IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 7 July 2024, accepted 1 August 2024, date of publication 9 August 2024, date of current version 20 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3441037

== RESEARCH ARTICLE

Counterfactual Explanations With Multiple
Properties in Credit Scoring

XOLANI DASTILE! AND TURGAY CELIK"':2

!School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg 2000, South Africa
2Faculty of Engineering and Science, University of Agder, 4630 Kristiansand, Norway

Corresponding author: Turgay Celik (celikturgay @ gmail.com)

ABSTRACT EXplainable Artificial Intelligence (XAI) aims to reveal the reasons behind predictions from
non-transparent classifiers. Explanations of automated decisions are important in critical domains such as
finance, legal, and health. As a result, researchers and practitioners in recent years have actively worked on
developing techniques that explain decisions from machine learning algorithms. For instance, an explanation
technique called counterfactual explanation has recently been gaining traction in XAI. The interest in
counterfactual explanations stems from the ability of the explanations to reveal what could have been
different to achieve a desired outcome, as opposed to only highlighting important features. For instance,
if a customer’s loan application is denied by the bank, a counterfactual will indicate the changes required
for the customer to qualify for the loan in the future. For a counterfactual to be considered effective,
several counterfactual properties must hold. This paper proposes a novel optimization formulation designed
to generate counterfactual explanations that possess multiple properties concurrently. The efficacy of the
proposed method is assessed on a publicly available credit dataset. The results showed a trade-off between
validity and sparsity, which are both parts of a suite of counterfactual properties. Furthermore, the results
showed that our proposed approach compromises validity to some degree but strikes a good balance between
validity and sparsity.

INDEX TERMS Counterfactual explanations, credit scoring, optimization, eXplainable Artificial
Intelligence (XAI).

I. INTRODUCTION
Automated decisions that are generated by some of the
machine learning techniques may have unfavorable con-
sequences. For example, in a banking setting, if a loan
application decision relies on a machine learning technique,
the loan application may be denied due to unintended bias
that may reside in data. As a consequence, the bank may
be subjected to a regulatory fine. The consequence for the
applicant may be that he/she is unable to send his/her child
to university if the primary purpose of the loan was to pay
university tuition.

An emerging field known as eXplainable Artificial Intel-
ligence (XAI) seeks to remediate the lack of explanation of
machine learning techniques. Several explanation techniques

The associate editor coordinating the review of this manuscript and

approving it for publication was Genoveffa Tortora

can be found in the literature, and these include global and
local explanation techniques [1]. A global explanation seeks
to explain the model as a whole. A local explanation seeks
to explain only a single prediction at a time. In addition, the
explanations are either referred to as ante-hoc or post-hoc [1].
An ante-hoc explanation is intrinsically explainable. A post-
hoc explanation seeks to explain the behavior of the already
trained model. An example of an ante-hoc explanation is a
decision tree, and that of the post-hoc is a counterfactual
explanation.

The focus of this paper is on counterfactual explanations.
Counterfactual explanations are not new and have a long
history in fields such as psychology, philosophy, and social
sciences [2], and are now being used in machine learning.
At its core, a counterfactual is a hypothetical scenario
that describes what would have happened if circumstances
had been different from what they actually were [1].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

110713

https://orcid.org/0000-0003-4628-9420
https://orcid.org/0000-0001-6925-6010
https://orcid.org/0000-0003-4765-8371

IEEE Access

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

A typical example of a counterfactual explanation is a
loan application [3]: “Imagine you applied for a credit
application at a bank. Unfortunately, the bank rejects your
application. Now, you would like to know why. In particular,
you would like to know what would have to be different so
that your application would have been accepted. A possible
explanation might be that you would have been accepted if
you earned 5008 more per month and if you did not have a
second credit card.”

Despite the prevalence of counterfactual explanations,
there still remain limitations. The first limitation is that a
counterfactual explanation assumes that a non-transparent
classifier will not change over time, whereas in reality, it is
possible for a classifier to change due to data drift [2]. The
second limitation is that the counterfactual explanations are
unable to handle missing data [2]. Despite these limitations,
there is an interest in using counterfactual explanations
within the machine learning community. However, there is
no consensus within the machine learning community on how
to assess the performance of counterfactual explanations [1].
The simplest way to measure the performance of counterfac-
tual explanations is to look at several properties [2]. These
properties include, validity, sparsity, similarity, actionability,
plausibilty to mention a few. Please note that this list of
properties is not exhaustive.

This research is driven by the need to enhance transparency
and fairness in credit scoring processes. By investigating the
use of counterfactual explanations, this paper aims to provide
deeper insights into decision-making processes and offer a
pathway towards more equitable and understandable credit
assessments. This study extends our previous papers [4], [5],
[6], where the aim was to improve the way creditworthiness
is evaluated, making it more accessible and comprehensible
to both lenders and borrowers. It is important to draw
the reader’s attention to differences between Dastile et al.
[6] and the current study. The stark differences are in
optimisation formulation, strong emphasis on achieving
specific counterfactual properties, and the use of diverse
optimisation methods for counterfactual generation which
were not covered in [6]. Our key contribution lies in
introducing a novel optimization problem formulation that
generates counterfactual explanations, uniquely underpinned
by multiple desirable properties such as validity, sparsity,
actionability, plausibility, and similarity. The approach
addresses a significant gap in current explainable Al practices
that often yield counterfactuals which, while theoretically
valid, fall short in practical applicability. Our innovation
lies in a new approach that balances validity with sparsity
in counterfactual explanations. While it moderately adjusts
validity, it substantially improves sparsity, achieving a
practical balance when using counterfactual explanations.
Hence, the balanced trade-off ensures our counterfactuals are
effective and user-friendly, marking a notable advancement in
their real-world applicability. Furthermore, according to the
best of our knowledge, our study is distinctive as it is the first
to employ statistical methods to rigorously test and compare

110714

the effectiveness of counterfactual explanations produced by
various approaches.

The organization of this paper is as follows. In Section II,
related work is presented. In Section III, the methodology
is discussed. The experiments are covered in Section IV.
In Section V, the results are presented. The conclusion is in
Section VII.

Il. RELATED WORK

Machine learning classifiers that are unable to explain their
predictions are not suitable for use in highly regulated
industries such as finance, legal, and healthcare. Several
explanation techniques can be found in the literature, and
these techniques can mitigate the lack of explainability of
the machine learning classifiers. One of the techniques is
the counterfactual explanation. The counterfactuals are a
class of explanations that not only inform the developers
and users of machine learning classifiers but also individuals
who are affected by the predictions from machine learning
classifiers. In another study by Molnar [7], counterfactual
explanations are described as changes to feature values that
would alter a prediction outcome, making them an intuitive
method for model interpretability. Molnar [7] provides a
framework for understanding how small modifications can
impact credit scoring decisions, which is crucial for ensuring
fairness and transparency in financial models. Sokol and
Flach [8] investigated the challenges and opportunities of
counterfactual explanations. The opportunities or benefits
of using counterfactuals include interpretability, fairness,
and model debugging. The security challenges of using
counterfactuals involve data stealing. Hence, the empirical
results in [8] showed that when improving the safety of an Al
system through transparency, the Al system can be exposed
to security risks and breaches of data privacy. The privacy
implications of counterfactual explanations were explored
by Goethals et al. [9], who highlighted the risk of privacy
attacks when real instances are used as counterfactuals. They
proposed enhancing privacy through k-anonymity, ensuring
that counterfactual instances cannot be easily linked back to
individuals in the dataset.

It is imperative to generate counterfactual explanations
that are of high quality, and the quality is measured
by counterfactual properties. For example, Grath et al.
[10] proposed two weighting strategies for generating
sparse counterfactuals using ANOVA F-values and K-nearest
neighbor. The empirical results showed that the proposed
approach leads to more interpretable results than baseline
counterfactual generating methods. Laugel et al. [11] pro-
posed a technique that identifies a close neighbor classified
differently to the datapoint that needs to be explained, where
the closeness definition includes a sparsity constraint. The
empirical results showed that the proposed approach can
be used to attain knowledge about the opaque classifier.
Looveren and Klaise [12] adopted the use of class prototypes
to generate sparse counterfactual explanations. The class
prototypes are generated by an encoder. The use of class

VOLUME 12, 2024

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

IEEE Access

prototypes sped up the search process for the counterfactuals.
Fernandez et al. [13] proposed the use of a partial fusion
of tree predictors from a random forest into a single
decision tree using a modification of the classification and
regression tree algorithm. The proposed approach obtained
a counterfactual set that guaranteed an optimal sparse
counterfactual. Samoilescu et al. [14] proposed the use of
a deep reinforcement learning approach that converts the
optimization process into an end-to-end learnable process,
allowing the generation of sparse counterfactual explanations
in a single forward pass. The empirical results showed that
the proposed approach can produce sparse, in-distribution
counterfactual explanations across different datasets. All
of the above approaches focused on generating sparse
counterfactuals, and sparseness ensures that the affected
individuals only have to focus on making a few changes to
get the desired outcome.

It is not enough to generate counterfactuals that are
only sparse; counterfactuals need to be plausible and
actionable. A plausible counterfactual is realistic. In [15],
a novel approach named PermuteAttack was proposed to
generate counterfactual explanations for machine learning
models used in credit scoring. This method leverages a
gradient-free optimization technique inspired by genetic
algorithms, ensuring that the perturbations applied to data
remain realistic and valid. Downs et al. [16] proposed a Coun-
terfactual Recourse Using Disentangled Subspaces (CRUDS)
approach that generates algorithmic recourse to achieve
more favorable outcomes. The CRUDS approach generated
recourse that is more plausible, realistic, and actionable
than those of baseline counterfactual explanations. The
generated counterfactuals obeyed causal relations between
features. Cito et al. [17] used Large Language Models
to help generate plausible and actionable counterfactuals
in software engineering, specifically for code reviews and
code performance prediction, to help and inform developers
about their code base. The results showed that the generated
explanations are useful and software developers can gain
insights about their code bases. Suffian et al. [18] generated
counterfactual explanations using human feedback. The
empirical results showed the user-centricity and human-
friendliness of the generated counterfactuals. Albeit the study
allows users to input data, the users define input ranges
of the variables, which may introduce outliers, resulting
in unrealistic counterfactuals. Na et al. [19] proposed a
novel framework for generating practical and plausible
counterfactuals by minimally changing the meaningful
information of inputs in a lower dimensional space of
a generative adversarial network (GAN). The empirical
results on different domain tasks demonstrate the superiority
and versatility of the proposed framework. The study is
only applicable to tasks where classifiers are differentiable.
Fernandez et al. [20] proposed a heuristic search approach
to find plausible and actionable counterfactuals. The findings
were that techniques that use feature weights/importances
are not conducive to model explanations. They argue that

VOLUME 12, 2024

it is not clear how feature weights influence decisions.
Forster et al. [21] proposed a novel approach to generate
coherent counterfactual explanations. A counterfactual is
coherent if the counterfactual scenario is realistic and typical
as well as suitable to explain the factual situation [21].
The results showed that the proposed approach produces
explanations that are significant, realistic, and as well as
suitable to explain the factual situation when compared to
state-of-the-art counterfactual explanations.

One of the limitations of the counterfactuals is the lack of
robustness over time, which is influenced by the changing
nature of the data over time [2]. The change in data
normally requires model retraining. Model retraining may
result in the counterfactuals that were previously proposed
for a recourse no longer being valid. However, Ferrario and
Loi [22] tackled the challenge of instability of counterfactual
explanations. The study proposed a method that is called
counterfactual data augmentation. The proposed method
improves the stability of counterfactual explanations over
time, which could result in more real-world adoption of
machine learning applications. The quality of the generated
counterfactuals can also be assessed by domain experts. For
example, Carlevaro et al. [23] proposed the use of Support
Vector Data Description (SVDD) to generate counterfactuals.
The results showed that the proposed approach is trustworthy
and can be understood and tested by domain experts who
do not possess prior knowledge of Al It was also noticed
in the literature that some of the studies ([24], [25])
did not consider any of the counterfactual properties that
normally help in assessing the quality of the generated
counterfactuals. The counterfactual properties are used to
enhance the quality of the generated counterfactuals. Hence,
it is important to generate counterfactuals that encapsulate
more counterfactual properties. It is observed in the literature
that some studies only focused on a few counterfactual
properties, see Table 1.

Ill. METHODOLOGY

This section focuses on the methods that were used to gener-
ate counterfactuals. Before formulating the new optimization
problem, definitions are provided. Suppose x € RY is a
feature vector, where d denotes the number of features. In the
context of credit scoring, which is a binary classification, the
black-box model g maps the feature vector x to a predicted
class label y € {0, 1}, i.e.,

g:Xx— 3, (1)

where O represents a non-default class, and 1 represents
a default class. The probability of x being mapped to the
non-default class and default class is P(g(x) = 0) and
P(g(x) = 1), respectively. Next, a counterfactual explanation
and a counterfactual explainer are defined.
o Counterfactual explanation: A counterfactual expla-
nation for a feature vector X, is a feature vector ¢ such
that the output y/ = g(c) differs from that of y = g(x),
and that the distance between x and ¢ is minimal [1].

110715

IEEE Access

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

TABLE 1. Summary table of the selected papers from the literature. Abbreviation: (CE) Counterfactual Explanation.

Source | Year | Methods for generat- | Advantage Disadvantage Properties
ing CE
[10] 2018 | ANOVA F-values, | Generates more compact and | Interaction between features is | Validity, Sparsity
KNN intelligible explanations. not considered.
[11] 2018 | Growing Spheres Gen- | The framework 1is model- | Prone to using irrelevant areas | Validity, Sparsity
eration agnostic and data-agnostic. of the input space for explana-
tions.
[25] 2019 | SHAP Accounts for interactions be- | Computational complexity for | Validity
tween features and is model- | high dimensional data.
agnostic.
[12] 2019 | Encoder or k-d decision | Fast and efficient for searching | Prone to skewed or unbalanced | Validity, Sparsity
trees counterfactuals. data leading to biased explana-
tions.
[8] 2019 | Class-contrastive Fairness & model debugging Compromised data privacy Actionability
[13] 2020 | RF-OCSE (Random | Handles missing data. Biased towards features with | Validity, Sparsity
Forest Optimal many categories.
Counterfactual Set
Extractor)
[16] 2020 | Counterfactual Computationally efficient. Impractical for high dimen- | Validity, Actionability
Recourse Using sional data.
Disentangled
Subspaces (CRUDS)
[20] 2020 | Evidenced-based Ability to deal with high- | Multiple explanations may | Validity, Plausibility
Explainer (EBE) dimensional data. overwhelm users.
[15] 2020 | Genetic Algorithm Model-agnostic & maintains | Computationally intensive & | Actionability, Validity
data integrity May not scale with large data
[21] 2021 | Gradient-Free Non-parametric, no need for | Computationally intensive and | Validity, Coherence
Optimization assumptions of the underlying | not capable of handling missing
distribution. data.
[14] 2021 | Reinforcement Learn- | Model-agnostic and fast gener- | Computationally complex. Validity, Sparsity
ing (RL) ation of counterfactuals.
[17] 2022 | Masked Language | Semantic understanding of | Resource intensive and slow | Validity, Actionability,
Modeling code. during inference time. Plausibility
[23] 2022 | Support Vector Data | Less sensitive to parameter tun- | Sensitive to outliers and im- | Validity
Description (SVDD) ing. practical for unbalanced data.
[18] 2022 | Feedback Counterfac- | Reduces computational cost. Causation influenced by users | Validity, Plausibility,
tual Explanation (FCE) (domain experts). Actionability
[22] 2022 | Counterfactual ~ Data | Counterfactuals are not influ- | May struggle to capture the un- | Validity, = Robustness
Augmentation (CDA) enced by model retraining. derlying distribution of data. over time
[24] 2022 | Genetic Algorithm Non-parametric and adaptable | Memory intensive and compu- | Validity
to data distribution. tationally complex.
[19] 2023 | Generative Adversarial | High-quality data generation. Resource intensive. Actionability and Plau-
Network (GAN) sibility

o Counterfactual explainer: Is a function u that takes and
as input, the feature vector x of the dataset X =
{x1,x2, -+ -, X}, the black-box model g, and it returns ; [o | if fi is mutable
a set of counterfactuals C = {ey, ¢, - -+, ¢} [1]. c = i . ©)
)) . f', otherwise,
To find a counterfactual ¢, the following cost function i
must be minimized:
and
h(x,c,g) =y x (1 — P(g(c) =0)) +dist(x,¢c) (2)
¢ e [min(f), max(f)], Vie{l,2,---,d}, (6)
subject to:
P(g(c)=0)> 0.5 (3) where y controls the contribution of the first term against the
second term in Eq. (2), and y > 1, f* and ¢’ represent the it
and feature value for a given x and ¢, respectively, P(g(c) = 0)
denotes the probability of a counterfactual belonging to a
—— <$, Vie{l,2,---,d}, 4) non-default class, and f! represents feature values of the
1 +exp¢' i feature in dataset X (i.e., f’ is column i in X). The choice
110716 VOLUME 12, 2024

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

IEEE Access

of distance is

) lc" — f'] It = f'l
dist(x, ¢) = Z VAD + Z D @)

i=1 i=d*+1

where MAD' and MD' denote a mean absolute deviation
and a mean deviation for the i feature, respectively, and
d* denotes the number of continuous features [6]. Please
note that the first term of Eq. (7) is the calculation of
distance for continuous features, and the second term is
the distance calculation for categorical features. The mean
absolute deviation for the i feature in X is

,' 1 n i .
MAD =;ZI:[];—f’|, ®)
Jj=

where n denotes the number of records and f' denotes the
mean or average of the i feature [6]. The mean deviation
for the i feature is

A o
MD = = olff - F
m & oilfy [, ©)

where m is the number of categories, o; is the frequency of
each category and f' is the median of the i feature [6].

The five counterfactual properties that are included in
the optimization problem are validity, sparsity, similarity,
actionability, and plausibility. Validity measures the ability
of a counterfactual to change the decision of an out-
come [1]. Sparsity measures the minimal changes in data
features/variables that are required to effect the desired
outcome [1]. Similarity measures how far a counterfactual
is, from the original instance [1]. Actionability measures
the ability of a counterfactual to change mutable features
only [1]. Plausibility ensures that the counterfactual is
realistic [1].

The validity property is captured in Eq. (3). The sparsity
property is represented in Eq. (4), the similarity property is
captured in the actual cost function in Eq. (2) by the distance
calculation term, the actionability property is captured in
Eq. (5), and the plausibility is represented in Eq. (6). The
term ¢’ in Eq. (4) measures the absolute percentage change
between the /" feature value in the vector of interest x and the
generated counterfactual ¢ and is given as

g ld =11
[F'l+ €

where € is a small positive arbitrary number that guarantees
a non-zero division. The absolute percentage change values
{i can be greater than 1. For ease of use, the logistic function
(i.e., the left-hand side of Eq. (4)) is used to ensure the values
are not greater than 1, where the range of the logistic function
is [0.5, 1]. Since the absolute change values ¢’ are inputs to
the logistic function and are non-negative, the lower value of
the logistic function is 0.5.

To guarantee sparsity, a threshold value 0.5 < § < 1 must
be chosen when generating a counterfactual ¢. Any feature

Vie{l, 2, --,d}, (10)

VOLUME 12, 2024

values in x that result in the left-hand side of Eq. (4) to be
greater than §, those feature values will not be changed when
generating the counterfactual c.

In the sequel, details of how predictive features were
selected, and optimization techniques that this study focuses
on are provided.

A. FEATURE SELECTION

Feature selection, regarded as an important step in machine
learning, is a process of selecting predictive features. The aim
of feature selection is to improve model performance, reduce
overfitting, and minimize training time. There are multiple
methods for feature selection, broadly categorized into
filter methods, wrapper methods, and embedded methods.
A literature review by [5] explains in detail the methods of
feature selection. In this study, an Information Value (IV)
[26] (a filter method) was used to select predictive features.
The IV uses weights of evidence (WOE) [26]. The WOE is
a measure used primarily in credit scoring to quantify the
predictive power of each feature concerning a binary target
variable. Each feature is divided into various bins, and the
weight of evidence is calculated for each bin. The WOE is
denoted for bin b in feature f as WOEISf) which is calculated

as follows:
)
N,
WOE, = 1n(L) (11)
p)
b

where N}Sf) is the frequency of non-defaults and Dg) is the
frequency of defaults for bin b in feature f [4].

While WOE is traditionally used in credit scoring, it can
also be applied in other domains where binary classification is
required, as it helps measure each attribute’s predictive power.

The IV is used to select predictive features and is calculated
as follows for each feature f [4],

v =38 (Ngf) —~ Dg)) woeE! (2

where B) represents the number of bins in feature f. The
following thresholds apply as a general rule of thumb when
using IV for feature selection [26]:

T1) 1VY) < 0.02: unpredictive;

T2) 0.02 < v <0.1: weak predictor;

T3) 0.1 < IV < 0.3: medium predictor;

T4) 0.3 < v <0.5: strong predictor; and

TS) 1VY) > 0.5: suspicious or too good to be true.

Both categorical and continuous variables were considered
for WOE and IV analysis. For continuous features, binning
was performed to create discrete intervals. WOE and IV were
then calculated for these binned intervals. For categorical
variables, the existing categories naturally formed the bins,
and WOE and IV were computed directly on these categories.

B. GENETIC ALGORITHM (GA)
The genetic algorithm is an evolutionary search approach that
is motivated by natural evolution [27]. The genetic algorithm

110717

IEEE Access

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

Algorithm 1 Genetic Algorithm (GA) [27]
Require: A population size, crossover rate, mutation rate,
and termination criteria
Initialize a random population
Evaluate the fitness of each individual in the population
while The end condition is not met do
Select parent pairs based on fitness
Produce offspring through crossover of parents
Apply mutation to offspring with the given mutation rate

Evaluate the fitness of the offspring
Replace the old population with the new one
end while

return The best solution found in the population

process involves five phases i.e. the initial population,
the fitness function, the selection, the cross-over, and the
mutation. The genetic algorithm involves a selection of
individuals (based on some defined fitness function) from
an initial population for reproduction/mating (i.e., cross-
over) purposes. The selected individuals produce diverse
offspring (using mutation) that inherit the initial individual’s
characteristics. The diverse offspring gets included in the next
generation of the population. The process repeats itself until it
converges to a solution (a counterfactual explanation). In the
context of credit scoring, an individual is a feature vector (or
single record) that can potentially be a counterfactual that
will be used to explain an original instance. The population
is the set of possible counterfactuals. The fitness function
is the neural network that is used to predict the output
(i.e., default or non-default) of the original instance. The
cross-over rate is the probability of two feature vectors
exchanging values at a single point [27]. The mutation is
responsible for creating diversity during the optimization to
prevent early convergence.

C. PARTICLE SWARM OPTIMIZATION (PSO)
The PSO mimics the navigation of a flock of birds or a
school of fish [28]. The original inventors of the PSO are
Eberhart and Kennedy [29]. Since its inception in 1995, PSO
has gained a huge amount of improvements over time [28].
The PSO is a stochastic search strategy and uses position
vectors and velocities of the particles in a swarm [28]. The
particles are assigned initial random position and velocity
values. Each particle in the swarm has its own objective
function, which is governed by the position of the particle and
the velocity at which the particle moves [28]. In the context
of credit scoring, a particle is a feature vector that serves as
a potential candidate for being a counterfactual explanation.
To find the optimal minimum for the objective function,
the particle will have to consider its personal best-optimized
value and the global best-optimized value in the entire swarm.
The final global best value is found when all the particles

110718

have converged to the global best. The current position of
particle j is represented by Zj’ and the position of particle j
in the next iteration/generation is

ij-‘rl — Z]t + ‘/jt+17 (13)

where Vj’ + represents the velocity of moving from position

Zj’ to position Zj’ +1and 1 is the indexing/iteration value. The
velocity at the next iteration is represented by the following
formula

Vj’+1 = oV +anP} —Z)) +an(G; - Z). (14)

The first part of Eq. (14) is the inertia where w represents
the weight parameter [28]. The second part of Eq. (14)
is called cognitive component and P! denotes the personal
best-optimized value [28]. The third part of Eq. (14)
represents the social component and Gj’. is the global best-
optimized value [28]. The particle j is a feature vector
and the aim is to find the feature values that result in
the global best-optimized value (i.e., the minimal value
of the objective function) in a search space. Eq. (14) has
several parameters that may influence the performance of
the PSO. The initial researchers who studied the impact of
the weight parameter on the performance of the PSO were
Shi and Eberhart [30]. The weight parameter w balances
exploration and exploitation [30]. The exploitation refers to
the particles converging to a known solution in the search
space [30]. The exploration refers to how well a particle
explores other regions in a search space that may have
possible optimized objective function values [30]. The value
of w should gradually decrease with time/iterations [28].
Shi and Eberhart [30] proposed that the weight parameter
must change during the search from 0.9 to around 0.2.

The impact of the parameters a; and a; (which denote
the acceleration of the particles towards the personal best
solution and the global best solution, respectively) is assessed
by setting one parameter to 0 and setting the other parameter
to 2. When a; = 0, there’s no personal best in the search
space, leading particles to converge to a minimum, maxi-
mizing exploitation but minimizing exploration. Conversely,
for ap = 0, particles don’t converge due to maximum
exploration and minimal exploitation, as they rely solely on
their personal best without sharing information. It is therefore
key to balancing exploration and exploitation. In most cases,
ay = ap = 2 to ensure that there is a balance between the
exploration and the exploitation [28]. Carlisle and Dozier [31]
conducted experiments and found that the optimal values for
ay and ap are 2.8 and 1.3, respectively, and this was further
confirmed by Schutte and Groenwold [32].

The parameters r| and rp are random numbers ranging
between 0 and 1, and their purpose is to create randomness
in the search space.

D. BAYESIAN OPTIMIZATION (BO)

Bayesian Optimization is another heuristic search approach.
Bayesian optimization uses a notion of a surrogate func-
tion [34]. The purpose of the surrogate function is to

VOLUME 12, 2024

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

IEEE Access

Algorithm 2 Particle Swarm Optimization (PSO) [33]
Require: The controlling parameters. The population of N
particles.
while The end condition is not satisfied do
for Each particle do
Calculate the objective function
Update personal best (PBEST) if required
Update global best (GBEST) if required
end for
Update the inertia weight
for Each particle do
Update the velocity (V)
Update the position (Z)
end for
end while

return GBEST

approximate the original cost function during optimiza-
tion [34]. Figure 1 illustrates the phenomenon of Bayesian
Optimization. The first frame (1) in Figure 1 shows the cost
function A(X, ¢, g) that needs to be optimized. The surrogate
function is represented by the dashed line in frame (2) of
Figure 1 and it is formed based on sampled data points.
In each iteration, new counterfactual data points are sampled
and the surrogate function is updated based on the new
sampled counterfactual data points. When the iterations
are exhausted, the process reaches a global minimum. The
complexity (in terms of evaluation) of the cost function is
taken away by the surrogate functions which are normally
cheap (in terms of evaluation) [35]. In the following section,
the Bayes Theorem is discussed, which serves as the basis for
Bayesian Optimization.

1) BAYES THEOREM
Before the discussion of the Bayes decision rule, the
following notation is introduced:

e P(h(c)|c) denotes the a posterior probability [36]
(i.e. the probability of the cost function given the
counterfactual c);

o P(h(c)) denotes the a priori probability [36] (i.e. the
probability distribution of the cost function);

o p(c|h(c)) represents the conditional density [36] (i.e. the
distribution of the feature vector ¢ given A(c));

o p(c) represents the evidence [36] (it can be viewed
as the scaling factor that guarantees that the posterior
probabilities sum to one).

The Bayes decision rule [36] is defined as follows:

P(h(c)|c) = lw (15)

p(c)

Note that p(c|g(c)) is a multivariate Gaussian distribution
density function. The Gaussian distribution density function

VOLUME 12, 2024

is given as:

1 _
P g, ¥) = ————expl—5(c— ' 27 (x —)
(2m)2|X2
where the mean, g, and covariance-matrix, X, are estimated
by using Expectation Maximization (EM) [37].

2) SURROGATE AND ACQUISITION FUNCTIONS

The probability P(h(c)|c) in Eq. (16) is known as the
Gaussian Process which represents a surrogate model [35].
The acquisition function is applied to the surrogate function
to find better-sampled data points. The commonly used
acquisition function is the Expected Improvement (EI) [35].
The formula for EI is:

El,«(c) .= / max(h* — h(c), 0)P(h(c)|c) dh(c). (16)

The h* represents the best (i.e., lowest) cost function
value observed so far. The h(c) represents the cost function
evaluated at counterfactual ¢. The aim is to maximize the
acquisition function [34] to find better data points (i.e.,
counterfactuals) when sampling, which will potentially result
in a minimum for the cost function. Thereafter, the surrogate
function is updated using the sampled data points. This is
repeated until a global minimum is reached or the number of
iterations is reached. The acquisition function is responsible
for newly sampled data points and the notion of exploration
and exploitation is applicable when looking for new data
points [34]. The exploitation allows the acquisition function
to sample where the surrogate function results in an optimized
cost function. The exploration allows the acquisition function
to sample in regions with lots of uncertainty in hopes that
better data points will be found that will result in an optimized
cost function. Thus, the acquisition function must balance the
exploration and the exploitation when sampling for new data
points.

Algorithm 3 shows the pseudo-code for the Bayesian
Optimization. The algorithm requires several inputs and these
include, the number of iterations, cost function, surrogate
function, and acquisition function. The surrogate function M
is an approximation of the cost function /. The acquisition
function S, determines where to sample next during the
search. The H is a set of pairs consisting of the counterfactual
and the cost function, i.e., (c, h(c)). The set of pairs H is
initialized to an empty set. The first line inside the iteration
loop finds the input value ¢ that minimizes the acquisition
function S. This step determines where to sample the cost
function next, based on the previous surrogate model M;_;.
The second line inside the iteration loop updates the set of
pairs H by appending a new pair (c, A(c)). The last line in
the iteration loop fits a new surrogate model M; based on the
updated set H. The first line outside the iteration loop sorts
the pairs from lowest in terms of the cost function /A(c) to
highest. The last line returns a pair (¢, i(c)) in H with the
lowest cost function. Consequently, the ¢ in the returned pair,
is the counterfactual explanation.

110719

IEEE Access

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

E. STATISTICAL SIGNIFICANCE TESTING

Statistical significance testing of the counterfactual gener-
ating approaches is assessed. The aim is to see if there
are performance differences in the way counterfactual
explanations are generated. The counterfactual properties that
were used for significance testing are validity, similarity, and
sparsity. All statistical significance tests in this study were
based on Friedman test [38] which is a non-parametric test.
The Friedman test consists of four steps, i.e., a hypothesis,
a test statistic, a rejection region, and a conclusion. Below
are the steps involved in the Friedman test, Step-1)

1) State a null hypothesis Hp and an alternative
hypothesis Hi;

e Hp: The counterfactual generating approaches
do not differ in how they rank counterfactual
performances for validity/sparsity/similarity.

e Hi: At least one counterfactual generating
approach differs in how it ranks counterfactual
performances for validity/sparsity/similarity.

2) Calculate the test statistic [39];

e Collect all the results for each counterfactual
generating approach.

o For each generated counterfactual i, rank values
from 1 (denoting best performance) to o (denoting
worst performance). The ranks are denoted as
r{(l < j < o) and i ranges between (1 <
i < gq). Please note that in our study, the number
of generated counterfactuals for Friedman test is
g = 30, and a number of counterfactual generating
approaches is 0 = 4.

o For each counterfactual generating approach j,
calculate the average obtained for all generated
counterfactuals as R; = - > r].

e The F-score, which is the test statistic is

2 <

F-score = —— R? —30(q + 1).
oq(g+1)]_Z;‘ j— e+

3) Define a rejection region;

« Rejection region is defined by the level of signif-
icance o = 0.05, using the upper critical values
from the chi-square table.

o The critical value is defined as a chi-squared value
X }3—1’ where b — 1 is the degrees of freedom.

4) Draw a conclusion;

o The null hypothesis is rejected if F-score > xlf_l
or p-value < 0.05 and a conclusion is that there
is no significant evidence that the counterfactual
generating approaches rank counterfactual perfor-
mances equally/perform similarly.

In essence, the Friedman test assesses whether there exist
significant differences in how counterfactuals perform when
generated by more than two approaches. To find exactly
which counterfactual generating approaches differ in terms

110720

of counterfactual performances, a post-hoc test known as
Nemenyi test [40] is used.

Algorithm 3 Bayesian Optimization (BO) [35]
Require: Number of iterations T, cost function A, surrogate
function M and acquisition function §
H=0
for Each iteration r do
¢ < argmin S(c, M;_1)
H < HU(c, h(©))
Fit new model to M,

end for
Sort ‘H using A(c) in ascending order

return First pair of H

IV. EXPERIMENTS

A. BLACK-BOX MODEL

The black-box model that was used is a deep neural network
consisting of three hidden layers. The first hidden layer had
20 neurons, the second hidden layer had 10 neurons and
the third hidden layer had 6 neurons. The input layer and
the output layer had 12 and 2 neurons, respectively. The
hidden layers’ activation functions were Rectified Linear
Unit (ReLU). The ReLU returns a maximum between 0, and
the sum of the multiplication of the inputs, weights, and
biases. The choice of the optimizer was Adam (Adaptive
Moment Estimation). An optimizer is a method of adjusting
the weights and biases of a neural network to ensure the
loss function is minimized. Since the classification task is
binary (either default or non-default), the choice of the last
hidden layer activation function was a sigmoid function.
Since a sigmoid function maps any input to values between
0 and 1, a decision boundary was created by choosing a
threshold of 0.5, to classify input data with prediction outputs
above 0.5 as defaults and below 0.5 as non-defaults. The
batch size of the neural network was set to 50 and the
number of epochs was 1000. Please see Table 2 for parameter
details of deep neural network. To optimize the performance
of the artificial neural network (ANN), we conducted a
grid search to identify the best set of hyperparameters in
Table 2. Grid search is normally performed using K-fold
cross validation on the training set. For each combination of
hyperparameters, the ANN was trained using K-fold cross
validation. The combination of the parameters that resulted
in the best accuracy on the validation set was considered best
hyperparameters.

B. DATA

The dataset that was used in this study is the German
credit dataset [41]. The credit dataset is publicly available
on Kaggle website. The dataset has 21 features, where 7 of
the features are continuous and the other 14 are categorical.
The total number of records on the German dataset is 1000.

VOLUME 12, 2024

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

IEEE Access

Sampled point

Original cost function
A A
h{x, ¢,g)
(1) (2
1st iteration sampled point
1 .) .
2nd iteration sampled point
h(x, c,g)
1
|
(3)
FIGURE 1. Bayesian optimization process.
TABLE 2. Artificial neural network parameters and grid search values.
Model (Artificial Neural Network) Parameters Grid Search Values
No. of Hidden Layers 3 {2,3,4}
Input Layer (Neurons) 12 -
First Hidden Layer (Neurons) 20 {10, 20, 30}
Second Hidden Layer (Neurons) 10 {10, 20, 30}
Third Hidden Layer (Neurons) 6 {5,6,7}
Output Layer (Neurons) 2 -
Activation Functions Rectified Linear Unit (ReLu) | {ReLU, Sigmoid, Tanh}
Optimizer Adam {Adam, SGD}
Batch Size 50 {32, 50, 64}
Epochs 1000 {500, 1000, 1500}
Last Hidden Layer Activation Function | Sigmoid -

The German credit dataset has features such as status
of existing checking account, duration in
month, credit history, purpose, Age (years),
Sex & Marital Status and Length of current
employment to mention the least. Features such as Age
(years) and Sex & Marital Status are treated as
immutable. All other features are mutable. A feature selection
was performed to select predictive features (features that
have information values between 0.1 (inclusive) and 0.5
(exclusive)), and this resulted in 12 features. The target
variable is binary (i.e., default/non-default). Please see
Table 3 and Table 4 for feature descriptions and feature min-
max values, respectively.

VOLUME 12, 2024

C. OPTIMIZATION ALGORITHMS’ PARAMETERS

The genetic algorithm had a population size of 100, the
mutation probability was set to 0.01, the crossover probability
was 0.2 and the number of iterations was 500. The choice
of the mutation rate of 0.01, was based on the experiments
done by Grefenstette [42]. Further, Grefenstette [42] posited
that mutation rates that exceed 0.05 are not good for the
optimal performance of Genetic Algorithms. Hassanat et al.
[43] noted that the use of 0.9 (usually used as a predefined
parameter setting to encourage broader exploration search)
for cross-over rate does not always perform best. Hence,
the choice for cross-over rate was 0.2 to reduce too much
exploration.

110721

IEEE Access

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

TABLE 3. Features descriptions of the german credit data [41].

Feature Name

Description

Age (years)

Length of current employment
Job

Housing

Value Savings/Stocks

Most valuable available asset
Credit amount

Duration of Credit

Purpose

Risk

Sex & Marital Status

Age in years (e.g., 25, 30, 40)

Employed since (e.g., < 1 year, >= 7 years)

Job type (coded as integers, e.g., 0, 1, 2, 3)

Type of housing (e.g., own, rent, free)

Savings account status (e.g., little, moderate, quite rich, rich)
Checking account status (e.g., little, moderate, rich)

Amount of credit in DM (e.g., 1500, 2000)

Duration for the credit in months (e.g., 12, 24, 36)

Purpose of the credit (e.g., radio/TV, education, furniture/equipment)
Good or bad risk (e.g., good, bad)

Personal status and sex (e.g., male single, female divorced/separated)

Debtors/Guarantors

Residence Duration

Type of apartment

Installment rate

Other installment plans
Concurrent credits

Job type

Payment status of previous credit
Telephone

Foreign worker

Whether there are debtors or guarantors (e.g., none, guarantor)
Duration of residence at the current location (e.g., 2, 3, 4 years)
Type of property (e.g., real estate, life insurance)

Installment rate in percentage of disposable income (e.g., 2, 3, 4)
Existence of other installment plans (e.g., bank, stores)

Number of credits at this bank (e.g., 1, 2, 3)

Type of job (e.g., skilled, unskilled resident)

Credit history (e.g., paid on time, delayed), coded as 1, 2
Whether the individual has a telephone registered (e.g., yes, no)
Whether the individual is a foreign worker (e.g., yes, no)

TABLE 4. Selected features with their min-max values.

Feature Name Minimum | Maximum
Age (years) 19 75
Concurrent credits 1 3
Credit Amount 250 18424
Duration of Credit 4 72
Foreign Worker 1 2
Length of current employment 1 5
Most valuable available asset 1 4
Payment status of previous credit 0 4
Purpose 0 10
Sex & Marital Status 1 4
Type of apartment 1 3
Value Savings/Stock 1 5

The particle swarm optimization had a population size
(i.e., the number of particles) of 40, the weight parameter
was decreasing from 0.9 to 0.2, the acceleration parameters
were set to 2 and the number of iterations was 50. Shi and
Eberhart [30] suggested that the weight parameter should
change during the search from 0.9 to around 0.2. The
acceleration parameters were set to 2, to ensure that there is a
balance between exploration and exploitation [28] during the
counterfactual explanation search.

The number of iterations for the Bayesian Optimization
was set to 100. Please refer to Table 5 for parameter details
of the optimization algorithms.

Each of the optimization problems must take into account
sparsity. The level of sparsity is controlled by the threshold
value which ranges between 0.5 < § < 1. The threshold
value was set to 0.9. If § is set too low, the counterfactual will
be very similar to the original instance, since the majority
of the feature values will not be changed during the search
of counterfactuals. Thus, high values of §, allow the original
instance feature values to be changed during the search of
counterfactuals. This is illustrated in Figure 2. The impact
of the value of § is illustrated in Figure 2, when § is set

110722

TABLE 5. Parameters for different optimization techniques. Legend: El
(Expected Improvement), GP (Gaussian Process), NFE (Number of
Function Evaluations).

Parameters

Population Size: 100
Mutation Probability: 0.01
Crossover Probability: 0.2
Iterations: 500

NFE: 50 000

Population Size: 40
Weight Parameter: 0.9 to 0.2
Acceleration: 2

Iterations: 50

NFE: 2 000

Iterations: 100
Acquisition Function: EI
Surrogate Function: GP
NFE: 100

Technique
Genetic Algorithm

Particle Swarm Optimization

Bayesian Optimization

low, even minor absolute percentage changes in features
will cause them not to be changed. The balanced threshold
is at 0.8. However, a balanced threshold of 0.8 might not
always guarantee a desired prediction (i.e., non-default) for
the counterfactual. A higher delta optimally balances sparsity
with the likelihood of flipping the counterfactual’s outcome
to the desired prediction.

D. NUMBER OF FUNCTION EVALUATIONS

Another important metric is the number of function evalu-
ations(NFE) [44] which evaluates the computational com-
plexity of an optimization problem. The NFE is calculated
as follows:

NFE = Number of Iterations x Population Size.

The higher the NFE the more computationally intensive the
algorithm. However, this is also driven by the complexity of
the objective function. For example, if each evaluation of the
objective function is expensive, even if the NFE is relatively

VOLUME 12, 2024

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

IEEE Access

Feature Change Decision at Delta = 0.6

Feature Change Decision at Delta = 0.7

1.0

0.9 4

w 0.84

=

g

i

g 0.7+

W

(0]
0.6 f= == e

—— Sigmoid Function

0.54 —=- Delta Threshold (0.6)

B Features that can change
Features that cannot change

Sigmoid Value

1.0

09

0.8

0.7

0.6

—— Sigmoid Function

—=- Delta Threshold (0.7)

I Features that can change
Features that cannot change

0.5

0.4 T T T T T T
0 2 4 6 8 10
Absolute Percentage Change

Feature Change Decision at Delta = 0.8

0.4 T T T T T
o 2 4 6 8 10
Absolute Percentage Change

Feature Change Decision at Delta = 0.9

Sigmeid Value

—— Sigmoid Function

=== Delta Threshold (0.8) 0.5 === Delta Threshold (0.9)
mmm Features that can change B Features that can change
Features that cannot change Features that cannot change
0.4 T T T T 04 v T T T T

Sigmoid Value

—— Sigmoid Function

0 2 4 6 8 10
Absolute Percentage Change

T
0 2 4 6 8 10

Absolute Percentage Change

FIGURE 2. Impact of delta (5) threshold on feature changes. The x-axis represents the absolute percentage change, and the y-axis represents the
sigmoid value. The green region illustrates where the sigmoid values fall below the set threshold (5), indicating acceptable feature changes. The
yellow region illustrates where the sigmoid values are above the threshold, indicating no feature changes. As (3) increases from 0.5 to 1, the size of
the green region increases, illustrating lower sparsity. The red dotted line represents the threshold value that controls the sparsity level. These
regions are for illustration purposes only and do not represent specific features.

low, it can result in high computational demand for compute
resources [44].

E. SELECTION OF COUNTERFACTUALS

It is important to explain how the final counterfactuals were
obtained. Since the optimization methods used in this study
generate different results for each optimization run due to
randomness. Given the extended processing durations for
generating counterfactuals, each optimization algorithm was
executed 10 times. Consequently, 10 potential counterfactual
candidates were produced. The final counterfactual was
chosen among the 10 candidates using Eq. (7) which
calculates the L1-norm distance between the original instance
and the counterfactuals. A counterfactual that resulted in a
small distance was chosen as the final counterfactual.

V. RESULTS

This section begins with an examination of the performance
of the black-box model. Subsequently, we delve into coun-
terfactual explanations of the black-box model, generated
using a range of optimization algorithms. It is important to

VOLUME 12, 2024

clarify that using numeric values for categorical features is
not appropriate for interpretability. While numeric values
were utilized to generate counterfactuals, for the purpose of
explanation, we will present the actual categorical values.
This ensures that the counterfactuals remain explainable
and meaningful. For instance, instead of saying ‘“Payment
status must decrease by 4 we will use the corresponding
categorical descriptions to provide clear and understandable
explanations. This approach aligns with the aim of making
the counterfactuals comprehensible. To clarify, the numerical
codes assigned to each category are used strictly as identifiers
for ease of generating counterfactual explanations.
Following this, we conducted a performance assess-
ment of three selected optimization algorithms using
explainer properties. Thereafter, a qualitative comparison
of the counterfactual generating approaches was conducted.
In this context, a counterfactual generating approach that
exhibits a greater number of counterfactual properties is
considered superior. Additionally, we have undertaken a
quantitative evaluation of various counterfactual generating
methodologies. Notably, in this study, Particle Swarm

110723

IEEE Access

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

Optimization (PSO) was the chosen optimization algorithm,
owing to its efficiency in solving optimization problems.

A. MODEL PERFORMANCE

The Receiver Operating Characteristic Area Under the Curve
(ROC AUC) metric quantifies the overall ability of a model to
distinguish between the default (i.e., positive) and non-default
(i.e., negative) classes, irrespective of the threshold [45].
An AUC of 1 indicates perfect classification, whereas an
AUC of 0.5 implies that the model performs no better than
random guessing. The ROC AUC is given as:

1 TP FP
ROCAUC = -1+ -
2 TP+ FN FP+ TN

where:

o TP (True Positives) is the number of correctly predicted
positive instances;

o FN (False Negatives) is the number of positive instances
incorrectly predicted as negative;

« FP (False Positives) is the number of negative instances
incorrectly predicted as positive;

o TN (True Negatives) is the number of correctly predicted
negative instances.

This formula provides a simplified method for calculating
the ROC AUC in binary classification scenarios. It balances
the true positive rate (sensitivity) and false positive rate (1
- specificity) to give an overall performance measure of the
classifier.

The dataset was split into training and test sets using a
70/30 split. The training set was used to train the neural
network, and the test set was used to assess the neural
network’s performance. The metric of choice to assess the
neural network’s performance was ROC AUC, and the ROC
AUC on the test set was 0.71. This indicates that the neural
network performs better than random guessing.

B. GENETIC ALGORITHM

The counterfactual explanation suggests that for the feature
vector of interest x to qualify for a loan application,
the Purpose must change from buying a new car to
buying aused car, the Payment Status of Previous
Credit must change from critical account to existing
account paid back fully till now and the Length of
current employment must change from being unem-
ployed to employed between 1 and 3 years.

C. PARTICLE SWARM OPTIMIZATION

The counterfactual explanation suggests that for the feature
vector of interest x to qualify for a loan application, the
Purpose must change from wanting to buy a new car to
buying furniture/equipment and Concurrent Credits
must decrease by 2, the Type of apartment must
change from owning to staying for free and the Duration
of Credit (month) mustincrease by 38.

110724

D. BAYESIAN OPTIMIZATION

The counterfactual explanation suggests that for the feature
vector of interest x to qualify for a loan application, the
Purpose must change from wanting to buy a new car
to buying a radio/television, the Payment Status of
Previous Credit must change from critical account
to no credit taken/all credits paid back duly, the Most
valuable available asset must change from life
insurance to car or other and the Concurrent Credits
must decrease by 2.

E. OPTIMIZATION ALGORITHMS IN EXPLAINER
PROPERTIES

Three distinct optimization algorithms were employed to
solve optimization problems. This section compares three
optimization algorithms by using explainer properties.
According to [1], explainers have properties such as effi-
ciency, fairness, and stability. The efficiency property is
defined as the time it takes to generate a counterfactual. The
fairness property is defined in Guidotti [1] as the ability of
the explainer to give the same decision based on the same
feature changes in x irrespective of the demographic group.
Suppose a feature vector x is rejected for a loan application
(i.e., g(x) = 1), and that ¢; and ¢; are counterfactuals for
feature vector x where the gender feature value for ¢ is male
and for ¢, is female. The explainer 4 is fair if and only if the
features that are changed in x are the same for ¢, and ¢, and
that

g(cs) = g(e;) = 0. 17

The stability (also known as robustness) property is
defined in [1] as the ability of the explainer to generate
similar counterfactuals (i.e. ¢; and ¢;) when the feature
vectors (i.e. x; and Xp) of interest are similar and their
predictions are the same (i.e. g(x;) = g(x2)). The
similarity will be measured by the cosine similarity given
as

Ci-C

_— (18)
e ez |l

cosine(cy, €) =

The cosine similarity has values between 0 and 1 (inclu-
sive). A cosine similarity value closer to 1 indicates greater
similarity between feature vectors, while a value approaching
0 suggests increased dissimilarity between them. The results
of fairness and robustness are shown in Table 6. The results
show that all three optimization algorithms perform similarly
for explainer fairness and robustness. However, for efficiency,
there are differences. The optimization algorithm that results
in making the explainer more efficient in this study is the
particle swarm optimization. Please note that there was only
one experiment run, hence, the results are not statistically
significant. For clarity, values in Table 6 for robustness are
rounded to two decimal places, though actual values may
differ in precision.

VOLUME 12, 2024

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

IEEE Access

TABLE 6. Comparison of all three optimization techniques using
explainer properties. The legend: GA (Genetic Algorithm), PSO
(Particle Swarm Optimization), BO (Bayesian Optimization).

Optimization Algorithms

Properties | GA PSO BO
fairness |yes yes yes
robustness |0.99 0.99 0.99
efficiency |30 minutes |5 minutes |50 minutes

TABLE 7. Comparing state-of-the-art counterfactual methods with our
approach.

Source Year[Validity[Similarity[Sparsity[Actionability[Plausibility
[46] 2019 vV v v

[47] 2019 Vv v v

[48] 20200 v v v

[49] 2021 v v v

6] 2022 v v v v
Our Approach|2023] v v v v v

F. COMPUTATIONAL COMPLEXITY

Since particle swarm optimization resulted in low com-
putational time, it is worth looking at its complexity.
We specifically looked at time complexity using the Big O
notation O(n). The time complexity depends on the number of
particles in a swarm, the dimension d of the feature vector x,
and the number of iterations the algorithm runs. Overall the
complexity of the proposed approach is:

complexity = O(d * n; * ny)

where n; and n, denote the number of iterations and number
of particles, respectively. The Big O notation O(d * n; * n,)
of our proposed approach essentially means that the running
time of the particle swarm optimization algorithm increases
linearly with the number of dimensions, the number of
iterations, and the number of particles. If you increase any of
these variables, the running time will increase proportionally.

G. QUALITATIVE COMPARISON OF COUNTERFACTUALS
Using counterfactual properties for qualitative comparison
is a straightforward method to evaluate counterfactual
performances. A counterfactual is deemed superior if it
has multiple counterfactual properties. The counterfactual
properties such as validity, similarity, sparsity, actionability,
and plausibility were considered. Table 7 shows that most
methods focus on validity and similarity. Our approach looks
at all the suggested counterfactual properties. There is only
one method [46] that focuses on the actionability of the
generated counterfactuals. Please note that the list of sources
in Table 7 is not exhaustive.

H. QUANTITATIVE COMPARISON OF COUNTERFACTUAL
GENERATING APPROACHES

Statistical significance tests of the counterfactual generating
approaches in terms of counterfactual performances using
validity, similarity, and sparsity were performed. The validity
property is assessed using the probability of counterfactual
¢ belonging to the non-default class, i.e., P(g(c) = 0). The

VOLUME 12, 2024

higher the probability, the more valid the counterfactual is.
The similarity property is assessed using the distance between
the record of interest x and the generated counterfactual ¢, i.e.,
dist(x, ¢). The lower the distance, the more similar x and ¢
are. The sparsity property is measured by using the following
formula

2 (ci=f !

p)
Eq. (19) counts the number of features that have the same
values between x and c. The higher the sparsity value,
the more sparse the generated counterfactual is. This study
is compared quantitatively to Dastile et al. [6], Sharma
et al. [46], and Wachter et al. [50] using counterfactual
properties (i.e. similarity, validity, and sparsity). There were
30 defaulted records that were randomly selected in the
dataset, and counterfactuals were generated for the randomly
selected records using approaches from Dastile et al. [6],
Sharma et al. [46], and Wachter et al. [50]. Figure 3 shows
the results for each of the counterfactual properties.

By looking at Figure 3, it is not clear how to tell which
method performs better when it comes to counterfactual
properties. Hence, a statistical significance test is required to
assess if the methods perform differently from each other. The
statistical significance test is performed using Friedman test.
For Friedman test, there are three hypotheses that correspond
to each of the counterfactual properties: Hypothesis-1)

1) For validity;

o Hy: The counterfactual generating approaches
do not differ in how they rank counterfactual
performances for validity.

e Hi: At least one counterfactual generating
approach differs in how it ranks counterfactual
performances for validity.

sparsity = vVi=1{1,2,-,d}. (19)

2) For similarity;

e Hp: The counterfactual generating approaches
do not differ in how they rank counterfactual
performances for similarity.

e Hy: At least one counterfactual generating
approach differs in how it ranks counterfactual
performances for similarity.

3) For sparsity;

o Hy: The counterfactual generating approaches
do not differ in how they rank counterfactual
performances for sparsity.

e Hi: At least one counterfactual generating
approach differs in how it ranks counterfactual
performances for sparsity.

The obtained p-values for validity, similarity, and sparsity
are 5.09e-11, 3.19e-12, and 1.91e-08, respectively. Given that
all these p-values fall below the 0.05 significance threshold,
we reject the null hypotheses. This suggests that at least one
counterfactual generating method ranks performances differ-
ently for each counterfactual property. To pinpoint which
methods show significant differences, a post-hoc Nemenyi

110725

IEEE Access

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

Similarity

0.0025 A

0.0020 A

0.0015 A

0.0010 A

Similarity Score

Dastile
—— Watcher
—— Our Approach
—— Sharma

0.0005 A

0.0000 A

15 20 25 30
Samples

Validity

0 5 10

0.9 1

o
©
L

o
~
L

Validity Score

| —— Sharma
Dastile

—— Watcher

—— Our Approach

o
o

0.5 4

T T T T T T T

0 5 10 15 20 25 30
Samples

r7.5

r7.0

6.5

6.0

5.5

r5.0

r4.5

-4.0

Sparsity
0.9 /\
o 0.8 4
1)
O
)
207
[
©
o
0
0.6 1 — Sharma
Dastile
—— Watcher
0.5 4 — Our Approach
0 5 10 15 20 25 30

Samples

FIGURE 3. Performance analysis of our approach and that of Wachter et al. [50], Sharma et al. [46], and Dastile et al. [6]. Three counterfactual
properties (i.e. sparsity, validity, and similarity) were compared using 30 samples that were selected randomly in the dataset.

test is conducted. This test produces a table of p-values.
When comparing any two methods, if the intersecting p-value
is below the significance level, it indicates a significant
difference between their counterfactual performances.

From Table 8, we observe that at intersections involving
Wachter et al. [50] with all other methods, p-values remain
below 0.01. Given our 0.05 significance level, we deduce that
Wachter et al. [50] has counterfactual validity performances
that significantly deviate from the rest. This is corroborated
by the validity graph in Figure 3, where Wachter et al. [50]
registers high validity scores.

For the similarity property, Table 9 indicates that Sharma
et al. [46] diverges notably from other methods, as evidenced
by their intersection p-values being 0.00. This finding is
reflected in the similarity graph within Figure 3, where
Sharma et al. [46] shows high similarity scores. It’s essential
to note that a higher similarity score signifies greater
dissimilarity from the original data point. Consequently,
in terms of the similarity property, Sharma et al. [46] performs
worse than other methods.

When analyzing the sparsity property in Table 10,
Sharma et al. [46], Dastile et al. [6], and our proposed method
show significant variances from Wachter et al. [S0] when
tested at the 0.05 significance level.

In summary, the results show that Wachter et al. [50]
is more valid but less sparse as evidenced in Figure 3.
Conversely, Dastile et al. [6] is more sparse but less valid as
depicted in Figure 3. This suggests that there is a trade-off

110726

between validity and sparsity. From Figure 3, it’s evident that
while our proposed method sacrifices validity to some degree,
it strikes a good balance between sparsity and validity.

VI. ADVANTAGES AND LIMITATIONS
The proposed approach has several advantages, and these
include, model agnostic, transparency of decisions, and appli-
cability to industry. The approach is model-agnostic, meaning
it can be applied across different machine learning models
without needing customization. A significant advantage is
the approach’s ability to provide transparency to individuals
impacted by machine learning decisions, specifically in the
context of loan applications. It not only explains why an
application was rejected but also advises on possible recourse
actions. This aspect is crucial for ethical Al practices, as it
promotes fairness and accountability. Classification tasks
involving tabular data are common in many industries, this
makes our proposed approach highly relevant and effective
for a significant portion of machine learning applications.
While our approach has positive aspects, it also faces
certain limitations. Specifically, our method is tailored to
tabular data and cannot be easily extended to other data forms,
which restricts its applicability in scenarios requiring diverse
data types. Furthermore, the assumption that training data
remains static over time introduces challenges in maintaining
the accuracy of the explanations, as it does not account
for the dynamic nature of real-world data which requires
model retraining. This makes our approach both data and

VOLUME 12, 2024

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

IEEE Access

TABLE 8. The p-values from the Nemenyi test pertain to the validity property. Intersection values below the significance level of 0.05 indicate a significant

performance difference between counterfactual generating methods.

Methods Sharma et al. [46] | Dastile et al. [6] | Wachter et al. [S0] | Our Approach
Sharma et al. [46] | 1.00 0.01 0.00 0.00
Dastile et al. [6] 0.01 1.00 0.00 0.90
Wachter et al. [50] | 0.00 0.00 1.00 0.00
Our Approach 0.04 0.90 0.00 1.00

TABLE 9. The p-values from the Nemenyi test pertain to the similarity property. Intersection values below the significance level of 0.05 indicate a
significant performance difference between counterfactual generating methods.

Methods Sharma et al. [46] | Dastile et al. [6] | Wachter et al. [SO] | Our Approach
Sharma et al. [46] 1.00 0.00 0.00 0.00
Dastile et al. [6] 0.00 1.00 0.84 0.38
Wachter et al. [50] | 0.00 0.84 1.00 0.84
Our Approach 0.00 0.38 0.84 1.00

TABLE 10. The p-values from the Nemenyi test pertain to the sparsity property. Intersection values below the significance level of 0.05 indicate a
significant performance difference between counterfactual generating methods.

Methods Sharma et al. [46] | Dastile et al. [6] | Wachter et al. [SO] | Our Approach
Sharma et al. [46] 1.00 0.90 0.00 0.90
Dastile et al. [6] 0.90 1.00 0.00 0.90
Wachter et al. [50] | 0.00 0.00 1.00 0.00
QOur Approach 0.00 0.90 0.00 1.00

model dependent, necessitating careful consideration of its
applicability based on the characteristics of the data and the
classification models.

VII. CONCLUSION

In this article, we tackled the challenge of making machine
learning models more understandable by using counterfactual
explanations, which are “what-if” scenarios. We tested
three different techniques; genetic algorithm, particle swarm
optimization, and Bayesian optimization, to find the best
way to create counterfactual explanations. Our tests on the
German credit dataset, a common choice for studying credit
scoring, showed that our method can generate explanations
that meet several important counterfactual properties.

We compared our approach with other methods based on
how valid, similar, and sparse the explanations were. Our
findings suggest that there is a delicate balance in getting a
counterfactual that is valid and sparse. Although our method
does prioritize sparsity over absolute validity, it strikes a
good balance between the two. The results indicated that the
existing state-of-the-art explanation methods struggle to find
a good balance between sparsity and validity. By generating
counterfactuals that are both valid and sparse, this study
provides explanations that are easier for end-users (loan
applicants) and stakeholders (Ienders) to understand and trust.
Simpler explanations that effectively change the outcome can
help bridge the gap between Al systems and human decision-
makers. With sparser explanations, users are more likely to
engage with the Al system and take actionable steps. As a
result, users will find the recommendations more manageable
and straightforward to implement. As regulations around
Al transparency increase (like the EU’s GDPR), the ability

VOLUME 12, 2024

to provide clear, concise, and effective explanations will
be crucial. This study’s approach can help organizations
comply with such regulations by offering explanations that
fulfill legal requirements for explainability. Looking ahead,
we are interested in exploring how different features in the
data might cause certain outcomes in the explanations we
generate.

ACKNOWLEDGMENT

Xolani Dastile would like to thank Prof. Turgay Celik, for
making funds available for the Ph.D. study. The authors
would like to thank the anonymous reviewers for providing
valuable feedback on the initial versions of this article.

REFERENCES

[1] R.Guidotti, “Counterfactual explanations and how to find them: Literature
review and benchmarking,” Data Mining Knowl. Discovery, pp. 1-55,
Apr. 2022, doi: 10.1007/s10618-022-00831-6.

[2] S. Verma, J. P. Dickerson, and K. Hines, “Counterfactual explanations for
machine learning: A review,” 2010, arXiv:2010.10596.

[3] A.E. Khandani, A.J. Kim, and A. W. Lo, “Consumer credit-risk models
via machine-learning algorithms,” J. Banking Finance, vol. 34, no. 11,
pp. 27672787, Nov. 2010.

[4] X.Dastile and T. Celik, ‘““Making deep learning-based predictions for credit
scoring explainable,” IEEE Access, vol. 9, pp. 50426-50440, 2021.

[5] X. Dastile, T. Celik, and M. Potsane, ““Statistical and machine learning
models in credit scoring: A systematic literature survey,” Appl. Soft
Comput., vol. 91, Jun. 2020, Art. no. 106263.

[6] X. Dastile, T. Celik, and H. Vandierendonck, ‘“Model-agnostic coun-
terfactual explanations in credit scoring,” IEEE Access, vol. 10,
pp. 69543-69554, 2022.

[7] C. Molnar, Interpretable Machine Learning, 2nd ed., 2022. [Online].
Available: https://christophm.github.io/interpretable-ml-book

[8] K. Sokol and P. A. Flach, “Counterfactual explanations of machine
learning predictions: Opportunities and challenges for Al safety,” in Proc.
SafeAI@AAAI 2019, pp. 1-4.

110727

http://dx.doi.org/10.1007/s10618-022-00831-6

IEEE Access

X. Dastile, T. Celik: Counterfactual Explanations With Multiple Properties in Credit Scoring

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]
[28]

[29]

[30]

[31]
[32]

[33]

[34]

S. Goethals, K. S rensen, and D. Martens, “The privacy issue of
counterfactual explanations: Explanation linkage attacks,” ACM Trans.
Intell. Syst. Technol., vol. 14, no. 5, pp. 1-24, 2022.

R. M. Grath, L. Costabello, C. L. Van, P. Sweeney, F. Kamiab, Z. Shen, and
F. Lecue, “Interpretable credit application predictions with counterfactual
explanations,” 2018, arXiv:1811.05245.

T. Laugel, M.-J. Lesot, C. Marsala, X. Renard, and M. Detyniecki,
“Comparison-based inverse classification for interpretability in machine
learning,” in Proc. Int. Conf. Inf. Process. Manag. Uncertainty Knowl.-
Based Syst., 2018, pp. 100-111.

A. V. Looveren and J. Klaise, “Interpretable counterfactual explanations
guided by prototypes,” 2019, arXiv:1907.02584.

R. R. Fernandez, I. M. de Diego, V. Acefa, A. Fernandez-Isabel, and
J. M. Moguerza, ‘“‘Random forest explainability using counterfactual sets,”
Inf. Fusion, vol. 63, pp. 196-207, Nov. 2020.

R. Samoilescu, A. V. Looveren, and J. Klaise, ‘“Model-agnostic and
scalable counterfactual explanations via reinforcement learning,” 2021,
arXiv:2106.02597.

M. Hashemi and A. Fathi, “Permuteattack: Counterfactual explanation of
machine learning credit scorecards,” 2020, arXiv:2008.10138.

M. Downs, J. Chu, Y. Yacoby, F. Doshi-Velez, and P. WeiWei, “CRUDS:
Counterfactual recourse using disentangled subspaces,” in Proc. ICML
Workshop Hum. Interpretability Mach. Learn., 2020, pp. 1-23.

J. Cito, I. Dillig, V. Murali, and S. Chandra, “Counterfactual explanations
for models of code,” in Proc. IEEE/ACM 44th Int. Conf. Softw. Eng. Softw.
Eng. Pract. (ICSE-SEIP), May 2022, pp. 125-134.

M. Suffian, P. Graziani, J. M. Alonso, and A. Bogliolo, “FCE: Feedback
based counterfactual explanations for explainable Al IEEE Access,
vol. 10, pp. 72363-72372, 2022.

S.-H. Na, W.-J. Nam, and S.-W. Lee, “Toward practical and plausible
counterfactual explanation through latent adjustment in disentangled
space,” Expert Syst. Appl., vol. 233, Dec. 2023, Art. no. 120982.

C. Fernandez-Loria, F. Provost, and X. Han, “Explaining data-driven
decisions made by AI systems: The counterfactual approach,” 2020,
arXiv:2001.07417.

M. Forster, P. Hiihn, M. Klier, and K. Kluge, “Capturing users’ reality: A
novel approach to generate coherent counterfactual explanations,” in Proc.
Annu. Hawaii Int. Conf. Syst. Sci., 2021.

A. Ferrario and M. Loi, “The robustness of counterfactual explanations
over time,” IEEE Access, vol. 10, pp. 82736-82750, 2022.

A. Carlevaro, M. Lenatti, A. Paglialonga, and M. Mongelli,
“Counterfactual building and evaluation via eXplainable support
vector data description,” IEEE Access, vol. 10, pp.60849-60861,
2022.

A. C. Bueff, M. Cytryriski, R. Calabrese, M. Jones, J. Roberts, J. Moore,
and I. Brown, “Machine learning interpretability for a stress scenario
generation in credit scoring based on counterfactuals,” Expert Syst. Appl.,
vol. 202, Sep. 2022, Art. no. 117271.

S. Rathi, “Generating counterfactual and contrastive explanations using
SHAP,” 2019, arXiv:1906.09293.

N. Siddiqi, Credit Risk Scorecards: Developing and Implementing
Intelligent Credit Scoring. Cary, NC, USA: SAS Publishing, 2005.

M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1996.

D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: An
overview,” Soft Comput., vol. 22, no. 2, pp. 387-408, Jan. 2018.

R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. MHS 6th Int. Symp. Micro Mach. Human Sci., Jun. 1995,
pp. 39-43.

Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc.
IEEE Int. Conf. Evol. Comput. World Congr. Comput. Intell., May 1998,
pp. 69-73.

A. Carlisle and G. Dozier, ““An off-the-shelf PSO,” in Proc. Workshop Part.
Swarm Optim., 2001, pp. 1-6.

J. F. Schutte and A. A. Groenwold, “A study of global optimization using
particle swarms,” J. Global Optim., vol. 31, no. 1, pp. 93—108, Jan. 2005.
F. vandenBergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225-239, Jun. 2004.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, ‘“Taking
the human out of the loop: A review of Bayesian optimization,” Proc.
IEEE, vol. 104, no. 1, pp. 148175, Jan. 2016.

110728

(35]

(36]
(371

(38]

(391

(40]

(41]

[42]

(43]

(44]

[45]

[46]

(47]

(48]

(49]

(50]

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” in Proc. Adv. Neural Inf. Process. Syst., vol. 24,
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, Eds.
Red Hook, NY, USA: Curran Associates, 2011, pp. 1-7.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.,
Hoboken, NJ, USA: Wiley, 2001.

D. Reynolds, Gaussian Mixture Models. Boston, MA, USA: Springer,
2015, pp. 827-832.

M. Friedman, “The use of ranks to avoid the assumption of normality
implicit in the analysis of variance,” J. Amer: Stat. Assoc., vol. 32, no. 200,
p. 675, Dec. 1937.

J. Derrac, S. Garcfa, D. Molina, and F. Herrera, “A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput.,
vol. 1, no. 1, pp. 3-18, Mar. 2011.

P. Nemenyi, “Distribution-free multiple comparisons,” Ph.D. dissertation,
Dept. Math., Princeton Univ., Princeton, NJ, USA, 1963.

D. Dua and C. Graff. (2019). UCI Machine Learning Repository. [Online].
Available: http://archive.ics.uci.edu/ml

J. Grefenstette, “Optimization of control parameters for genetic algo-
rithms,” IEEE Trans. Syst. Man, Cybern., vol. SMC-16, no. 1,
pp. 122-128, Jan. 1986.

A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas,
A. Hammouri, and V. B. S. Prasath, “Choosing mutation and crossover
ratios for genetic algorithms—A review with a new dynamic approach,”
Information, vol. 10, no. 12, p. 390, Dec. 2019.

A. Kazikova, M. Pluhacek, and R. Senkerik, “How does the number of
objective function evaluations impact our understanding of metaheuristics
behavior?” IEEE Access, vol. 9, pp. 44032-44048, 2021.

J. M. Tomczak and M. Zieba, ‘“Classification restricted Boltzmann
machine for comprehensible credit scoring model,” Expert Syst. Appl.,
vol. 42, no. 4, pp. 1789-1796, Mar. 2015.

S. Sharma, J. Henderson, and J. Ghosh, “CERTIFAI: Counterfactual
explanations for robustness, transparency, interpretability, and fairness of
artificial intelligence models,” 2019, arXiv:1905.07857.

A. Lucic, H. Oosterhuis, H. Haned, and M. de Rijke, “Actionable
interpretability through optimizable counterfactual explanations for tree
ensembles,” 2019, arXiv:1911.12199.

R. Poyiadzi, K. Sokol, R. Santos-Rodriguez, T. De Bie, and P. Flach,
“FACE: Feasible and actionable counterfactual explanations,” in Proc.
AAAI/ACM Conf. Al Ethics, Soc., Feb. 2020, pp. 344-350.

F. Yang, S. S. Alva, J. Chen, and X. Hu, ‘“Model-based counterfactual
synthesizer for interpretation,” 2021, arXiv:2106.08971.

S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations
without opening the black box: Automated decisions and the GDPR,”
Harvard J. Law Technol., vol. 31, no. 2, pp. 1-47, 2017.

XOLANI DASTILE received the Ph.D. degree
from the University of the Witwatersrand, Johan-
nesburg, South Africa, in 2023. He is a Senior
Machine Learning Specialist for a streaming
company in South Africa. Previously, he was
with major banks in South Africa under credit
risk departments as a Quantitative Analyst and
a Data Scientist. His research interests include
eXplainable Artificial Intelligence (XAI) and
causal inference.

TURGAY CELIK received the second Ph.D. degree
from the University of Warwick, Coventry, UK.,
in 2011. His research interests include com-
puter vision, (explainable) artificial intelligence,
(health) data science, data-driven optimal control,
and remote sensing. He is an Associate Editor of
BMC Medical Informatics and Decision Making,
IET ELL, IEEE Acckss, IEEE JOURNAL OF SELECTED
Topics IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING, and STVP (Springer).

VOLUME 12, 2024

