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ABSTRACT RGB-D cameras have been widely used in various research fields and applications in
recent years. With the growing availability of commercial products, choosing the most suitable sensor
for a specific application has become more complex. The lack of tools to evaluate and compare the
metrological performance of these sensors was addressed by the recent ISO 10360-13:2021 standard, which
defines the standards for the metrological characterization of 3D optical coordinate measuring systems.
This paper applies the ISO 10360-13 methodology to characterize and compare four RGB-D cameras:
three Intel® RealSenseTM (D415, D435i, D455) and one Microsoft® Azure Kinect DK. The procedures
described in the standard were integrated with three tests: the analysis of systematic errors measured
acquiring a planar surface at increasing distances; a test to analyze the resolution performances with a
specifically devised artifact; the evaluation of 3D reconstruction performances on two objects with different
geometric characteristics. The results highlighted the strengths and weaknesses of each device. The D415
showed better performance in reconstructions from close-range acquisitions. The Azure Kinect DK had the
best results for systematic error and resolution. The D455 generally achieved the best performance in the
standard tests, followed by the D435i.

INDEX TERMS Intel RealSense, Microsoft Azure Kinect DK, ISO 10360-13:2021 standard, device
characterization, performance evaluation.

I. INTRODUCTION
RGB-D cameras represent a significant technological innova-
tion in the fields of computer vision and 3D reconstruction.
These advanced optical sensors enable the capture of visual
data in three dimensions by intelligently integrating color
RGB information with depth data for every pixel in the
image. In this way, RGB-D cameras are capable of creating a
detailed depth map of the observed scene, paving the way for
numerous revolutionary applications.

The key aspect that makes these cameras so advantageous
is their cost-effective nature as 3D optical coordinate
measurement systems, and despite their compact size and low
cost, they offer large acquisition volumes, portability, and
extreme ease of use. These characteristics have made them
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the preferred solution across various research and application
sectors [1], [2], [3].

RGB-D cameras find use in a wide range of domains: in
robotics, they allow systems to interact with their surround-
ings for indoor and outdoor environment mapping [1], [4],
[5], [6], [7]; in autonomous driving, they provide essential
3D information [8]; in the biomedical field, they enable
digitizing patient anatomy for human modeling, recognition,
and tracking [9], [10], [11], [12]; in manufacturing sectors,
they facilitate automation and optimization of production
processes, such as in agriculture [13], [14], [15]. In general,
wherever there is a need to replicate human vision capabilities
in terms of field of view and working environmental
conditions, RGB-D cameras offer an effective solution.

There are three main technologies behind these devices:
stereoscopic systems that interpret the scene by comparing
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two images from slightly different viewpoints, with the
disparity allowing 3D mapping; time-of-flight (ToF) systems
that measure the time a light signal takes to travel to the scene
and back; and structured light systems that project a known
pattern onto the scene and analyze its deformation to obtain
depth. In addition to the operating principle, the surrounding
environmental conditions and the type of observed object can
also influence the final metrological performance of RGB-D
cameras.

Knowledge of these performance characteristics has
become a fundamental requirement for choosing which
camera to use, especially when working at close ranges, since
accuracy is generally proportional to the distance between the
sensor and the object. Therefore, users typically need to work
as close as possible to maximize the sensor’s capabilities.

Numerous studies have presented metrological char-
acterizations of depth cameras, comparing sensors from
different manufacturers and evaluating their accuracy and
precision [3], [16], [17], [18], [19], [20], [21], [22]. Moreover
standards have been developed that define the tests to be
performed for a comprehensive evaluation of such sensors.
Recently, the ISO 10360-13:2021 standard was introduced
and is currently the most advanced standard in the field of
RGB-D camera evaluation.

The ISO 10360-13:2021 standard defines artifacts and
procedures for assessing and verifying the performance of
optical measurement systems in terms of probing error,
distortion error, and flatness error.

In this work, this standard was used to compare
the performance of four of the most compelling low-
cost optical devices currently available on the market,
i.e. the Intel® RealSenseTM D415, D455, D435i and
Microsoft® Azure Kinect DK. In addition to the tests
provided by the standard, in order to provide an in-depth
characterization that can support the choice of the most
suitable device for each specific application, the work
integrates three additional tests: the analysis of systematic
depth errors, a dedicated test to analyze the resolution of
this category of devices, and a test to evaluate the achievable
performance in 3D reconstruction of objects with different
geometric characteristics.

This work is therefore among the first to rigorously
implement the recent ISO 10360-13:2021 standard for
the characterization of low-cost optical 3D measurement
systems and proposes a test methodology that integrates
with additional tests using specifically designed artefacts.
This combination offers a more comprehensive and multi-
dimensional characterization of device performance, going
beyond the limitations of standardized tests, providing a
robust and replicable framework for the characterization
of current and future sensors, regardless of manufacturer.
A detailed comparative analysis of the four RGB-D devices is
then provided to allow a more complete understanding of the
relative capabilities of the devices in various usage scenarios.

The structure of this work is organized as follows:
Section II provides a description of the analyzed optical

sensors. Section III presents a brief overview of the ISO
10360-13:2021 standard and the additional tests conducted
for a comprehensive evaluation. Section IV showcases the
results obtained from the various tests performed. Section V
discusses and analyzes the implications and significance of
the obtained results.

II. EXAMINED SENSORS
Four 3D optical sensors were analyzed in this study, which are
D415, D435i and D455 produced by Intel® RealSenseTM

[23] and Azure Kinect DK produced by Microsoft [24]
(depicted in Fig. 1).

FIGURE 1. The four depth sensors analyzed in this study:
(a) Intel® RealSenseTM depth camera D415, (b) Intel® RealSenseTM

depth camera D435i, (c) Intel® RealSenseTM depth camera D455,
(d) Microsoft® Azure Kinect DK.

Numerous features are shared by the first three cameras
in the Intel RealSense D400 series. They have similar
design, the same frame rates (up to 90 fps), and they use
a stereoscopic vision technology. The three Intel cameras
add active lighting to improve depth reconstruction, which
is performed by comparing the differences between two
RGB images taken by two different sensors to enhance the
texture of the scene under observation. The shutter type
(global shutter for the D435i and D455, rolling shutter for the
D415) and fields of view (FOV) of these three sensors differ
from one another. While the D435i and D455 have bigger
FOVs and optimum maximum ranges of 6 and 3 meters,
respectively, the D415 has a lower FOV with a maximum
range of only 3 meters.

On the other hand, continuous wave time-of-flight (CW
ToF) technology is used for 3D reconstruction in the
Microsoft Azure Kinect DK. With this technology, depth is
determined by measuring the phase difference between the
signal that is sent and received.

Depending on whether the camera uses pixel binning or
not, the Azure Kinect DK sensor has many operating modes
that give distinct FOVs (wide and narrow) and operating
ranges. In comparison to the Intel RealSense cameras that
were previously discussed, it possesses a lower frame rate (up
to 30 fps).
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Table 1 provide additional details regarding the four
sensors, including their specifications. To ensure consistency
and optimal performance during the experiments, the D415,
D435i, and D455 cameras from Intel RealSense were con-
figured using the default settings provided by the acquisition
software. Additionally, these cameras were operated at their
highest possible resolution of 1280× 720 pixels, maximizing
the available image quality and detail.

The Microsoft Azure Kinect DK camera was set to operate
in its NFOV (Narrow Field of View) mode without binning.
This configuration choice was made to take advantage of
the camera’s specialized operating modes, which can provide
higher resolution and longer-range capabilities compared to
other modes.

TABLE 1. Key characteristics of the D455, D415, D435i and Azure Kinect
DK sensors.

III. EXPERIMENTAL RESULTS
The metrological characterization procedures for the close-
range performance of the four devices are presented below.
The proposed methodology foresees four types of tests:
application of the ISO 10360-13:2021 standard; evaluation
of systematic depth errors, including depth offset errors and
systematic nonplanarity errors; assessment of accuracy and

resolution using a specifically designed artifact with known
geometries; evaluation of 3D reconstruction capabilities by
capturing objects with varying complexities.

To obtain the artifacts’ reference dimensions and models
the Romer Absolute Arm 7520 SI/SE [25] (accuracy of
±0.063 millimeters) was employed.

A. ISO 10360-13:2021 STANDARD
The ISO 10360-13:2021 standard describes procedures for
confirming the stated performance of an optical coordinate
measuring system (CMS). Three tests are required: probing
error (size and shape error), distortion error, and flatness error.
The tests aim to find the maximum error the optical sensor
can make in the intended measurement volume, consisting of
eight voxels, with the maximum enclosed length or distance
between two points denoted by L0. The documentation
includes measurement details, materials used for artifacts,
and required environmental factors.

FIGURE 2. Example of a spherical artifact acquired in a voxel of the
measurement volume.

FIGURE 3. Ball-bar positions defined by the standard for measuring
distortion error.

• Probing Error: A calibrated spherical artifact (Fig. 2)
with diameter 8 between 0.02∗L0 and 0.2∗L0 is placed
and acquired in each voxel, repeated three times. Size
error (PS) and form error (PF) are calculated.

• Distortion Error: An artifact with two spheres connected
center-to-center, with distance LP > 0.3∗L0 and diam-
eter 8 between 0.02∗L0 and 0.2∗L0, is acquired at
12 positions within the measurement volume (Fig. 3),
repeated three times. The distortion error D is the
difference between the measured and actual center-to-
center distance.
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FIGURE 4. Flat surface positions defined by the standard for measuring
flatness error.

• Flatness Error: A calibrated flat surface with long side
Lmax > 0.5∗L0 and short side Lmin < 0.1∗L0 is acquired
three times at six different positions (Fig. 4). The flatness
error F is the minimum distance between two parallel
planes encompassing the scanned artifact.

As said, the experiments were conducted considering the
FOV ranging from 500 to 1500 millimeters, and differently
from the standard, which likens the measurement volume to
a parallelepiped, the measurement volumes of the devices
under study more closely resemble truncated pyramids
(Fig. 5). This difference in shape results in a non-negligible
discrepancy between the area framed by the device at the
closest distance to the camera and the area framed at the most
distant distance. This complication introduces challenges in
shaping the artifacts to be acquired, as they need to be
fully enclosed within the four voxels closest to the sensor.
Despite the different shape of themeasurement volume, it was
determined that within the 500-1500 mm acquisition range,
it is possible to size the artifacts according to the standard
and ensure their full acquisition at the required positions for
all devices under consideration. To sizes for the artifacts the
diagonals of the four sensors’ measurement volumes were
calculated.

FIGURE 5. FOV of the four sensors in the range 500-1500 mm. From left
to right: (a) D415, (b) D435i and D455, (c) Azure Kinect DK.

Themeasurements of the artifacts were decided as follows:
the single sphere has a diameter (Ô) of 143.24 mm, the
distance between the two centers of the two ball-bar spheres
(LP) is 903.33 mm, and the plane has the dimensions
of 1250 × 250 x 90 mm. These artifacts used for these
experiments are depicted in Fig. 6.

FIGURE 6. Artifacts selected for characterization according to ISO
standard 10360-13:2021.

As is evident from the image, the surface of the artefacts
has some localized irregularities. To quantify these imperfec-
tions, a measurement of the artefacts’ surface was performed
using the professional Romer Absolute Arm scanner. For the
spheres, the best-fit sphere was extracted and the deviation
between it and the acquired data was measured. A similar
procedure was applied to the plane. The average error
obtained on the single sphere is 0.004 mm with standard
deviation 0.28 mm and maximum error 1.66 mm. The mean
error obtained on the ball-bar is 0.007 mm with standard
deviation 0.27 mm and maximum error 1.25 mm on the first
ball, and 0.001 mm with standard deviation 0.19 mm and
maximum error 1.76 mm on the second ball. The mean error
obtained on the plane is 0.0007 mm with standard deviation
0.12 mm and maximum error 0.7 mm. It is important to
mention that these surface imperfection values are orders of
magnitude lower than the resolution of the RGB-D cameras
under investigation in this study. Consequently, we can
confidently state that these minimal artefact imperfections
cannot significantly influence the measurements made with
the sensors under investigation.

B. SYSTEMATIC DEPTH ERROR
To evaluate the errors arising from acquisitions at varying
distances from the sensor, known as ‘‘inhomogeneous dis-
tances’’ errors, the following test was performed: the sensor
was positioned orthogonally to a flat surface, and acquisitions
were made at progressive distances ranging from 500 to
1500 millimeters, with 100-millimeter increments. Similarly
to [19], a linear guide was set up perpendicular to the plane
being observed, ensuring orthogonality with a reference cross
marker placed on the flat surface. These markers act as
alignment references, with the cross drawn in the center of
the image as the sensor moves away from the surface (Fig. 7).
Two types of errors were analyzed: systematic depth error and
depth offset error. The systematic depth error was estimated
by comparing the scan data to a plane of known flatness. The
depth offset error was obtained by measuring the distance
along the Z-axis between the scan and the reference planes.

C. ACCURACY AND RESOLUTION ANALYSIS
A test was performed to evaluate the sensors’ resolution
capabilities similar to the test described in [22]. For this
experiment, an artifact made of four cuboids of varying
thicknesses, all perpendicular to a plane, was appositively
devised. The steps between the cuboids (illustrated in Fig. 8)
were measured with the professional laser scanner.
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FIGURE 7. Acquisition setup for the systematic depth error.

The objective of this test was twofold: to evaluate the
sensors’ ability to accurately delineate the distinct planes and
their relative distances, as well as to observe the impact of
height differences on the sensors’ resolution performance.

FIGURE 8. Artifact made for analysis on accuracy and resolution.

FIGURE 9. 3D Tangram and statue used for 3D object reconstruction.

D. OBJECT RECONSTRUCTION
The final test focused on evaluating the sensors’ 3D
reconstruction capabilities by assessing their performance in
accurately capturing object geometries.

Following similar methodologies from three previous
works [19], [20], [21], two different objects were selected:
a free-form object (approximately 200 mm high and 70 mm
wide) and an object with known 3D geometries (Fig. 9).
The acquisition process involved rotating the objects

while the sensor remained fixed in a stable position. This
approach enabled capturing the objects from multiple angles,
facilitating comprehensive 3D reconstruction. To optimize
performance, the distance between the sensor and the object
was set to the minimum of 500 mm as the sensors’ accuracy
and precision tend to be higher at closer distances.

IV. RESULTS
The acquired point clouds were processed independently for
each acquisition leveraging the Geomagic Design X® [26]
software and best-fit operations were used to generate planar
and spherical primitives from the acquired data as well
as deviation analysis operation, to compare the extracted
information with the nominal values. The results obtained for
the four tests are shown in the following.

A. ISO 10360-13:2021 STANDARD
1) PROBING ERROR
Fig. 10 shows the spherical artifact acquisitions obtained by
the four sensors at the 8 positions indicated by the standard
within the measurement volume.

FIGURE 10. Sphere acquisitions performed by the four sensors according
to the ISO 10360-13:2021 standard: a) D415 b) D435i c) D455 d) Azure
Kinect DK.

Table 2 shows value of the probing size error (PS),
calculated for the various positions and for all cameras as the
difference between the actual value of the sphere diameter
and the measured value. The values in the table are obtained
as the average over the 3 acquisitions for each position
indicated by the standard.

Table 3 shows the probing form (PF) error for each sensor,
calculated as the average value of the difference between the
maximum and minimum distance of the points on the surface
of the i-th sphere from the relative best-fit sphere. The values
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TABLE 2. Mean error and standard deviation of size error PS.

in the table are obtained as the average over the 3 acquisitions
for each position indicated by the standard.

TABLE 3. Mean error and standard deviation of shape error PF.

FIGURE 11. Ball-bar acquisitions performed by the four sensors
according to ISO standard 10360-13:2021: a) D415 b) D435i c) D455 d)
Azure Kinect DK.

2) DISTORTION ERROR
Fig. 11 shows the ball-bar acquisitions obtained by the four
sensors at the 12 positions indicated by the standard within
the measurement volume.

Table 4 shows the average value of the distortion error
calculated as the difference between the actual and measured
distance between the centers of the two spheres of the ball-
bar. The values in the table are obtained as the average
over the 3 acquisitions for each position indicated by the
standard.

TABLE 4. Mean error and standard deviation of the distortion error D.

3) FLATNESS ERROR
Fig. 12 shows the flat surface acquisitions obtained by the
four sensors at the 6 positions indicated by the standardwithin
the measurement volume.

FIGURE 12. Flat surface acquisitions performed by the four sensors
according to ISO standard 10360-13:2021: a) D415 b) D435i c) D455 d)
Azure Kinect DK.

Table 5 shows the average value of the flatness error
calculated as the difference between the maximum and
minimum distance of the surface points from the relative best-
fit plane. The values in the table are obtained as the average
over the 3 acquisitions for each position indicated by the
standard.

TABLE 5. Mean error and standard deviation of the flatness error F.

B. SYSTEMATIC DEPTH ERROR
This section shows the results obtained on systematic depth
errors, which are (1) depth offset errors and (2) systematic
nonplanarity errors.

The first type of error was analyzed both qualitatively and
quantitatively by considering the differences in Z distances
between the scanned planes and the reference planes (where
Z is the optical axis of the camera). Fig. 13 qualitatively shows
the result of this test.

A quantitative analysis was carried out by calculating for
each step the distance between the known reference and the
respective best-fit plane, imposing parallelism between the
planes as a constraint. Fig. 14 shows the trend of offset error
as the distance between plane and sensor increases.

The second type of error was analyzed by referring to
the best-fit planes and calculating their deviation from the
acquired images (Fig. 15).
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FIGURE 13. Qualitative offset error in the range 500-1500 mm.

FIGURE 14. Systematic depth error in the range of 500-1500 mm: offset
error.

Table 6 shows the errors, averaged over all acquisi-
tions, in terms of mean distance, standard deviation and
range defined as the difference between the maximum and
minimum distance of the surface points from the best-fit
plane.

TABLE 6. Systematic depth error in the range 500-1500 mm.

Fig. 16 shows the trend, for each position, of the error
range of the acquired points with respect to the best-fit
surface.

FIGURE 15. Deviation of the acquired planes from the relative best-fit
planes.

FIGURE 16. Systematic depth error in the range of 500-1500 mm:
maximum error range.

C. ACCURACY AND RESOLUTION ANALYSIS
To evaluate the accuracy of the RGB-D cameras in mea-
suring distances between planes, a multi-step analysis was
conducted.

After an artifact point isolation process, where the point
clouds representing the surfaces of interest were extracted
from the overall acquired data, best-fit planes were con-
structed using the point clouds for each planar surface of
the artefact in Fig. 8. To minimize the influence of edge
effects and point scattering, the best-fit planes were generated
considering areas as far from the object edges as possible.
This approach aimed to ensure that the generated planes
accurately represented the central regions of the acquired
surfaces, where the data quality was expected to be highest.

With the established best-fit planes, the distances between
these planes were compared to the corresponding reference
distances obtained from the highly accurate laser scanning
data.

Fig. 17 presents a visual representation of the analysis
results to provides a clear overview of the cameras’
performance in measuring inter-planar distances (indicated
as ‘‘Step’’ in Fig. 17 referring to the steps shown in Fig. 8),
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FIGURE 17. Error in evaluating distances between planes.

enabling easy identification of potential biases or deviations
from the expected values.

FIGURE 18. Investigation of camera resolution at the various distances
considered.

For the resolution assessment the acquired point clouds
were manually aligned with the reference model, and a
depth map was generated by comparing the two datasets.
Fig. 18 illustrates this depth map, where a color scale is
used to represent the deviations between the acquired data
and the reference model in millimeters. Positive values,
indicating regions where the acquired data protrudes beyond
the reference model, are marked by shades ranging towards
red. Negative values, representing areas where the acquired
data falls short of the reference model, are marked by shades
ranging towards blue. Areas that were not recorded in the
point clouds obtained from the cameras are depicted in gray.

D. OBJECT RECONSTRUCTION
As for the 3D reconstruction test, in order to recreate
the three-dimensional model of each observed object, after
removing the edges from each acquisition, it was necessary
to perform an alignment process consisting of two steps,
an initial coarse alignment based on manual selection of the
corresponding points and a fine alignment using the Iterative
Closest Point (ICP) algorithm.

FIGURE 19. Deviation of the two 3D reconstructions (free-form statue
object and 3D tangram).

Fig. 19 shows the deviation between the acquired artifacts
and the reference models. The color scale depicts this
difference between the two inmm: positive values are marked
with colors from green to red, negative values are marked
with colors from green to blue, while gray areas were not
considered in the deviation analysis (in these areas the data
may be missing or too far from reality).

Tables 7 and 8 show the reconstruction errors in terms of
mean distance, standard deviation and range of error between
the reconstructed data and the base model.

TABLE 7. Mean distance, standard deviation and error range in statue
reconstruction.

TABLE 8. Mean distance, standard deviation and error range in 3D
tangram reconstruction.

V. DISCUSSION
Building upon the results previously reported, this section
aims to discuss and compare the performance of the four
devices under consideration, with the goal of outlining
their merits and limitations when employed for metrology
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applications. It is important to note that this analysis is
approached from the perspective of utilizing these low-cost
sensors in their ‘‘out-of-the-box’’ configuration, without any
modifications or deviations from their factory-provided fea-
tures. This includes refraining from recalibration procedures,
the use of external programs, filters, or libraries, and relying
solely on the default acquisition and filtering settings.

Analyzing the results obtained from the tests indicated
by the standard, several key observations can be made
regarding the performance of the four devices. The Intel
RealSense D415 exhibited the lowest probing size error (PS)
and probing shape error (PF) among the tested cameras.
Specifically, it achieved a mean PS of 0.928 mm and a
mean PF of 8.723 mm, demonstrating its capability in
accurately measuring dimensions and capturing geometric
forms. Regarding the distortion error (D), the Intel RealSense
D435i emerged as the top performer, with a mean error of
2.925 mm and a standard deviation of 1.981 mm. This result
highlights the D435i’s ability to minimize distortions and
maintain geometric integrity throughout its field of view.
For the flatness error (FD), the Microsoft Azure Kinect DK
delivered the best result, with a mean value of 15.031 mm and
a standard deviation of 1.479 mm. This performance suggests
that the Azure Kinect DK excels in capturing planar surfaces
with minimal deviations from flatness.

Interestingly, during the analysis of the images acquired
by the Azure Kinect DK, it was observed that these images
exhibited lower background noise and higher resolution of
the observed artifacts compared to the other cameras. This
improved image quality is likely attributable to an internal
smoothing process implemented in the camera’s software,
which enhances the definition of the acquired data at the
expense of greater error in measuring effective sizes.

As an example of this trade-off, in the test with the single
spherical artifact, the Azure Kinect DK recorded a PS error
with a mean value of 14.947 mm and a standard deviation
of 18.627 mm, along with a PF error with a mean value of
9.757 mm and a standard deviation of 1.454 mm.

Fig. 13 illustrates the acquisitions of the plane surface
captured by the cameras at progressively greater distances.
A qualitative analysis of these images reveals a gradual
increase in the distance between the plane approximating
the acquired data and the relative known reference surface
across all four sensors. However, when considering both the
offset and flatness analyses, the Microsoft Azure Kinect DK
exhibited superior overall performance compared to the other
cameras. In terms of offset, the Azure Kinect DK presented
a maximum error of less than 7 mm, indicating its ability
to maintain accurate depth measurements across the varying
distances.

Regarding the flatness analysis, the Azure Kinect DK
demonstrated remarkable results, with an average maximum
range of 16.752 mm and an average standard deviation
of 2.050 mm. Notably, Fig. 14 shows that the trend of
the maximum point error range with respect to the best-
fit plane remained stable for all distances for the Azure

Kinect DK, in contrast to the other three cameras. This
exceptional flatness performance can be attributed to the
greater smoothing that the Azure Kinect DK applies to the
acquired data, resulting in flatter and more uniform surfaces
in the captured images. While this smoothing process may
introduce some trade-offs in terms of capturing fine details or
sharp edges, it enhances the overall flatness and consistency
of the acquired data, which can be advantageous for specific
applications that prioritize planar surface accuracy.

Analyzing Fig. 18, which presents the resolution assess-
ment, it is evident that at close range, all the cameras exhibit
similar performance. However, as the distance increases,
a progressive deterioration in the resolution error of the
acquired images becomes noticeable for the Intel® produced
sensors. Consequently, these cameras struggle to sharply
delineate the step features, unlike the Azure Kinect DK,
which demonstrates uniform results across all three acquisi-
tion distances.

Regarding the 3D reconstruction test, the results reveal
varying performances among the cameras. The Intel
RealSense D415 and D455 provided very similar and
accurate reconstructions of the statue object. In contrast, the
D435i yielded a slightly worse reconstruction, characterized
by the presence of numerous gray areas, indicating missing
or unreliable data. The Microsoft Azure Kinect DK, on the
other hand, exhibited a comparatively poorer performance in
reconstructing the statue due to the strong flattening effect
it applies to the acquired images. This smoothing process,
while beneficial for maintaining flatness, can potentially
compromise the capture of intricate details and surface
variations. For the 3D reconstruction of the tangram object,
the D415 once again recorded the best data, closely followed
by the Azure Kinect DK. The Kinect’s ability to accurately
recognize and capture flat surfaces proved advantageous for
remodeling the tangram object, surpassing its performance on
the statue reconstruction. The D455 still provided reasonably
good data for the tangram reconstruction, despite the presence
of several gray areas. Finally, the D435i recorded the
worst data for this object, potentially due to the tangram’s
relatively small size, whichmay have challenged the camera’s
capabilities.

When looking at the analysis results, it is important to
mention that the different technologies necessarily lead to
different measurement outcomes. For example, it is worth
noting that the systematic depth error values measured with
the Azure Kinect DK, despite being higher in the first part
of the range, are much more stable as the distance increases -
and indeed, it is the only camera for which the error decreases
over time. This feature of the error trend is in fact imputable
to the ToF technology, which tends to be more effective
for longer distances for several reasons including temporal
resolution (for short distances, the differences in flight times
are very small and require an extremely high temporal
resolution, at longer distances, the temporal differences are
more significant and therefore easier to detect accurately).
In general, at close distances active stereo cameras offer
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greater resolution and surface detail, although they require
more processing time.

VI. CONCLUSION
In conclusion, this work involved a comprehensive metro-
logical characterization and performance comparison of four
RGB-D devices – three from the Intel®RealSenseTM family
(D415, D435i, and D455) and the Azure Kinect DK produced
byMicrosoft®. The study aimed to evaluate and compare the
capabilities of these devices across various aspects through a
wide range of qualitative and quantitative tests.

The testing methodology incorporated elements from
previous similar works, as well as adherence to the new
ISO 10360-13:2021 standard, which specifically addresses
the metrological characterization of optical devices. Despite
the different technologies employed by these devices to
obtain 3D coordinates of the observed scene, the tests were
conducted consistently across all three devices, ensuring a
fair and robust evaluation. The extensive tests performed
revealed the unique strengths and weaknesses of each device,
shedding light on their suitability for different applications
and operating conditions. In terms of 3D reconstruction
at close distances, the Intel RealSense D415 demonstrated
superior quality, excelling in capturing intricate details and
accurately representing geometric features from proximal
acquisitions.

Regarding the tests on systematic depth errors and
resolution quality, the Microsoft Azure Kinect DK emerged
as a standout performer, exhibiting a remarkable ability to
accurately represent planar surfaces with minimal deviations
from flatness.

Finally, when it came to the tests related to the ISO 10360-
13:2021 standard, which assess metrological performance in
terms of measurement error, distortion error, and flatness
error, the Intel RealSense D455 exhibited the highest overall
performance, closely followed by the D435i.
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