
Received 19 July 2024, accepted 5 August 2024, date of publication 9 August 2024, date of current version 20 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3441096

Structural Optimization for Asymmetrical Inline
Topology Filter With Transmission Zeros Using
Goal-Oriented Reinforcement Learning
KIET YEW LEONG 1, (Student Member, IEEE), SOCHEATRA SOEUNG 1, (Senior Member, IEEE),
SOVUTHY CHEAB 2, (Senior Member, IEEE), AND CHENG-KAI LU 3, (Senior Member, IEEE)
1Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Perak, Seri Iskandar 32610, Malaysia
2Cambodia Academy of Digital Technology, Phnom Penh 12252, Cambodia
3Department of Electrical Engineering, National Taiwan Normal University, Taipei 106, Taiwan

Corresponding authors: Cheng-Kai Lu (cklu@ntnu.edu.tw) and Socheatra Soeung (socheatra@gmail.com)

This work was supported in part by the National Science and Technology Council, Taiwan, under Grant NSTC 111-2222-E-003-001,
Grant NSTC 112-2221-E-003-008, and Grant NSTC 113-2221-E-003-006-MY2.

ABSTRACT This paper presents a novel structural optimization approach for an asymmetrical inline
topology with transmission zeros, known as Extracted Pole Unit (EPU) filter using a goal-oriented
reinforcement learning method, specifically a hybrid of Soft Actor Critic (SAC) and Hindsight Experience
Replay (HER). The recent popularity of reinforcement learning (RL) algorithms for optimizing cavity
bandpass filters (BPFs) has led to several limitations. RL algorithms are inherently sample-inefficient,
leading to prolonged model training times. A substantial number of training samples are required to achieve
accurate results for a complex design using RL models. Additionally, most objective functions used for
fitness calculations do not account for predistortion constants, which are crucial in synthesizing asymmetrical
inline topologies with three transmission zeros as demonstrated in this work. To address these challenges, the
proposed method incorporates predistortion-modified poles and transmission zeros within a feature-assisted
objective function for use in the optimization process. Subsequently, a hybrid of SAC and HER is adopted as
the optimization algorithm to leverage its improved sample efficiency by encouraging learning from diverse
optimization scenarios and outcomes. The proposedmethod can optimize the self-couplings of the EPUfilter
in fewer optimization steps, showcasing enhanced training convergence speed and design accuracy.

INDEX TERMS Bandpass filter (BPF), extracted pole unit (EPU), neural networks (NNs), reinforcement
learning, S-parameters.

I. INTRODUCTION
Structural optimization of microwave filters during the filter
design phase is a stringent process. Conventionally, manual
tuning is performed by an experienced engineer; who adjusts
the filter’s structural parameters and evaluates the filter’s
response based on preset goals, such as return loss, band-
width, stopband rejection, and transmission zeros locations
in S-parameters. Advanced Electronic Design Automation
(EDA) software enables engineers to perform a simulation
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analysis of a design. Besides, with built-in mathematical
optimization algorithms such as genetic algorithm, particle
swarms, and conjugate gradient, the engineers can perform
the local and global optimization analysis to generate a
feasible set of their design structural parameters.

However, owing to the strict specifications and unique
asymmetrical inline topology with transmission zeros used in
this work, the manual tuning or conventional mathematical
optimization process can be time-consuming and inevitably
meet the requirements, which leads tomore reliable solutions.
This is because the objective function used does not
account for the features in the target S-parameters such as
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poles and transmission zeros. The local algorithms such as
conjugate gradient has higher risk of converging solutions
prematurely, while the global algorithms such as genetic
algorithm requires large number of parameters sweeps in the
global search space when a complex design is involved. For
example, the Extracted Pole Unit (EPU) structure requires
precise locations of transmission zeros, TZs. Optimizing such
a structure will easily induce prematurely converged and non-
feasible solutions when locations of TZs are perturbed.

The novelty of this work is the use of an off-policy
reinforcement learning, Soft Actor-Critic (SAC), and hybrid
with Hindsight Experience Replay (HER) approach to
optimize the EPU filter. Herein, we refer to this as “SAC +
HER”. The SAC + HER algorithm can achieve high sample
efficiency and high training convergence speed in learning the
non-linear relationship between the structural parameters and
filter response. Using a hybrid approach with HER to store
the sample transitions can reduce the effect of sparse reward
problems inherent in reinforcement learning caused by the
non-uniqueness input-output relationship. In the context of
optimization, a feature-assisted objective function proposed
by [19] is adopted but modified to consider poles in S11 with
a series of predistortion constants α to direct poles into an
acceptable region in the passband, as well as relocating the
transmission zeros.

The Extracted Poles Unit (EPU) synthesized from the
method used in [2] is an example of the design structure
used in this experiment. The EPU filter has a pass-band
frequency centered at 3.605GHz with a narrow bandwidth of
380MHz. The parameters to be optimized are the depths of
the screw penetration of the resonators, which represent self-
couplings. We train the SAC+ HER model by running many
optimization instances of the design to minimize the error
between actual and preset goals. The SAC + HER model
takes predistorted poles of S11 as inputs and generates the set
of structural parameter delta values, which are later used to
update the depth of the screw penetration on the EPU design.

The rest of this paper is organized as follows. Section II
reviews related works. Section III describes the framework
structure of goal-oriented reinforcement learning. Section IV
describes themethodology and experimental setup. Section V
presents the experimental results. Finally, Section VI con-
cludes the paper.

II. RELATED WORK
The synthesis of a new class of inline filter topology with
transmission zeros was introduced in [2]. The new method
reconfigures eigenvalues and residues of the admittance
function with predistortion constants to realize the prescribed
transmission zeros owing to the dangled resonators connected
to the source or load of the network. Different to the works
in [3], [4], [5], [6], [7], and [8], the author in [2] adopted the
predistortion constants to guide the poles in the reflection
polynomials, S11, to be within the values of −1 and 1 in
the low-pass transformation. Depending on the location
of the source and load, the poles of reflection polynomials

of the dangled resonators are equal to the prescribed
transmission zeros, whereas the poles of its transmission
polynomials are equal to zero. The transversal topology
within the source and load is predistorted with predistortion
constants; then, it can be further transformed into an inline
topology using the matrix rotation technique in [1]. For
dangled resonators outside the source and load, their coupling
matrix can be solved mathematically such that the poles of
the transmission polynomials will be equal to zero. This
new class of synthesis methods provides a hypothesis to
investigate whether these predistortion constants can act as
additional features in constructing the state vectors to train
the SAC model.

Optimization is an iterative process that requires repetitive
evaluations of the design model to capture feasible design
parameters that satisfy the design specifications. From [29],
the major challenges in modern optimization are uncertainty
of optimization, multi-objective design in high-dimensional
spaces, and manufacturability. To address these issues, [29]
suggested advanced optimization methods using surrogate
models, automated feature engineering, andmachine learning
techniques. Conventional common mathematical optimiza-
tion methods, such as space-mapping optimization, are
widely adopted in the optimization of multiplexers and
switches [30]. A cognition-driven formulation of space
mapping (SM) proposed in [33] is used for the equal ripple
optimization of microwave filters and to estimate the yield
in their design by mapping statistical variable spaces to
feature parameter spaces. In [34], this cognition-driven space
mapping approach that eliminates the need for explicit sur-
rogates was further applied to EM-based filter optimization
with equal-ripple responses. Unlike previous algorithms that
accelerate optimization by creating a simplified model of
a complex system, [31] used linear regression to calculate
inverse space mapping to search for design parameters in the
high-fidelity model that correspond to the desired outputs in
the coarse model.

The studies in [10], [21], [28], and [32] demonstrated the
possibility of using a forward model built with an artificial
neural network (ANN) that aims to learn the behavior of
passive or active circuits as a new modeling method. The
inputs to the neural network are the circuit characteristics,
whereas the outputs of the network are the electrical
parameters, composed of S-parameters in magnitude dB, and
phase in degrees. The application of such ANNmodel can be
used to replace heavy simulation needed for each evaluation
during optimization. However, the accuracy of the ANN
model is highly dependent on the datasets and the trained
ANN model is only specific to a particular design.

Subsequently, [11], [12], [13], and [14] used an inverse
model to reverse the process of how a neural network should
learn, taking input as electrical parameters and output as
the geometrical parameters. The works in [15] considered
undesired cross-couplings that potentially degrade the per-
formance of NN by Eigenmode-based NN, taking the ideal
coupling matrix of the transversal array filter as input to
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produce output geometrical or structural parameters. Such
an inverse model is used to obtain the desired geometrical
parameters of any RF design structure that has developed a
new optimization approach.

Advanced data preprocessing is essential for enhancing
the training of inverse models. Reference [11] introduced
a method for dataset division by detecting the non-
uniqueness in the input-output relationship, particularly for
data with multivalued solutions. Besides, [12] employed
filter decomposition to simplify high-dimensional neural
network problems into sets of two-dimensional sub-neural
network problems, and developed an empirical model to
integrate these sub-networks. The study in [14] utilized
pole-residue analysis of the electrical parameters from the
transfer function as the model’s inputs to handle the problem
of order variations with changing geometrical parameters
in large parameter spaces. Building on the non-uniqueness
dataset preprocessingmethod in [11], the works in [16] divide
datasets into partial geometrical parameters and introduce a
dimensionality reduction neural network. In summary, the
inverse model’s accuracy can be improved by mitigating the
non-uniqueness in datasets, reducing the dimensionality of
the design parameters, and extracting critical features that
help the neural networks to effectively map the geometrical
and electrical parameters.

The inverse model is not generic for different filter
design optimizations because the trained inverse model is
unique to a particular design. For a more flexible solution,
the surrogate model is capable in this scenario, which
is heavily implemented in most EDA tools. The works
in [17], [18], [19], and [20] performed design optimization
using the surrogate model to partially replace heavy EM
simulations to speed up the overall optimization process.
In contrast to inverse model approaches, the surrogate
model requires model refinement, such as active learning,
to routinely improve accuracy over time. Thus, it is always
used in parallel with conventional optimization algorithms.

In the optimization of microwave filters in the EM-
based design process, the essential techniques discussed
in [19] include sampling techniques, surrogate modeling,
and optimization algorithms with AI-assisted methods. The
works in [19] used a feature-assisted objective function
that considers the positions of the reflection zeros, RZs,
and the magnitude of S11 in dB. The formulation of the
objective function aims to minimize the errors of the RZs
positions if they are within the bandwidth around a desired
center frequency in the low-pass domain, and to minimize
the magnitude of the S11 to the desired return loss. The
characteristic landscape of the feature-assisted objective
function is then compared to different objective functions
to evaluate the multi-modality, smoothness, and location
of global optima in the valley of the landscape. From the
experimentation, it was observed that the feature-assisted
objective function has better smoothness and less multi-
modality on the landscape, which depicts better convergence

in the optimization. If the characteristic landscape has a
very low multimodal profile, local minima are less likely to
exist, which reduces the chances of the optimization being
prematurely converged.

In addition to supervised learning, reinforcement learning
has been gaining more attention ever since the success of
OpenAI or DeepMind teams in solving robotic controls or
automation tasks. To some extent, reinforcement learning
has been used in filter optimization tasks as well in works
of [22], [23], and [35]. The works in [22] used a Deep Q-
Network (DQN) to predict the actions to update the filter’s
structural parameters, aided by another supervised neural
network that is trained beforehand to predict the coupling
matrix similar to [25]. This method can be extended to [27],
which can automatically adjust the bandpass filters (BPFs)
for multiple design goals. Because simulated filter response
generation can be computationally demanding, training with
a DQN can be very time-consuming. The proposed method
can reduce the learning time because the second neural
network replaces the simulation to predict the couplingmatrix
to generate S-parameters. In addition, [22] used awell-trained
neural network to predict an initial set of parameters. The
filter is then optimized with a DQN for better quality (e.g.,
achieving return loss in the specification).

Another approach to demonstrate the capability of rein-
forcement learning in tuning microwave filters is the works
of [23] and [24] with additional modification either on
the input states (observation) or reward shaping function
required to train the RL model. The work in [23] uses the
Locally Linear Embedding (LLE) technique to reduce the
dimension of the input states represented by the S-parameters
of the designs for standardizing training datasets and train
the RL model with Double Deep Q-Network (DDQN).
Unlike the common DQN with discrete action spaces to
predict design parameter values, [24] uses a knowledge-
inspired reward shaping function, together with the Deep
Deterministic Policy Gradient (DDPG) algorithm to make
continuous actions’ prediction possible. However, DDPG
uses a separate actor network to maximize the Q-learning
value possesses extreme brittleness and hyperparameter
sensitivity, as benchmarked in [42]. Besides taking input
states as a vector, [26] uses a Convolutional Neural Networks
(CNN) instead as the RL networks to learn the image
representation of S-parameters curves, simplifying the state
shaping and utilizing CNN’s pooling layers to accomplish the
feature extractions.

Different to the abovementioned approaches, an AI-
assisted optimization algorithm can also be used to optimize
the microwave filter. The work in [36] introduces a one-
dimensional convolutional autoencoder (1D-CAE) surrogate-
based electromagnetic optimization technique by incorporat-
ing particle swarm optimization (PSO) and neural networks
for microwave filter design. Similarly, [37] presented the
Reinforcement Learning-based Multi-Objective Differential
Evolution (RLMODE) algorithm, which dynamically adjust
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DE hyperparameters through reinforcement learning, can
adaptively guides the solution towards feasible regions,
thereby enhancing the optimization convergence.

In this paper, the proposed SAC + HER method is used
to optimize the self-couplings of the EPU filter with trans-
mission zeros. The SAC + HER method takes predistorted
poles and transmission zeros as input and generates deviation
values to update the penetration screw depths of the EPU
filter. The synthesis method of predistortion constants is
included in Section IV-C, which are adapted into a feature-
assisted objective function based on [19] for use in the
optimization process.

III. GOAL-ORIENTED REINFORCEMENT LEARNING
(GORL) FRAMEWORK
A. SOFT ACTOR CRITIC (SAC)
SAC is an off-policy reinforcement learning algorithm that
maximizes future rewards by maximizing the entropy of the
policy [38]. As a result, SAC improves sample efficiency in
training by exploring better with maximized entropy [41].
This is especially useful when highly sparse rewards which
degrades the training performance [40] exist in highly
difficult environments, such as optimizing the structural
parameters of the microwave filter where non-uniqueness
exists as explained in [11]. SAC does not require datasets
collected beforehand; instead, the dataset mapping the input
state vector and output action vector is collected and stored
in a replay buffer during the learning phase. Similar to
other reinforcement learning algorithms, the following main
elements were implemented in the proposed method:

1) Environment: Integrating an EM simulation that
updates the EPU structural parameters. The S-
parameter response is simulated and evaluated to
construct state observations and compute rewards to
update the policy.

2) Action: Predicts the filter’s structural parameters delta
values.

3) State: Vector of observation is the poles value modified
by predistortion constants.

4) Reward: Euclidean distance between current achieving
state and the desired goal state.

The SAC utilizes three major networks: value network V ,
Q-network Q, and policy network π . During SAC model
training, the objective function of each network must be
optimized by taking their derivatives. The actions to be
predicted are portrayed as a normal distribution in policy
network π . The value network V is trained to minimize the
squared residual error, as defined by

JV (ψ) = Est∼D[
1
2
(Vψ (st )− Eat∼πφ [Qθ (st , at )

− logπφ(at |st )])2]. (1)

whereD is the replay buffer and E is the expected prediction.
The formulation in (1) serves as the objective function of
the value network V . It aims to minimize the discrepancy
between the V-value estimated by the value network, Vψ (st )

and the Q-value predicted by the current policy, Qθ (st , at ).
Additionally, SAC introduces an entropy regularization term,
− logπφ to encourage exploration to maintain stochasticity
in the policy π . Maximizing entropy encourages a policy to
explore different actions and learn a diverse set of behaviors,
leading to better exploration and improved robustness in
learning. Subsequently, two soft Q networks were trained to
minimize the following error:

JQ(θ ) = E(st ,at )∼D[
1
2
(Qθ (st , at )− Q̂(st , at ))2]. (2)

where

Q̄(st , at ) = r(st , at )+ γEst+1∼ρ[Vψ̄ (st+1)]. (3)

Double soft Q networks are used for stability [38] by
reducing the overestimation bias commonly observed in deep
Q-learning algorithms. The objective function of the soft
Q network (2) is based on the Bellman equation, which
minimizes the mean squared error of the current prediction
of the Qθ function and the next state Q̂ function. The next
state Q function is defined in (3), which is the summation
of the current reward value, r(st , at ) and the expected value
of the next state, Vψ̄ (st+1) which considers the entropy
term, as in (1). This Vψ̄ (st+1) is discounted by a constant
γ to balance the importance of immediate versus the future
rewards.

The policy network is trained to minimize the following
error:

Jπ (φ) = Est∼D,ϵt∼N [logπφ(fφ(ϵt ; st )|st )

−Qθ (st , fφ(ϵt ; st ))]. (4)

The SAC learns a stochastic policy that maps states to
actions. In particular, it often parameterizes a Gaussian
distribution in continuous action spaces, where ϵ is the
epsilon term from the Gaussian distribution. The formulation
in (4) is used to close the gap between the entropy of the
current predicted actions against the current state, logπφ and
the quality of the current state action from the soft Q network,
Qθ . Notice that the term fφ(ϵt ; st ) denotes the actions, at , that
are calculated from the Gaussian distribution. To wrap up
the three main objective functions, taking derivatives of (1),
(2), and (4) gives gradient forms to be minimized, which are
summarized as follows:

∇̂ψJV (ψ) = ∇ψVψ (st )(Vψ (st )− Qθ (st , at )

+ logπφ(at |st )). (5)

∇̂θJQ(θ ) = ∇θQθ (st , at )(Qθ (at , st )− R(st , at )

− γVψ̄ (st+1)). (6)

∇φJπ (φ) = ∇φ logπφ(at |st )+ (∇at logπφ(at |st ))

−∇φ fφ(ϵt ; st ). (7)

We used (5), (6), and (7) as the objective functions in their
respective networks to be minimized in the training phase.
In summary, five neural networks were utilized as two value
networks, two soft Q networks, and one policy network. Both
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the value and soft Q networks act as critics, whereas the policy
network is the actor. The actor predicts the actions, whereas
the critic evaluates the performance of the action.

B. HINDSIGHT EXPERIENCE REPLAY (HER)
The primary motivation for using HER is to address the
common issue of sparse rewards [39], where the SAC model
may receive positive rewards only when it successfully tunes
a filter. As discussed in [11], [12], and [16], the non-
uniqueness problem can degrade the prediction accuracy
if an RL agent has a single-input-multiple-output scenario
that causes the sparse reward problem. In many real-world
scenarios, learning from failures can be challenging, because
the agent receives limited feedback. HER allows the agent
to learn from its failures by treating unsuccessful training
episodes as if they were successful but with a different goal.
In this way, the agent can still gain valuable information
from the experience, even if it does not achieve the original
goal. This allows an RL agent to effectively learn from both
successful and unsuccessful experiences, thus accelerating
learning in scenarios where achieving the original goal is rare
or difficult to achieve, or requires a very long training time.
HER was used as the replay buffer of SAC, and the hybrid of
this technique is used as the model to train the optimization
of a microwave filter.

C. SAC AND HER HYBRID ALGORITHM
The framework of the proposed method is illustrated in Fig.1.
The training process is summarized in Algorithm 1.
In Algorithm 1, owing to the addition of the goal state

vector g, the transition is stored differently than in the original
SAC algorithm in [18]. For each of the total K training
epochs, there are a total T number of steps to collect the
HER buffers, D. HER stores a batch of training datasets
required to train the fives networks in the SAC. In each step,
actions at are sampled from the policy network, πφ given
the st and desired goal, g. These at are updated to the EPU
design parameters discussed in Section III-B, and the next
state, st+1 is captured. Once the current epoch is terminated
owing to certain criteria, such as the total number of steps
are met, the optimization had reached convergence, or the
optimization goals have been achieved, the last training data
must be embedded into the HER. For each step, the reward
signal rt is computed by specifying the error to achieve the
desired goal using (18), which is the Euclidean distance of
st and g. The HER is required to take a set of additional
buffers, in which the additional goal g′ is sampled from
any of the previously captured non-promising state, then
a reward signal r ′t corresponding to g′ is calculated. This
enhances the sample efficiency by allowing the agent to learn
from failures and explore alternative trajectories that lead to
different outcomes. Finally, using the batch of HER, D to
update the five networks in N gradient steps completes one
cycle of SAC + HER model training.

Algorithm 1 SAC and HER Hybrid

Initialize parameters: ψ, ψ̄, θ1, θ2, φ
θ̄1← θ1, θ̄2← θ2,D← ∅
Sample a goal g ∈ G
for epoch k = 1,K , do

Sample an initial state s0 ∈ S
for environment step t = 0,T , do

at ∼ πφ(at |st , g)
st+1 ∼ ρ(st+1|at , st , g)

end for
for environment step t = 0,T , do

rt := r(st , at , g)
D← D ∪ {(st , at , rt , st+1, g)}
Sample a set of additional goals G from strategy
for g′ ∈ G do

rt ′ = r(st , at , g′)
D← D ∪ {(st , at , rt ′, st+1, g′)}

end for
end for
for gradient step n = 1,N do

ψ ← ψ − λV ∇̂ψJV (ψ)
ψ̄ ← τψ + (1− τ )ψ̄
θj← θj − λQ∇̂θjJQ(θj) for j ∈ {1, 2}
φ← φ − λπ ∇̂φJπ (φ)

end for
end for

Output: ψ, ψ̄, θ1, θ2, φ

IV. REINFORCEMENT LEARNING FOR EPU FILTER DESIGN
A. ENVIRONMENT SET-UP
The EM simulation was used to design and simulate the EPU
filter to generate the filter response in the S-parameters. For
each step in the episode, the K number of filter structural
parameter delta values predicted from the SAC are updated
to the design in the simulation. The simulated S-parameters
were then evaluated, producing a reward value, rt = r(st , at ).
Before each step is terminated, the state vector, st , next state
vector, st+1, action vector, at , reward value, rt and goal
state vector, g are stored in the HER, denoted by D =

(st , at , rt , st+1, g). For a preset number of buffer sizes, the
SAC learns to generalize periodically using the buffer dataset
in the HER.

B. ACTIONS
In the approach to tuning the EPU structural parameters, K
numbers of the structural parameter set, P = (p1, p2, . . . , pK )
which can also be denoted by pj ∈ Pwhere (j = 1, 2, . . . ,K ),
are chosen for optimization. The structural parameter set,
P, is preset with an initial value, where each value must be
bounded with minimum and maximum values to define a
feasible search space for the solution. In each step of the
episode, the action vector output from the SAC policy is
at = π(st ||g) where a ∈ A is the unscaled delta value of
each structural parameter and

a
pj = atbwhere b is the scale
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FIGURE 1. Hybrid of SAC and HER framework.

factor that ensures the delta values are in the correct unit.
To perform the update, delta values are added to the respective
pj, which is defined as

pj,t+1 = pj,t +△pj. (8)

The filter response is then simulated, which is required
to extract the next state vector, st+1 and compute the
reward rt .

C. STATES
Reinforcement learning learns to act based on state features;
it is the observation or feature to tell the SAC model what
action should be performed next. The reflection parameter
S11 is used for the feature extraction into the state vector
because they are derived from the characteristic polynomials
of a microwave filter. In this study, eight RZs were extracted
and used in the shaping of the state vectors. The vector fitting
technique from [9] used to extract the poles RZs and residues
from the simulated S11 response. These RZs extracted from
vector fitting were predistorted by the constants α owing
to dangled resonators at the first resonator and last two
resonators Thus, the RZs extracted by vector fitting technique
and predistorted by the constants α are as follows:

f ′z,i = fz,i + αi, i = (1, 2, . . . ,N ) (9)

where fz,i denotes the RZs extracted by vector fitting and N
is the filter order. Then the formulation of the state vector s

can be shaped by the eight RZs, depicted as follows:

st+1 = {f ′z,i}, i = (1, 2, . . . ,N ) (10)

Note that the suffix of state, t+1 is denoting the next state.
This is because, for every state vector, is shaped after each
action is taken. This state vector captures the current state of
the EPU filter’s responses, which is a crucial reference for the
employed model to predict the next action based on st+1.

D. OPTIMIZATION OBJECTIVE FUNCTION
To facilitate the optimization process, a meticulously crafted
objective function was employed utilizing the feature-
assisted objective function proposed in [19], with some
modifications to consider the predistortion constant, α of
the reflection polynomial from the introduction in [2]. The
objective function is modified as follows:

F = Min

{
w1 · max

( N−1∑
i=1

max S11,dB(f ′z,i, f
′

z,i+1)− D, 0
)

+w2 ·

N∑
i=1

max
(
|f ′z(i) − CF | − BW/2, 0

)

+w3 ·

M∑
j=1

max
(
|ftz(j) − TZ (j)|, 0

) (11)

where f ′z are the extracted RZs locations that naturally include
the predistortion constant α and ftz are the extracted TZs.
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f ′z and ftz were determined using the vector fitting method
on simulated S11 and S21. CF represents the desired center
frequency, BW represents the desired bandwidth, and TZ
represents the predefined transmission zero of the filter
design, as in [2]. D represents the desired return loss of
S11,dB. In this study, the return loss, D is equal to -18dB
value. Weights w1, w2, and w3 were used to control the
influence of the three evaluations. The objective function is
formulated with the features of the solution responses such
as S11 poles, RZs and transmission zeros, TZs. It aims to
prioritize the adjustment of RZs positions and subsequently
refine the return loss within the pass-band, and then adjust
the location of the TZs to agree with the predefined TZs.
The predistortion constants compromise the three TZs in an
inline topology. Thus, it is important to include them in the
formulation. In summary, the formation of (11) guides the
learning of the employed SAC model to reduce the error of
misaligned TZs and ensure that all RZs are within −1 and 1.

E. EXTRACTION OF PREDISTORTION CONSTANT
The inline topology of asymmetrical network with three TZs
is shown in Fig.2.

FIGURE 2. Inline topology for asymmetrical network with 3 TZs.

Considering the case in (14) is satisfied, the transversal
array network to describe the inline topology with dangled
resonators is shown in Fig.3.

r ′11,k or r
′

22,k = 0, k = 1, 2, . . . ,N (12)

FIGURE 3. Transversal array of the asymmetrical network with 3 TZs.

In Fig.3, there are three dangled resonators: λ′1, λ
′

N−1, and
λ′N . In [2], the predistortion method was used to reconfigure

the selected eigenvalues to the location of the prescribed
TZs to realize these dangled resonators. Using the common
rational polynomials from [1] yields

S11 =
FS
ES

, S21 =
K12PS
ES

(13)

and the admittance function given by

Yd = ES + E∗S + FS + F
∗
S (14)

where the reflection polynomial FS with predistortion
constant, α is

FS =
N∏
i=1

(s+ αi + I ∗ Rz,i) (15)

It is necessary to compromise the reflection specification
by altering the scaling factor K12 such that the unitary
condition of S11S∗11 + S21S

∗

21 = 1 can still be satisfied. Thus,
the altered scaling K12 is proposed as follows:

K12 =
βPS
FS
∗

1
√
10RL/10 − 1

(16)

where β is the unknown that compromises the reflection
specification when the predistortion constant α is placed in
the reflection polynomial FS . The calculation of α and β is
proposed using optimization, where the objective function to
be minimized is:

Fα,β = Min
N∑
i=0

(|max roots(Yd )| − TZ (i))2

+ (|min roots(Yd )| − TZ (i))2 (17)

The formulation in (17) is used to ensure that the poles or
eigenvalues are smaller than the three TZs. Finally, α and β
are extracted when (17) is satisfied.

F. REWARDS
The employed model is goal-oriented in the context of the
HER. The reward signal value rt in this proposed method is
computed by taking the Euclidean norm of the goal state g
and the current state st+1 after the actions have been taken:
the reward function is defined by

r(st+1, at ) = −(|g− st+1|2)
1
2 − F . (18)

where F is the objective function in (11), and g is the vector
consisting of the eight ideal RZs values from the synthesized
EPU filter in [2]. The higher the reward function, the smaller
the error between the current state st+1 and the goal state, g,
which also minimizes (11).

G. WORKFLOW
To combine pieces, a workflow is constructed to per-
form iterative optimization using SAC + HER algorithms,
typically to predict actions based on the previous state
vector (observation), update the design parameters, evaluate
the design’s S-parameter using a feature-assisted objective
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function, update the next state vector, and repeat the cycle
until the termination criteria met. Each of this cycle is one
environment step in Algorithm 1. The workflow is illustrated
in Fig.4.

FIGURE 4. Optimization workflow.

V. DESIGN OPTIMIZATION
A. DESIGN SPECIFICATION
An example of using the SAC + HER is demonstrated for
an 8th-order Extracted Pole Unit (EPU) structure, which
is designed using an inline topology with an asymmetrical
network. The goal is to tune the self-couplings of the
structure to obtain a good return loss in the S11 while
relocating transmission zeros at S21. In this design example,
the penetration depth of the screw at each of 8 resonators
need to be optimized. The structural parameters are P =
(p1, p2, . . . , pN ), where p is the depth of screw penetration,
and N is the filter order.
The 3D structure of the EPU filter is designed using

Ansys Electronics Desktop (HFSS) v2019. An Application
Programming Interface (API) script was constructed to
enable integration between the adopted AI framework and
HFSS. In Fig.5, the EPU filter’s dimensions (width, w ×
length, l × height, h) are 30 mm × 190 mm × 18 mm.
It has eight radial resonatorsmade up of aluminium, eachwith
diameter (d1) of 9 mm, and the thickness of 0.5 mm. Each
penetration screw ismade up of aluminiumwith diameter (d2)
of 4 mm. The filter’s casing is made up of aluminium. The

FIGURE 5. Structural parameters to be tuned in the EPU’s structure are
the depth of penetration of the screws, P = (p1, p2, . . . , pN ).

source (S) and load (L) ports are made up of Teflon (inner)
and Brass (outer cover). The source is connected to resonator
1 and resonator 2, while the load is connected to resonator
6 and resonator 7, both connections are done via gold pins
to bridge the dangled resonators at position 1 and 7. The
inter-resonators gaps are g12 = 14.6 mm, g23 = 11.44 mm,
g34 = 15.36 mm, g45 = 15.5 mm, g56 = 13.64 mm,
g67 = 14.6 mm, and g78 = 9 mm.
The depth of penetration is in the mm unit. The initial

values for each parameter are randomly set. The minimum
and maximum boundary of each parameter is defined as
0.1 mm <= pi <= 5 mm, where i = 1, 2, . . . ,N ,
to ensure that the filter design is valid and feasible. The
8 structural parameters will contribute to eight action sizes,
which is the output from the policy of SAC, at = π(st ||g).
The off-policy SAC is constructed to output continuous
action between the normalized value of −1 and 1 for each
action, at , then the delta value of each parameter,

a
pj is

computed by multiplying at with a scale factor, b. The scale
factor b is calculated by (5mm − 0.1 mm) ∗ 0.1, which is
the 10% difference between the maximum (5 mm) and the
minimum (0.1 mm) values. The single step to update each
parameter is capped at 10% of the whole value range to
prevent excessively large adjustments that could destabilize
the system. Then, the formulation in (8) is employed to
compute the updated parameter value, thereby completing a
single parameter adjustment. The hyperparameters of SAC+
HER are listed in Table 1.
The framework hyperparameters are kept simple, which

is adopting the default hyperparameters setup in [43]. The
authors in [43] considers the continuous action values and
set the entropy target to −dim(A), where A is the dimension
of action size. The entropy target is used to encourage
exploration by promoting diversity in the model’s actions.
The goal selection strategy in Algorithm 1 used is future
type, this means the intermediate goal, g′ is achieved after
the current step within the same epoch. In layman terms, the
SAC algorithm considers goals that can be achieved later in
the same period of learning when training data are sampled
from HER for updating the policy in SAC during the training
phase. By considering these additional goals during model
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TABLE 1. Hyperparameters setting of SAC and HER hybrid.

training, the model can learn from its failures and explore
different strategies to accomplish them.

B. RESULTS OF THE OPTIMIZATION OF THE EPU FILTER
The predistortion constants α synthesized from Section IV-C
are listed in Table 2. The first poleλ′1 and last poleλ′8 were not
distorted to preserve the bandwidth of S11. The middle poles
from λ′2 to λ′7 are predistorted by the constants to compromise
the dangled resonators at 1, 7, and 8. These eight predistorted
poles λ′ are the goal state g to be achieved in the optimization
framework.

The SAC + HER model was applied in this EPU filter
optimization, and the model is trained for 150 epochs. In each
episode, there were a maximum of 50 steps to adjust the
penetration screws. The condition to terminate the episode is
either when 50 maximum steps are reached, or when preset
design goals are achieved. The training of this EPU example
optimization took 2 days on a High-Performance Computing
(HPC) system using Intel(R) Xeon(R) CPU E5-2667 v2 @
3.30GHz with 128GB RAM.

In Fig.6, the training performance is summarized by
the cumulative rewards in each epoch. At approximately
60 epochs (3000 evaluations), the solution is converged. The
trained model can now be used to optimize the EPU filter in
fewer steps and produce good return loss in S11, as well as
relocate the three TZs.

To validate the optimization using the trained model, two
examples with different set of initial values for the screw
penetration depths that are randomly determined are used.
In Fig.7, the SAC+ HER model can effectively optimize the
self-couplings of the EPU filter, achieving good agreement
with the preset goals, which are the TZs location and S11

FIGURE 6. Cumulative rewards of training in 150 epochs. Training is
converged at approximately epoch 60.

FIGURE 7. Comparison of the initial and optimized EPU filter using the
SAC + HER trained model. (a) Example A and (b) Example B.

return loss of 18 dB. This demonstrates that the SAC+ HER
model successfully correlates the non-linearity between the
screw penetration depths, the poles, and the TZs with the
predistortion constants by using objective function in (11).
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TABLE 2. Predistortion constant, α for each S11 poles, λ′

k .

TABLE 3. Results of the optimized screw penetration depths for two
examples of different randomized initial values.

The results of optimized parameters values are presented in
Table 3.

It is interesting to analyze the optimization response
surface plot of the EPU filter to visualize the location of the
optimal solution in a low-dimensional space. In this study,
a feature reduction technique using Principal Component
Analysis (PCA) is used to represent the optimization
problem in a two-dimension response surface plot. The PCA
technique is used to project the eight-dimensional multiple
variations of design parameters with distinct values into two-
dimensional sets. Then, the eigenvalues and eigenvectors
of the data are computed. The first two eigenvectors with
the highest eigenvalues are chosen, allowing each set of
eight-dimensional design parameters to be represented by an
eigenvector of two values.

A dataset X with n samples and 8 features is prepared by
sampling n sets of different design parameters variations, with
each analyzed in the simulation, and then evaluated using the
objective function (11), where the dataset X is represented as:

X =


x1,1 x1,2 · · · x1,8
x2,1 x2,2 · · · x2,8
...

...
. . .

...

xn,1 xn,2 · · · xn,8


To perform the PCA technique to reduce the dimensions

from eight features to two features, the dataset was first
standardized. Then, a covariance matrix 6, of X was
computed using the standardized features.

6 =
1

n− 1
(X − X̄ )T (X − X̄ ) (19)

where X̄ denoted the mean of the dataset X . The eigen-
vectors and eigenvalues of 6 which represent the principal
components and the amount of variance explained by each

principal component, respectively, were obtained. The dataset
was projected onto the first two principal components to
obtain the transformed dataset X ′:

X ′ = X · V (20)

where V is the matrix of eigenvectors corresponding to
the two largest eigenvalues. The resulting dataset X ′ will
have n samples with only two features, utilizing X ′ as the
XY coordinate for each corresponding evaluated cost to
construct the response surface. The 2-D response surface for
the optimization of the EPU filter is shown in Fig.8.

FIGURE 8. 2-D response surface of the optimization problem with red
region indicates high-cost area and blue region indicates low cost area.

Note that there are two regions of possible minima: one is
the global minima where the solution should converge, and
the other is the local minima where the solution should be
avoided. If a solution converges with the second solution,
premature convergence would occur, and the goal of the
design would never be met. Fig.9 depicts the design response
corresponding to the solution that falls into the local minima.

In Fig.9, it is clearly observed that the second TZ, which
ideally should be at 3.375GHz, switch to 3.875GHz, causing
the S11 to not meet the desired return loss. A comparison
of the optimally and locally converged design parameter
solutions is summarized in Table 4.

From Table 4, the screw penetration depth at eighth
resonator, p8 of the solution that converges in the local
minima is very small compared to that in the global minima.
This causes a misalignment in the location of TZ. With this
SAC and HER model, the solution converges to the global
minima, demonstrating a good search ability for the optimal
solution.
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FIGURE 9. EPU S-Parameters response trapped into local minima with the
second TZ should be at 3.375GHz switched to 3.875GHz.

TABLE 4. Comparison of the optimally converged design parameters and
locally converged solution.

FIGURE 10. Sensitivity indexes of each penetration screws.

To analyze the sensitivity of each penetration screw to
further understand the contribution to the optimization cost,
a sensitivity report was constructed as shown in Fig.10. The
first-order Sobol sensitivity analysis in (21) was adopted
to visualize the perturbation impact of the penetration
screws.

Si =
D{i}
D

(21)

where D{i} is the contribution of a single depth of the
penetration screws to the S-parameter responses. It is evident
that the penetration screws 2, 3, 5, 6, and 7 have the highest
impact, which is useful for understanding the priority of
tuning which screws to adjust a highly detuned EPU filter.

C. COMPARISON BETWEEN RECENT WORKS AND THE
PROPOSED METHOD
A comparison of reinforcement learning optimization
approaches between recent studies and the proposed method
is presented in Table 5. This comparison provides insights
into the similarities and differences in the approaches used
across various works by other authors. Unlike the approach
in [22], where a forward model replaces EM simulation to
speed up the training time, our proposed method integrates
an API to obtain simulation results adjusted for design
parameters. The network policy in SAC + HER choose
actions from a continuous range of possible values, rather
than from a discrete set of values as implemented in DQN and
DDQN methods [38]. The continuous actions are sampled
from a probability distribution over the defined minimum
and maximum boundaries, making it suitable for complex
optimization tasks where very small precision in parameter
value is important.

FIGURE 11. Comparison of training convergence between DQN, DDQN,
and SAC+HER framework.

The proposed method focuses on using SAC + HER
to handle non-uniqueness and sparse reward problems,
thereby improving sample efficiency for faster training
convergence. The result of training convergence is com-
pared between DQN, DDQN and SAC + HER in the
optimization of the EPU design as shown in Fig.11.
It is evident that DQN requires approximately 700 epochs
(35,000 evaluations) to reach convergence, which is 11
times longer than SAC + HER. Additionally, DDQN
requires approximately 550 epochs (27,500 evaluations)
to achieve convergence, which is 9 times longer than
SAC + HER.
In Table 6, a comparison of the effectiveness of the

trained DQN, DDQN, and SAC + HER models in solving
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TABLE 5. Comparison of reinforcement learning optimization approaches between the recent works and the proposed method.

TABLE 6. Comparison of the effectiveness of the trained DQN, DDQN,
and SAC + HER models to solve the optimization problem.

the optimization of the EPU filter is summarized. SAC +
HER shows better performance by achieving optimal
convergence in 3000 steps, which is taking lesser steps
than DQN and DDQN. The inference of trained models
shows that the SAC + HER method requires 6 steps to
successfully optimize the EPU filter, which is fifteen times
faster than DQN (92 steps) and nine times faster than
DDQN (57 steps).

VI. CONCLUSION
In this study, a hybrid method of goal-oriented SAC and
HER is proposed to optimize the self-couplings of an
asymmetrical inline topology with transmission zeros by
adjusting the depth of screw penetration on each resonator.
A feature-assisted objective function, incorporating predis-
tortion constants from the synthesis process, was applied
to prioritize adjustments to pole positions, return loss
within the pass-band, and the location of the transmission
zeros. As a result, the SAC + HER framework effectively
addresses non-linearity between frequency responses and
structural parameters, handling issues of non-uniqueness and
sparse rewards more efficiently. The optimization results of
trained SAC + HER model demonstrates better performance
compared to conventional methods.
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