expressed
as

TZTD−CNN3 = fZTD−CNN3(doy, lat, lon, hs,Ps,Ts, es);

(17)

the ZTD-CNN4 andZTD-RF4 schemes are the Saastamoinen-
compensated models with requiring surface meteorological
data based on CNN and RF, can be expressed as

TZTD−CNN4/RF4 − Tsaas
= fZTD−CNN4/RF4(doy, lat, lon, hs,Ps,Ts, es); (18)

These schemes can be applied flexibly under different con-
ditions. Moreover, the ZTD-RF1 and ZTD-RF3 schemes
presented in the previous study [14] as a comparison.
Involved input and target variables of these models are sum-
marized in Table 1. Validation and comparison of these
models are presented in Section IV.

A. CONVOLUTIONAL NEURAL NETWORK (CNN)
CNN, as one of the most widely used and well-established
method in deep learning, was initially employed in the field
of text recognition [25]. Deep learning algorithms can auto-
matically extract features and patterns from data, enabling the
accomplishment of more complex tasks [26], [27]. Therefore,
we constructed a new multi-layer structure of CNN as a data
regression analysis tool to calculate the ZTD if the ‘‘Input
variables’’ are provided in this study.

Fig. 1 shows the basic structure of regression calculation
using CNN. We need to point out that the ‘‘Input layer’’
corresponds to the column vector composed of ‘‘The input
variables’’ in Table 1, the ‘‘Output layer’’ corresponds to the
estimate of the ‘‘Target variable’’ in Table 1. n is the number
of the input variables, m is the number of feature maps, p
is the size of the convolution kernel. Key components of
CNNs include convolutional layers, pooling layer and acti-
vation functions. The Convolutional layer primarily operates
on the data feature matrix provided by the Input layer. It uses
convolutional kernels to map these features to the subsequent
layer, facilitating deep learning of data features and enabling

profound exploration of their characteristics.The convolution
layer can be expressed as:

xKj = f (
∑
i∈Mj

xK−1
i · wKij + bKj ), (19)

where wKij and b
K
j are the weights and biases corresponding

to the convolution filters, respectively. xKj and xK−1
j represent

the feature mapping of the previous layer and the current
layer, respectively. Mj denotes the set of feature mappings,
and f (·) represents the activation function. The activation
function in the network can improve the nonlinear fitting
ability of CNN. The ReLU activation function was chosen
in this study. It can be expressed as [28]:

Re LU(x) = max(0, x). (20)

Batch Normalization in CNN effectively addresses the issue
where parameter updates and iterations impede the conver-
gence speed of the training model [29]. The pooling layer
is added in the network to preserve the essential information
of input variables and compress data dimensions through the
down-sampling. In this study, the max pooling

Poolingmax
= max

i,j∈�
ai,j, (21)

was employed. Here ai,j refers to the output from the previous
convolutional layer, and i and j denote the index, � denotes
the pooling window. In the process of parameters training in
CNN, we used the stochastic gradient descent with momen-
tum (SGDM) algorithm [30].

The selection of optimal hyperparameters is beneficial to
the improvement of the CNN regression model. Consider-
ing the substantial impact of the number of feature maps
(m) and the convolutional kernel size (p) on model fitting,
and acknowledging the constraint on p, we conducted a
hyperparameter selection. For the ZTD-CNN3 and ZTD-
CNN4 schemes, the number of kernels and the size of the
convolutional kernel were set to the ranges of 1-50 and 1-
7, respectively. While for the ZTD-CNN1 and ZTD-CNN2
schemes, the range of p was from 1 to 4. These selections
were made to model the effects at 202 stations throughout
the year 2019 in our study. As shown in Fig. 2, once p is
fixed, the RMSE fluctuates very little when m ⩾ 30. So we
set the hyperparameters for the ZTD-CNN1 and ZTD-CNN2
schemes to be m, p = 40, 3, and the hyperparameters for
the ZTD-CNN3 and ZTD-CNN4 schemes to be m, p = 40,
5. Therefore, the internal CNN structure used for modeling
ZTD in this study consists of the convolutional layer consists
of 40 feature maps with kernel size (3 × 1 or 5 × 1), the
max pooling layer which employs a pooling window of (2,
1) and a stride size of (1, 1), the convolutional layer consists
of 80 feature maps with kernel size (3 × 1 or 5 × 1), fully
connected layer with output size is 1 in this order.

B. RANDOM FOREST (RF)
RF is an ensemble learning algorithm proposed by
Breiman [31]. It uses multiple decision trees and averages
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TABLE 1. Basic training structure of new ZTD models based on CNN and RF (The ZTD-CNN1 and ZTD-RF1 schemes are direct models without
meteorological parameterisation; The ZTD-CNN2 and ZTD-RF2 schemes are the GPT3-compensated models without meteorological parameterisation; The
ZTD-CNN3 and ZTD-RF3 schemes are direct models with meteorological parameterisation; The ZTD-CNN4 and ZTD-RF4 schemes are the
saastamoinen-compensated models with meteorological parameters).

FIGURE 1. Adopted basic structure of regression calculation based on CNN.

the outputs of those trees to solve regression calculation
problems. Each decision tree is trained by utilizing randomly
selected feature subsets. Various training sets are created by
randomly sampling from the dataset based on these feature
subsets.

This strong randomness can reduce overfitting and enhance
generalization capabilities. RF is widely applied to regression
analysis problems due to its robustness and strong nonlinear
ftting ability [32]. Therefore, we use RF for ZTDmodeling to
improve the nonlinear ftting ability. In this study, we adopted
the classification and regression tree (CART) [33] as the
decision tree algorithm. The basic structure of RF-based
regression calculation adopted in our study is shown in Fig. 3.
Note that ‘‘Input’’ and ‘‘Output’’ correspond to the vector of
‘‘The input’’ variables and the estimate of the ‘‘Target vari-
able’’ in Table 1, respectively. t is the number of subdatasets,

i.e., the number of decision trees, generated by put-back
sampling of the original dataset, and l is theminimum number
of samples required at the leaf nodes. In the process of
constructing decision trees, the evaluation of the goodness of
cutoff variables and cutoff points is crucial. We employ the
weighted sum of the mean square error (MSE) of each child
node as the criterion for this evaluation. The judgment criteria
can be expressed as:

M =
N1

Na
· MSE(X1) +

N2

Na
· MSE(X2), (22)

where X1 and X2 denote the subsets of training samples after
slicing. N1 and N2 denote the number of samples for X1 and
X2 respectively. Na denote the total number of samples. The
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FIGURE 2. RMSE of different schemes based on CNN with different hyperparameters.

FIGURE 3. Adopted basic structure of regression calculation based on RF.

MSE of a set can be described as:

MSE(X ) =
1
N

·

N∑
i=1

(yi − ȳ)2, (23)

where X = X1, X2 and N = N1, N2. Let yi and ȳ denote
the target variable values and target variable means in X ,
respectively. Finally, the regression calculation results for RF
are obtained by simply averaging the outputs of all decision
trees [34]:

F(I ) =
1
t

t∑
i=1

Ti(I ). (24)

Here t is the number of decision trees, I denotes the input
variables, F(I ) denotes the final output of the RF, and Ti(I ) is
the output of the i-th decision tree.
Similar to CNN, the careful selection of hyperparameters

is crucial during the model training process using RF. Given
that t is directly associated with the training model’s feature
extraction capability and l is directly linked to the training

model’s capacity to capture noise in the training data, this
study involved a hyperparameter selection process.We varied
t from 1 to 50 and l from 1 to 50, examining modeling
effects across 202 stations during the year 2019. As shown
in Fig. 4, the overall sensitivity of RF to the two selected
hyperparameters is notablyweaker compared to that of CNN..
It’s worth noting that the RMSE remains almost constant
when and.Consequently, we fix t, l = 30 for the ZTD-RF1,
ZTD-RF2, ZTD-RF3 and ZTD-RF4 schemes.

IV. MOEDL VALIDATION AND ANALYSIS
In this section, we validate and analyze our models by com-
paring the corresponding RMSE with traditional models and
the ZTD models (ZTD-RF1, ZTD-RF3) constructed by the
methods presented in the previous study [14]. First of all,
the ‘‘exact’’ ZTD values are calculated by the radiosonde
data with the method mentioned in subsection II-B. Among
all these models, ZTD-CNN3, ZTD-CNN4, ZTD-RF3, ZTD-
RF4, Saastamoinen and A&N are models with requiring
surface meteorological data. These surface meteorological
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FIGURE 4. RMSE of different schemes based on RF with different hyperparameters.

data can be obtained by the radiosonde data. ZTD-CNN1,
ZTD-CNN2, ZTD-RF1, ZTD-RF2, and GPT3 are models
without requiring surface meteorological data. We analyze
and compare our CNN/RF-based ZTD models with tradi-
tional models, ZTD-RF1 model and ZTD-RF3 model by
applying them to 202 stations in Chinese mainland and sur-
rounding areas during 2019. Considering applications on
different scales, we validate and analyze the new models in
overall, spatial, temporal and altitudinal aspects. The error
criterions used in this study are the root mean square error
(RMSE), mean error (ME) and mean absolute error (MAE).
In most cases, RMSE was considered the primary criterion.
These error criterions can be expressed as follows:

RMSE =

√√√√1
n

·

n∑
i=1

(yi − y∗i )
2, (25)

ME =
1
n

·

n∑
i=1

(yi − y∗i ), (26)

MAE =
1
n

·

n∑
i=1

|yi − y∗i |, (27)

here yi is the estimation values, y∗i is the ‘‘exact’’ values,
i is the index, and n denotes the total number of data for
estimation.

A. OVERALL PERFORMANCE AND ANALYSIS
Table 2 records the overall ME, MAE and RMSE of the ZTD
calculated by different models at 202 stations in Chinese
mainland and surrounding areas in 2019. Since the perfor-
mance ofME andMAE is almost equivalent to that of RMSE,
we exclusively compare these models based on the RMSE
aspect in the following analysis.As shown in Table 2, the
performance of the CNN/RF-based ZTDmodel has improved
compared with these three traditional models.

For models without requiring surface meteorological data,
the GPT3 compensationed model (ZTD-CNN2, ZTD-RF2)
exhibit a slight improvement over their direct counterparts
(ZTD-CNN1, ZTD-RF1). These four models also outperform
the traditional GPT3. Based on the experimental results,
we recommend the ZTD-CNN2 or ZTD-RF2 models when
the surface meteorological data is unavailable or incomplete.

For models with requring surface meteorological data, the
ZTD-CNN3, ZTD-CNN4, ZTD-RF3 and ZTD-RF4 models
are superior to the Saastamoinen model and the A&N model,
with improvements over 20%. Meanwhile, the Saastamoinen
compensation models (ZTD-CNN4, ZTD-RF4) perform bet-
ter than direct models (ZTD-CNN3, ZTD-RF3). Based on
experimental results, we recommend the ZTD-CNN4 and
ZTD-RF4 models for ZTD estimation when surface meteo-
rological data is available.

Moreover, as shown in Table 2, the ZTD-CNN1, ZTD-
CNN2, ZTD-RF1, and ZTD-RF2 models without requiring
surface meteorological data outperform the Saastamoinen
and A&Nmodels with requiring surface meteorological data.
This means that the CNN/RF-based ZTD models should
be utilized regardless of the availability of meteorological
data. Meanwhile, the GPT3 compensation models (ZTD-
CNN2, ZTD-RF2) further improves accuracy compared to
the direct models (ZTD-CNN1, ZTD-RF1). It should also
be noted that, as shown in Table 2, the inclusion of meteo-
rological parameters significantly enhanced the accuracy of
the CNN/RF-based models, and the aforementioned results
clearly demonstrated experimentally that there is a strong
correlation between the exact values of the ZTD and the
meteorological parameters. Fig. 5 illustrates the relationship
between the ZTD values estimated by the models and the
‘‘exact’’ ZTD calculated by the radiosonde data at the 202 sta-
tions in Chinese mainland and surrounding areas during
2019. R2 is an indicator that effectively evaluates the fit of
the models.

R2 = 1 −

n∑
i=1

(y∗i − yi)
2

n∑
i=1

(
y∗i −

(
n∑
j=1

y∗j

)/
n

)2 . (28)

The closer to 1 R2 is, the better the model. As shown in
Fig. 5. The R2 values of the ZTD-CNN1, ZTD-CNN2, ZTD-
CNN3, ZTD-CNN4, ZTD-RF1, ZTD-RF2, ZTD-RF3 and
ZTD-RF4modelswere 0.9702, 0.9707,0.9809,0.9815,0.9688,
0.9707, 0.9822 and 0.9826, respectively, exhibiting an
improvement compared to those of the Saastamoinen
(0.9651), A&N (0.9676) and GPT3 (0.9655) models. This
phenomenon indicates that the new models fit significantly
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TABLE 2. Overall estimation errors of all ZTD models for the 202 stations analyzed during 2019 and the improvement rates (the overall RMSE) of the new
models compared to the traditional models.

better than the traditional models. It should be noted that the
ZTD-RF1 model displays significantly irregular fluctuations
at the Graphical end of the density scatters. These irregular
fluctuations are attributed to models trained using RF are
mathematically expressed as average of segmented func-
tions. Furthermore, the density scatters of the ZTD-CNN1,
ZTD-CNN2, and ZTD-RF2 models exhibited finer shapes
compared to those of the ZTD-RF1 and GPT3models, partic-
ularly in regions with higher data density, indicating superior
error stability. So we continue to recommend employing the
ZTD-CNN2 and ZTD-RF2 models when surface meteoro-
logical data is not available. Based on the R2 values and the
density scatters of the ZTD-CNN3, ZTD-CNN4, ZTD-RF3,
ZTD-RF4, Saastamoinen and A&N models with requiring
surface meteorological data, it was evident that the ZTD-
CNN3, ZTD-CNN4, ZTD-RF3 and ZTD-RF4 models were
more fitted than the Saastamoinen and A&N models. Addi-
tionally, there were some noticeable scatters situated above
the density scatters for the Saastamoinen and A&N models,
as showed in Fig. 5. The ZTD-CNN4 and ZTD-RF4 models,
in contrast, effectively prevented the emergence of noticeable
scatters. Consequently, they outperformed the Saastamoinen
and A&N models in terms of error stability. Combining their
error stability and RMSE, we still recommend adopting the
ZTD-CNN4 and ZTD-RF4 models when surface meteoro-
logical data is available. It is important to acknowledge that
Fig. 5 illustrates a scatters fault resulting from the inadequate
densification of stations in the 2019 IGRA radiosonde data.

B. SPATIAL PERFORMANCE AND ANALYSIS
In order to show the spatial performance of these newmodels,
we calculate the site-wise RMSE of each station. Table 3
presents theminimumRMSE (Min), maximumRMSE (Max)
and mean RMSE (Mean) value at 202 stations in Chi-
nese mainland and surrounding areas during 2019. From
Table 3, it can be observed that for models without requiring
surafce meteorological data, as demonstrated by the Max

or Mean value, the ZTD-CNN1, ZTD-CNN2, ZTD-RF1,
and ZTD-RF2 models exhibited greater stability than the
GPT3 model. In particular, the ZTD-CNN1 and ZTD-CNN2
models exhibited a reduction of the Max value compared
to the ZTD-RF1 and ZTD-RF2 models, suggesting that the
ZTD-CNN1 and ZTD-CNN2 models effectively controlled
the ZTD errors within a more optimal range. These sug-
gested an overall improvement in the effectiveness of the
models for regional applications. Therefore, in the absence
of surface meteorological data for estimating ZTD in the
Chinese mainland and surrounding areas, we recommend
the ZTD-CNN2 model. While our previous recommenda-
tion include both the ZTD-CNN2 and ZTD-RF2 models
based on the overall assessment, considering the stability of
the spatial RMSE distribution, we suggest prioritizing the
ZTD-CNN2model over the ZTD-RF2model. Note that ZTD-
CNN1, ZTD-CNN2, ZTD-RF1, and ZTD-RF2 are models
without requiring surfacemeteorological data. It is acceptable
that traditional models with requiring surface meteorological
data might outperform our models without requiring sur-
face meteorological data. Hence we might observe negative
improvement in Table 3.

Among the models with requiring surface meteorolog-
ical data, the ZTD-CNN4 and ZTD-RF4 models exhibite
improvements of 21.86% and 24.45%, respectively, com-
pared to the A&N model, and meanwhile, the ZTD-RF4
model is slightly better than ZTD-RF3 model. Given the
significant improvements in the accuracy of the ZTD-CNN4
and ZTD-RF4 models compared to the traditional models,
and the comparable stability of the ZTD estimation between
the ZTD-CNN4model and the ZTD-RF4model, we continue
to recommend their utilization for ZTD estimation in Chinese
mainland and surrounding areas when surface meteorological
data is available.

Fig. 6, Fig. 7 and Fig. 8 display the site-wise RMSE,
ME and MAE of different models. It is evident that our six
new ZTD models and the ZTD-RF1 and ZTD-RF3 models
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FIGURE 5. Density scatters of ZTD estimates using new models against the ‘‘exact’’ ZTD for the 202 stations analyzed during 2019
(ZTD reference denotes the ‘‘exact’’ ZTD, the color bar on the right represents the number of ZTD in equi-spaced range of values).

TABLE 3. Spatial RMSE and improvement rates (the mean RMSE) of new ZTD models compared to traditional models, for 202 stations analyzed during
2019 (Min, Max and Mean denotes the minimum, maximum and mean RMSE for 202 stations).

outperform three traditional models in all three metrics of
RMSE, ME and MAE. When surface meteorological data
is unavailable, the ZTD-CNN1, ZTD-CNN2, ZTD-RF1 and
ZTD-RF2 models could be more effectively utilized than
GPT3 in the test area, concerning the spatial distribution of
RMSE and MAE. These four models fit especially well in
the northern and southwestern areas of Chinese mainland,
Mongolia, northern area of Japan and Russian regions near

Mongolia. Meanwhile, their accuracy in Southeast China is
comparable to the GPT3 model. It is noteworthy that, when
applied in Southern India, the GPT3 model’s effectiveness
is inadequate. The ZTD-CNN1, ZTD-CNN2, ZTD-RF1, and
ZTD-RF2 models notably enhanced the accuracy of ZTD
estimation in Southern India. Furthermore, with regards to the
ME, the GPT3 model exhibited poor performance in Japan,
while the ZTD-CNN1, ZTD-CNN2, ZTD-RF1 and ZTD-

VOLUME 12, 2024 112873



J. Zhang et al.: New Models of ZTD for Chinese Mainland and Surrounding Areas

FIGURE 6. Site-wise RMSE (unit: cm) of different models for the ZTD estimation at the 202 stations analyzed during 2019.

FIGURE 7. Site-wise ME (unit: cm) of different models for the ZTD estimation at the 202 stations analyzed during 2019.

RF2 models had undergone significant enhancements. When
surface meteorological data was available, the ZTD-CNN3,
ZTD-CNN4, ZTD-RF3 and ZTD-RF4models obtained better
accuracy compared to the Saastamoinen and

A&N models at the 202 stations. In particular, compared
with the traditional models, the ZTD-CNN3, ZTD-CNN4
ZTD-RF3 and ZTD-RF4 models had greatly enhanced the
accuracy of the ZTD estimation in Southeast China, Japan
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FIGURE 8. Site-wise MAE (unit: cm) of different models for the ZTD estimation at the 202 stations analyzed during 2019.

FIGURE 9. The RMSE distribution for 202 stations (Probability denotes the percentage of stations in a given RMSE
range, e.g. when using the ZTD-RF1 model, 40 stations have the RMSEs between 2.5 cm and 3 cm, so the Probability
value of 2.5 cm - 3 cm is 40/202 = 0.1980198 = 19.80198%).

and India. After comparing the new ZTDmodels with requir-
ing meteorological data to those without, it is evident that
the incorporation of meteorological parameters significantly

improved the overall accuracy and stability of the models
in estimating ZTD in Chinese mainland and surrounding
areas.
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FIGURE 10. Improvement rates in RMSE for the new model compared to the traditional model
for the 202 stations analysed in 2019.

TABLE 4. Percentages of stations with different ranges of improvement rates among the 202 stations during 2019 (the percentage range in the first row
represents the range of improvement rates).

Fig. 9 presents the histogram distribution of the site-wise
RMSE for 202 stations in the Chinese mainland and sur-
rounding areas during 2019. The figure clearly demon-
strated that when the GPT3 and ZTD-RF1 models are
used, the RMSE distribution at the 202 stations is more
dispersed compared to the ZTD-CNN1, ZTD-CNN2, and
ZTD-RF2 models. Across the 202 stations, the RMSEs of the
ZTD-CNN1, ZTD-CNN2, and ZTD-RF2 models are over-
all smaller than that of the GPT3 and ZTD-RF1 models,
especially for the ZTD-CNN2 and ZTD-RF2 models. This
observation indicated that the ZTD-CNN2 and ZTD-RF2
models could enhance the accuracy and stability of ZTD
calculation in comparison to the GPT3 and ZTD-RF1models.
When the ZTD-CNN3, ZTD-CNN4, ZTD-RF3 and ZTD-

RF4 models were used for the 202 stations during 2019,
most stations exhibited RMSEs of 1.5 cm - 6 cm, repre-
senting a reduction compared to the Saastamoinen and A&N
models. Therefore, when compared with the Saastamoinen
and A&N models requiring surface meteorological data, the
ZTD-CNN3, ZTD-CNN4 ZTD-RF3 and ZTD-RF4 models
demonstrated superior performance. Generally, the distri-
bution of RMSEs across the 202 stations exhibits greater
dispersion when employing the traditional models (Saasta-
moinen, A&N, and GPT3models). In contrast, the RMSEs of
our proposed new models (ZTD-CNN1, ZTD-CNN2, ZTD-
CNN3, ZTD-CNN4, ZTD-RF2, and ZTD-RF4 models) at
the 202 stations were mainly concentrated within a smaller
range. This demonstrated that our new models are capable
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FIGURE 11. Daily and monthly variations in terms of RMSE for different models for the ZTD estimation in 2019.

of maintaining RMSE within a more favorable range at the
202 stations.

Fig. 10 illustrates the spatial distribution of improvement
rates in RMSE for the ZTD-CNN2, ZTD-CNN4, ZTD-RF1,
ZTD-RF2, ZTD-RF3 and ZTD-RF4 models compared to
the traditional models at 202 stations in Chinese mainland
and surrounding areas during 2019. The ZTD-RF1 per-
formed worse than the GPT3 model in almost half of the
region, which is not ideal. However, It was evident that
the ZTD-CNN2 and ZTD-RF2 models exhibited an over-
all improvement compared to the GPT3 model in various
regions, except for Southeastern China. ZTD-CNN2 and
ZTD-RF2 models are significantly better than GPT3 models
in most regions, but because surface meteorological data
were not introduced, the models cannot reproduce the com-
plex changes of atmospheric water vapor in the East Asian
monsoon climate types, the forecast accuracy is decreased
in Southeast China. Furthermore, evidently, the introduction
of surface meteorological data for ZTD modeling greatly
improves the accuracy of ZTD forecasting in Southeast-
ern China. the ZTD-CNN3, ZTD-CNN4, ZTD-RF3 and
ZTD-RF4 models exhibited almost an overall improvement
compared to the Saastamoinen and A&N model in the test
regions.

Table 4 presents the detailed distribution of improvement
rates for the ZTD-CNN2, ZTD-CNN4, ZTD-RF1, ZTD-RF2,
ZTD-RF3 and ZTD-RF4models. Among the 202 stations, the
ZTD-CNN2 and ZTD-RF2 models exhibited higher accuracy
than the GPT3 model at 84.16% and 82.18% of the stations,
repectively, and significantly outperformed the ZTD-RF1
model (58.42%). For the ZTD-CNN4, ZTD-RF3 and ZTD-
RF4 models, 97.03%, 97.52% and 98.51% of the stations,
respectively, demonstrated higher accuracy than the Saas-
tamoinen model among the 202 stations. In addition, the

FIGURE 12. Percentages of stations within given altitude intervals.

ZTD-CNN4, ZTD-RF3 and ZTD-RF4models achieved max-
imum improvement rates of 63.83%, 66.64% and 66.75%,
respectively, compared to the Saastamoinen model. When
compared to the A&Nmodel, the ZTD-CNN4 ZTD-RF3 and
ZTD-RF4 models outperformed it at 94.55%, 96.04% and
97.52% of the stations, respectively, with maximum improve-
ment rates of 64.28%, 67.05% and 67.16%.

C. TEMPORAL PERFORMANCE AND ANALYSIS
Previous studies have demonstrated that ZTD exhibits pro-
nounced seasonal variations [35], [36]. Therefore, in order to
further explore the performance of the ZTD models involved
in this study across time, we calculated the daily and monthly
RMSEs for all models in 2019. The results are shown in
Fig. 11.
As illustrated in Fig. 11, for models without requiring

surface meteorological data, their daily accuracy in terms
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FIGURE 13. Altitudinal variations in terms of RMSE for different models for the ZTD estimation in 2019.

of RMSE mostly lies between 2-7cm. Further focusing on
the monthly accuracy in terms of RMSE, we will see that
they lies between 3-6cm, with ZTD-CNN1, ZTD-CNN2
and ZTD-RF2 models being more accurate compared to
GPT3 and ZTD-RF1 models. For models with requiring sur-
face meteorological data, we can find that the ZTD-CNN3,
ZTD-CNN4, ZTD-RF3 and ZTD-RF4 (daily RMSE: 2-5cm,
monthly RMSE: 2-4cm) models significantly outperform the
Saastamoinen (daily RMSE: 2-7cm, monthly RMSE: 3-6cm)
and A&N (daily RMSE:2-6.5cm,monthly RMSE:3-5.5cm)
models, especially in summer. Furthermore, it is important
to highlight that the estimation accuracy of all models is
influenced by temporal factors. It can be observed that the
models perform the worst in summer (June to August) and the
best in winter (December to February). This is due to the fact
that the water vapour content and dynamics are much greater
in the summer than in the winter in the region under study.
For models that do not require surface meteorological data,
the ZTD-CNN2, ZTD-CNN1, and ZTD-RF2 models demon-
strate superior performance in capturing the cyclic variations
of ZTD over time in comparison to the GPT3 model. In the
case of models requiring surface meteorological data, the
ZTD-RF4 models offer a most comprehensive representation
of ZTD, particularly in relation to rapid fluctuations in water
vapour pressure, in comparison to the Saastamoinen, A&N,
ZTD-CNN3, ZTD-CNN4, ZTD-RF3 models.

D. ALTITUDINAL PERFORMANCE AND ANALYSIS
Subsequently, as altitude has a significant effect on ZTD
changes [37], [38], the relationship between the performance
of the ZTD models included in this study and altitude was
further investigated., and given that our test stations were dis-
tributed in an uneven manner across the altitude, we devised
seven altitude intervals and calculated the RMSEswithin each
of these intervals for the purpose of exploration. Percentage
of stations in the given seven altitude intervals is shown in
Fig. 12.

FromFig. 13, it can be observed that for themodels without
requiring meteorological data, their estimation accuracies
increase with altitude. The two GPT3 compensated models

(ZTD-CNN2, ZTD-RF2) demonstrate the most accurate per-
formance, outperforming the GPT3 and ZTD-RF1. However,
the direct model ZTD-RF1 is less accurate than the GPT3
model in certain altitude intervals (>2 km and 0.3-0.5km).
For models requiring meteorological data, the estimation
accuracies of the ZTD-CNN4 and ZTD-RF4 models demon-
strated an increase with increasing altitude. Furthermore,
their estimation accuracies were found to be significantly
superior to those of the Saastamoinen and A&N models,
meanwhile, slightly superior to those of the ZTD-RF3 model.
It is important to note that the estimation accuracies of the
Saastamoinen and A&N models are not proportional to alti-
tude at lower altitudes (≤0.5 km). This is due to the fact that
the low-altitude areas utilised in this study are predominantly
situated in Southeastern China and India, which are charac-
terised by East Asian and Indian monsoon climates with high
water vapour content and active weather patterns. However,
the Saastamoinen and A&N models are unable to adequately
capture the intricate variations in ZTD.

V. CONCLUSION
In this study, we utilized convolutional neural network (CNN)
and random forest (RF) to train two types of zenith tro-
pospheric delay (ZTD) models: the CNN/RF-based direct
models and the CNN/RF-based compensated models. Six
new models were trained using the radiosonde data (2013-
2018) provided by IGRA for 205 stations located in Chinese
mainland and surrounding areas. The validation of these
ZTD models was performed using radiosonde data (2019)
for 202 stations situated in Chinese mainland and surround-
ing areas. Comparative analyses were then performed with
the Saastamoinen, A&N, GPT3, ZTD-RF1 and ZTD-RF3
models to evaluate the effectiveness of these approaches.
Generally, our new CNN/RF-based ZTD models demon-
strated improvement compared to traditional ZTD models
and existing RF-based ZTD models.

For models without requiring surface meteorological data,
the optimal model is the CNN-based compensation model
(ZTD-CNN2), which exhibits an overall RMSE of 4.21 cm,
indicating a 7.89% reduction compared to the GPT3 model
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(4.57 cm) and significantly superior to ZTD-RF1 model
(4.34 cm). Furthermore, the ZTD-CNN2model demonstrated
superior error stability compared to the GPT3 and ZTD-
RF1models. Spatially, the ZTD-CNN2model itself exhibited
higher accuracy in estimating ZTD in the northern and south-
western areas of the Chinese mainland, as compared to
the southeastern area. Additionally, the ZTD-CNN2 model
effectively enhanced the accuracy of ZTD estimation in the
northern and southwestern areas of Chinese mainland, India
and Japan. Moreover, it successfully addressed the issue of
excessive ME in the ZTD estimation in Japan.

With the introduction of surfacemeteorological data, based
on a more accurate portrayal of water vapour pressure,
both the CNN-based compensation model (ZTD-CNN4) and
the RF-based compensation model (ZTD-RF4) demonstrated
superior performance compared to the Saastamoinen model
and the A&N model. The ZTD-RF4 model achieved an over-
all RMSE of 3.24 cm, representing a 29.47% reduction of the
RMSE compared to the Saastamoinen model (4.60 cm) and
a 26.75% reduction compared to the A&N model (4.43 cm).
Additionally, the ZTD-RF4 model reached a mean RMSE of
3.11 cm, indicating a 27.63% reduction of the mean RMSE
compared to the Saastamoinenmodel (4.30 cm) and a 24.45%
reduction compared to the A&Nmodel (4.12 cm). Compared
with the Saastamoinen and A&N models, the ZTD-CNN4
and ZTD-RF4 models exhibited significantly better perfor-
mance in terms of the accuracy and error stability. Spatially,
the ZTD-CNN4 and ZTD-RF4 models demonstrated excel-
lent accuracy across the Chinese mainland and surrounding
areas. Particularly noteworthy was their ability to overcome
the limitations of traditional models, which often resulted in
poor accuracy in ZTD estimation for regions such as South-
eastern China and India with monsoon climate types.
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