
Received 22 July 2024, accepted 6 August 2024, date of publication 9 August 2024, date of current version 2 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3441242

Massively High-Throughput Reinforcement
Learning for Classic Control on GPUs
XUAN SHA 1,2 AND TIAN LAN 3
1School of Civil and Transportation Engineering, Southeast University Chengxian College, Nanjing, Jiangsu 210088, China
2College of Mechanics and Engineering Science, Hohai University, Nanjing, Jiangsu 211100, China
3Salesforce AI Research, Palo Alto, CA 94301, USA

Corresponding authors: Xuan Sha (x.sha@foxmail.com) and Tian Lan (tian.lan@salesforce.com)

This work was supported in part by the Research and Development Fund for Young Teachers of Southeast University Chengxian College
under Grant Z0057, and in part by Jiangsu Provincial University Philosophy and Social Science Research Project under Grant
2022SJYB0707.

ABSTRACT This study presents a novel massively high-throughput reinforcement learning (RL) framework
specifically designed for addressing classic control problems, leveraging our proposed architecture and
algorithms optimized for efficient concurrent computations on GPUs. Our research demonstrates the
effectiveness of our methods in efficiently training RL agents across various classic control problems,
encompassing both discrete and continuous domains, while achieving rapid and stable performance up to
10K concurrent environment instances. Furthermore, we observe that RL exploration with a large number
of parallel instances significantly enhances the stability of updating a shared model. For instance, we show
that the stability of Deep Deterministic Policy Gradient (DDPG) training can be achieved without requiring
experience replay, as evidenced in our study.

INDEX TERMS Classic control, GPU acceleration, high-throughput, reinforcement learning.

I. INTRODUCTION
In the vast landscape of artificial intelligence (AI), reinforce-
ment learning (RL) stands as a fundamental approach to
learning and decision-making in dynamic environments [1].
Rooted in the principles of trial-and-error learning and
operant conditioning, RL algorithms enable agents to
adapt and improve their decision-making strategies over
time. By formulating learning as a sequential decision-
making process, reinforcement learning agents learn from
experience and adapt their behavior to achieve desired
outcomes. Through techniques such as value iteration, policy
improvement, and deep neural networks, RL algorithms can
tackle complex problems spanning from gaming, robotics,
and unmanned aerial vehicle to economics and scientific
research [2], [3], [4], [5], [6], [7], [8], [9], [10].

Recent advancements in RL have brought about a
resurgence of interest in the intersection between AI and
classical mechanics. Researchers have begun exploring how
reinforcement learning algorithms can be applied to solve
problems in classical mechanics, such as optimal control
and trajectory planning [11], [12], [13], [14]. Classical

The associate editor coordinating the review of this manuscript and

approving it for publication was Jianxiang Xi .

mechanics, classic control, and RL represent interconnected
pillars in the fields of control theory and engineering.
Classical mechanics provides the foundational principles
governing the behavior of physical systems, including
principles of motion dynamics, force interactions, and energy
conservation. Classic control leverages these principles to
design deterministic controllers that regulate the behavior of
dynamic systems to achieve desired objectives. Meanwhile,
RL offers a data-driven approach to control, enabling
systems to learn optimal control policies directly from
experience through interaction with their environments. The
relationship between these disciplines is symbiotic: classical
mechanics provides the theoretical framework, classic control
offers rule-based strategies, and RL introduces adaptive
and intelligent techniques for control. Integrating RL with
classic control principles allows for the development of more
robust, adaptive, and intelligent control systems capable of
handling complex and nonlinear dynamics across a wide
range of applications, from robotics and autonomous vehicles
to industrial automation and beyond.

However, RL encounters challenges when applied to
classic control problems, including learning instability,
sample efficiency issues, difficulty in generalization and
exploration-exploitation trade-offs. For instance, in classic

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 117737

https://orcid.org/0009-0006-3301-4523
https://orcid.org/0009-0004-6857-6804
https://orcid.org/0000-0001-5056-5657


X. Sha, T. Lan: Massively High-Throughput RL for Classic Control on GPUs

control problems, RL agents may struggle to converge
to optimal policies due to the high dimensionality and
continuity of action spaces, as well as the sparse nature of
rewards [15], [16]. Moreover, the strong correlations often
present in trajectory sequences in classical mechanics, can
hinder effective policy exploration in RL [15]. Additionally,
RL algorithms typically demand extensive training data to
learn proficient policies, posing a significant challenge in
classical mechanics where data collection can be costly or
time-consuming. Enhancing sample efficiency is essential for
RL algorithms to effectively learn from limited interactions
with the environment.

Overcoming these challenges requires the development
of tailored algorithms and techniques that address the
specific characteristics of classic control domains, such as
improved exploration strategies, enhanced sample efficiency,
and robust generalization capabilities. By addressing these
challenges, we can tackle complex control and optimization
problems in classic control more effectively.

In this paper, we utilize a computational framework
specifically designed to achieve massively high-throughput
RL simulation, built upon the foundation of WarpDrive [17],
which is accessible at https://github.com/salesforce/warp-
drive. The high-throughput capability enables algorithmic
advancements across various policy gradient methods and has
exhibited considerable enhancements in training stability and
speed across diverse environments in classic control. This
enhancement facilitates more efficient exploration of optimal
policies and leads to improved convergence rates. Finally,
we explore future directions for high-throughput RL, which
have the potential to foster innovation and discovery in both
fields.

II. REINFORCEMENT LEARNING BACKGROUND
A. GENERAL METHODOLOGIES
We explore a reinforcement learning scenario where an agent
engages with an environment across discrete time steps.
At each time step t , the agent perceives a state st and
chooses an action at from a set of actions A based on its
policy π , where π is a mapping from states st to actions
at . In response, the agent transits to the next state st+1 and
receives a scalar reward rt . The process continues until the
agent reaches a terminal state, upon which it restarts. The
returnRt =

∑
∞

k=0 γ krt+k is the total discounted accumulated
reward from time step t with discount factor γ ∈ (0, 1]. The
goal of the agent is tomaximize the expected return from each
state st .
The action value Qπ (s, a) = E[Rt |st = s, a] represents

the expected return for selecting action a in state s and
following policy π . The optimal value function Q∗(s, a) =
maxπQπ (s, a) gives the maximum action value for state s and
action a attainable by any policy. Similarly, the value of state
s under policy π is defined as V π (s) = E[Rt |st = s] and is
the expected return following policy π from state s.
In value-based model-free reinforcement learning meth-

ods, let Q(s, a; θ ) be an action-value function approximator
with parameters θ . The updates to θ are derived from various

reinforcement learning algorithms. For instance, Q-learning
seeks to directly approximate the optimal action value
function: Q∗(s, a) ≈ Q(s, a; θ ). In one-step Q-learning,
the parameters θ of the action value function Q(s, a; θ )
are learned by iteratively minimizing a sequence of loss
functions, where the loss function is defined as Li(θi) =
E(r + γmaxQ(s′, a′; θg) − Q(s, a; θi)). Here s′ is the
state encountered after state s and θg represents the target
network in general. In practice, the target network Q(.; θg)
may differ from Q(.; θi) but is synchronized at specific
intervals.

Different from value-based methods, policy-based meth-
ods directly parameterize the policy π (a|s; θ ) and update
the parameters θ by performing gradient ascent on E[Rt ]
in the direction ∇θ logπ (at |st ; θ )Rt , which is an unbiased
estimate of ∇θE[Rt ]. To reduce the variance of this estimate
while maintaining unbiasedness, a learned function of the
state bt (st ), known as a baseline, is subtracted from the
return. The resulting gradient is∇θ logπ (at |st ; θ )(Rt−bt (st )).
Typically, the value function V (st ) is adopted as the baseline
and At (st ) = (Rt − V (st )) is referred to as the advantage At
at time step t .

B. SCALABLE REINFORCEMENT LEARNING
Scalable reinforcement learning (RL) systems commonly
incorporate distributed rollout and trainer workers. Rollout
workers execute the environment, generating rollouts by
employing actions sampled from policy models, which can
be situated on either rollout workers or trainer workers. Typi-
cally, rollout workers operate on CPUmachines, occasionally
utilizing GPU machines for more complex environments.
Trainer workers gather rollout data asynchronously from
rollout workers and iteratively optimize policies, utilizing
either CPU or GPU machines [18], [19], [20].

Although this distributed architecture is scalable, it incurs
high costs in worker communication and data transfer,
while individual machine utilization remains suboptimal.
This limits the throughput to the concurrency level of a
few dozen worker machines at most [15]. To enhance
performance, there are GPU- and TPU-based RL frameworks
available, albeit primarily focused on gaming or robotics
applications [17], [21], [22], [23], [24], [25]. Constructing
efficient RL pipelines and algorithms for control simulations
involving intricate agent interactions, significant data con-
sumption, and diverse environments remains a challenging
task.

III. COMPUTATIONAL ARCHITECTURE
Utilizing the WarpDrive architecture [17], [26], as depicted
in Fig. 1, we seamlessly execute the entire RL workflow
on a single GPU. This is facilitated by a unified data
storage system hosted within the GPU, catering to simulation
rollouts, action inference, reset, and training. By adopting
this approach, we minimize CPU-GPU data communication
and eliminate the need for additional data transfer within the
GPU. Consequently, we observe a significant reduction in
both simulation and training times.

117738 VOLUME 12, 2024



X. Sha, T. Lan: Massively High-Throughput RL for Classic Control on GPUs

FIGURE 1. A flow chart depicting our computational framework. Computations within this framework are organized into GPU
blocks, each comprising multiple threads to facilitate concurrent environment rollouts. Each thread is responsible for operating an
agent that samples actions and computes rewards. These blocks have access to the global GPU memory, which houses the RL
environment with local variations, and deep policy models. Additionally, they store in-place rollout data for training purposes. The
dashed brown boxes represent references (not copies) of the policy model objects and data placeholders managed by blocks and
hosted in the global memory. Users have the flexibility to compose and upload their custom environment setups to finalize the
environment construction.

Moreover, our framework achieves parallelization at a
low cost by concurrently running thousands of single-agent
or multi-agent simulations, leveraging the inherent parallel
processing capabilities of GPUs. Each environment instance
operates independently within a dedicated GPU block, with
individual agents running on unique GPU threads, facilitating
interactions across threads. Notably, this framework is
designed to be memory efficient. For example, each instance
maintains a reference (rather than a copy) to the environment,
incorporating local variations or random configurations. The
neural network models are shared references among all
instances and data tuples are updated in place in the global
memory. This significantly mitigates the storage overhead
associated with environment setup. These design choices
enable running thousands of concurrent simulations and
training on extremely large batches of experience.

Our framework also provides utility tools to simplify devel-
oping and running simulations on a GPU with light-weight
wrapper classes that work with the Python service and
environment modules. It enables automatic building of
gym-style environment objects and runs them on the GPU
using just a few lines of code [26]. As such, this framework
is flexible and accommodates environments with a wide
assortment of interactions, models, and learning algorithms.

This high-throughput, cost-effective architecture presents
distinct advantages, especially in classic control problems.
Such problems typically necessitate substantial data con-
sumption, involve complex agent interactions, and encom-
pass diverse environments. We have improved several RL
algorithms tailored specifically for classic control scenarios,
designed to take full advantage of this high-throughput
architecture running end-to-end on GPUs.

IV. HIGH-THROUGHPUT POLICY GRADIENT
ALGORITHMS
We now propose massively high-throughput variants of
advantage actor-critic (A2C) and deep deterministic policy
gradient (DDPG) leveraging unified data storage hosted

within the GPU and the inherent concurrent processing
capability of GPU.

A. HIGH-THROUGHPUT A2C
Outlined in the pseudocode provided in Algorithm 1, similar
to A2C [15], high-throughput A2C (HA2C) maintains a glob-
ally shared policy π(a|s; θp) and an estimated value function
V (s; θv). These functions are updated after every B steps on
N concurrent environment replicas, with updates performed
using the policy gradient∇θp logπ (A|O; θp)(Ret−V (O; θv)),
where Ret denotes the accumulated return from the initial
to the terminal state. Notably, in HA2C, observations O and
actions A are represented in high-dimensional batches with
the outermost shape of [B,N ], thus denoted by capital letters.
It is important to highlight the key distinctions between

HA2C and conventional A2C. Firstly, all computations and
data are contained within the GPU device, eliminating
the need for CPU-GPU data transfer and communication.
Secondly, as illustrated in Line 16 of Algorithm 1, rollouts
of observations, actions, and rewards are concurrently
collected by individual environment instances and are directly
saved in-place to the corresponding data batches with
dimensions matching those of the environment instances.
Thirdly, as demonstrated in Line 25 of Algorithm 1, each
individual environment instance resets independently without
affecting the trajectory updates of other environments. The
environment reset is executed by the EnvResetManager,
which generates local variations or random configurations
for the initial states of individual environment instances
independently.

B. HIGH-THROUGHPUT DDPG
Outlined in the pseudocode provided in Algorithm 2, High-
Throughput Deep Deterministic Policy Gradient (HDDPG),
akin to DDPG [12], learns a deterministic policy µ(s; θµ)
instead of a policy distribution. HDDPG maintains both
exploration and target networks. To enhance exploration,

VOLUME 12, 2024 117739



X. Sha, T. Lan: Massively High-Throughput RL for Classic Control on GPUs

Algorithm 1Massively High-Throughput Advantage Actor-Critic

1 Require
2 Concurrent RL environment replicas E1 to EN , hosted individually by N computational blocks of a GPU
3 end
4 Require
5 All execution are within the GPU device
6 end
7 Initialize
8 global: policy network π (a|s; θp) with weights θp and value network V (s; θv) with weights θv
9 global: environment resetting manager EnvResetManager
10 global: observation batch O, action batch A, reward batch R, done batch D with the shape [B,N , ∗] where B is the

batch size
11 global: shared counter T = 0
12 end
13 EnvResetManager .reset([E1,E2, . . .EN ]);
14 while T < Tmax do
15 reset dθp← 0 and dθv← 0;
16 Do In Parallel (E1 to En)
17 while t < B do
18 Perform at according to policy π (at |st ; θp);
19 Receive reward rt and new state st+1;
20 Ot [Ei]← st ;
21 Rt [Ei]← rt ;
22 At [Ei]← at ;
23 st ← st+1;
24 t ← t + 1;
25 if terminated or reaching maximum episode length for Ei then
26 Dt [Ei]← 1;
27 EnvResetManager .reset(Ei);
28 else
29 Dt [Ei]← 0;
30 end
31 end
32 end
33 Calculate the accumulated returns Ret from R and D;
34 dθp← dθp +∇θp logπ(A|O; θp)(Ret − V (O; θv));
35 dθv← dθv +∇θv (Ret − V (O; θv)

2
;

36 end

noise is added to the exploration policy µ. Additionally,
we incorporate N-step returns Retn, defined as rt + γ rt+1 +
. . .+γ n−1rt+n−1+γ nQ(sn, µ(sn; θµ)) to account for rewards
in multiple future steps, resulting in a more stable estimation
of future return. Furthermore, HDDPG performs soft updates
on the parameters using θ ← τθ + (1− τ )θ ′.

Apart from the inherent differences between our high-
throughput implementation and conventional methods
detailed in the previous section on HA2C, it’s important to
highlight a key distinction between HDDPG and DDPG.
Instead of employing an off-policy experience replay buffer
to stabilize the learning of the Q function, our proposed
HDDPG simply maintains an on-policy buffer to train the
current rollouts exclusively, as demonstrated in Lines 20 to 22
of Algorithm 2. Although this method can be extended to
off-policy learning by retaining more historical data, we find
that the on-policy buffer suffices for our studies due to

the vast number of concurrent environments, which provide
sufficiently diverse trajectories.

V. ENVIRONMENTS
We use the set of classic control environments proposed by
OpenAI Gym for assessing the capabilities and properties of
the proposed framework [27]. These environments provide
classic control scenarios that mimic real-world control
problems with well-defined state and action spaces, as well as
clear performance metrics. Therefore, they serve as standard-
ized and foundational testbeds for evaluating reinforcement
learning algorithms on classic control problems.

We reimplement the step functions of these environments
using Numba [28], a just-in-time compiler for Python code,
to convert them into CUDA kernels and device functions
following the CUDA execution model. The behaviors of
these environments are thoroughly validated for consistency

117740 VOLUME 12, 2024



X. Sha, T. Lan: Massively High-Throughput RL for Classic Control on GPUs

Algorithm 2Massively High-Throughput Deep Deterministic Policy Gradient

1 Require
2 Concurrent RL environment replicas E1 to EN , hosted individually by N computational blocks of a GPU
3 end
4 Require
5 All executions are within the GPU device
6 end
7 Initialize
8 global: critic network Q(s, a; θQ) and actor network µ(s; θµ), target critic Q′ and target actor µ′ with weights

θQ′ ← θQ, θµ′ ← θµ

9 global: environment resetting manager EnvResetManager
10 global: random noise generator RandomNoiseGenerator
11 global: observation buffer O, action buffer A, reward buffer R, done buffer D with the shape [B,N , ∗] where B is the

batch size. Here, O,A,R,D are FIFO.
12 global: shared counter T = 0
13 end
14 while T < Tmax do
15 reset dθp← 0 and dθv← 0;
16 Do In Parallel (E1 to En)
17 while t < B do
18 Perform at = µ(st ; θµ)+ noise;
19 Receive reward rt and new state st+1;
20 O[Ei]← st by FIFO;
21 R[Ei]← rt by FIFO;
22 A[Ei]← at by FIFO;
23 st ← st+1;
24 t ← t + 1;
25 if terminated for Ei then
26 D[Ei]← 1 by FIFO;
27 EnvResetManager .reset(Ei);
28 else
29 D[Ei]← 0 by FIFO;
30 end
31 end
32 end
33 Calculate the n-step returns Retn from R and D;
34 dθµ← dθµ +∇aQ(O, a; θQ)|a=µ(S)∇θµµ(S; θµ);
35 dθQ← dθQ +∇θQ (Retn − Q(O,A; θQ)2;
36 θQ′ ← τθQ + (1− τ )θQ′;
37 θµ′ ← τθµ + (1− τ )θµ′;

38 end

with the original Python implementation provided byOpenAI
Gym, available at https://github.com/openai/gym. Subse-
quently, these environments are loaded and integrated into
WarpDrive’s CUDA back-ends for use in RL simulations.
Additionally, we optimize the original Python step function
with an optimized NumPy implementation to establish a
fair CPU baseline. The following section provides a concise
overview of these environments.

A. CARTPOLE
Cartpole environment is a classic reinforcement learning
problem designed to test an agent’s ability to balance a pole
on a cart. In this environment, there is a cart that can move
along a frictionless track, and it must balance a pole that is

attached to it. The agent’s goal is to prevent the pole from
falling over by applying appropriate discrete actions (pushing
the cart left or right). The state of the environment is typically
represented by four variables: the cart’s position, velocity,
the angle of the pole, and the angular velocity of the pole.
The episode ends if the pole tilts beyond a certain angle or
if the cart moves too far from the center of the track. The
objective for the agent is to keep the pole balanced for as long
as possible, which is often measured by the number of time
steps it can maintain balance before the episode terminates.

B. ACROBOT
Acrobot is another classic reinforcement learning problem.
In this environment, there is a two-link pendulum system

VOLUME 12, 2024 117741



X. Sha, T. Lan: Massively High-Throughput RL for Classic Control on GPUs

FIGURE 2. Rollout and training throughput versus the number of parallel environments (log-log scale) to 100K concurrent environments with
random local initialization. The GPU simulation, running on a single Nvidia A100 GPU, scales throughput linearly for (a) Cartpole and Acrobot
environments and (b) Pendulum environment. In (a), the throughput exhibits negligible differences between Cartpole and Acrobot and the
presented value is an average over the two environments with a small relative standard deviation of 6 percent. For both (a) and (b), the CPU
simulation, running on a 16-CPU node, has significantly lower throughput and cannot scale to more than a few thousand environments.

FIGURE 3. The average episodic reward (the accumulated total reward collected
from the start to the terminal state) versus the training time (wall-clock
minutes) for (a) Cartpole and (b) Acrobot running at various concurrency levels.
For robustness, the depicted results are averaged over eight independent runs
from scratch with different initialization seeds and the same hyperparameters.
The shadow regions represent the error bars of eight independent runs.

known as the acrobot, which is attached to a fixed pivot point.
The goal for the agent is to swing the bottom link of the
acrobot up to a certain height by applying discrete torques to
the joint between the two links. The state of the environment
is typically represented by the angles and angular velocities
of the two links. The episode ends when either the top link
reaches a certain height or a maximum number of time steps

is reached. The objective for the agent is to learn a policy that
allows it to swing the bottom link up to the desired height
using as few torques as possible.

C. CONTINUOUS PENDULUM
Continuous Pendulum is designed to simulate a physical
pendulum. In this environment, there is a massless rod and

117742 VOLUME 12, 2024



X. Sha, T. Lan: Massively High-Throughput RL for Classic Control on GPUs

a point mass at the end. The pendulum is attached to a pivot
point and can swing freely in a two-dimensional plane. The
state of the environment is typically represented by the angle
of the pendulum relative to the vertical axis and its angular
velocity. The action space consists of continuous torques that
can be applied to the pendulum, allowing the agent to control
its movement. The goal for the agent is to learn a policy that
stabilizes the pendulum in an upright position by minimizing
the angle deviation from the vertical axis with as little torque
as possible.

VI. EXPERIMENTS
A. EFFICIENCY AND SCALABILITY
All experiments were conducted on a single Nvidia
A100 GPU, specifically the a2-highgpu-1g instance, hosted
on the Google Cloud Platform (GCP). Performance com-
parisons were made against a conventional distributed
architecture [15], running on a 16-CPU node at GCP,
specifically the n1-standard-16 instance. As depicted in
Fig. 2, our experiments achieved an impressive throughput
of approximately 80.4 million environment steps per second
and 34.3 million total (environment rollout + training) steps
per second with 100,000 concurrent environment instances.
While all three environments exhibit small differences for
the throughput of environment rollout, there is 20-30% drop
of the training throughput in Pendulum. This is primarily
due to the more complex training algorithm of HDDPG, for
example, the dual model updates between the target network
and the on-policy network.

With 10 concurrent environment instances, our framework
exhibited a throughput of approximately 17K environment
steps per second, comparable to that of a conventional
distributed system. However, such distributed systems can
barely scale to a few thousand environment instances
and suffer from serious throughput saturation. In contrast,
our framework’s performance in all our classic control
environments scales linearly up to 100,000 environment
instances with a single GPU. This scalability underscores the
efficiency of our framework in classic control environments,
showcasing near-perfect parallelism and indicating minimal
data transfer and communication costs. This insight high-
lights the robustness and effectiveness of our approach in
handling large-scale RL simulations with high throughput.

B. LEARNING SPEED AND STABILITY
We study the convergence speed of our framework as a
function of the number of environment replicas running in
parallel. The data reveal that, under consistent fixed hyperpa-
rameters, the simulations operating with an increased number
of concurrent environments attain global convergence faster
and more stably.

For Cartpole and Acrobot simulations with discrete action
spaces, we employed the proposed HA2C algorithm across
various levels of concurrency, ranging from 10 to 10,000
environment instances. As depicted in Fig. 3, with 10,000
Cartpole and Acrobot environment replicas, we observed
attainment of the global optimum within 30 and 5 minutes,

FIGURE 4. The average episodic reward (the accumulated total reward
collected from the start to the terminal state) versus the training time
(wall-clock minutes) for Continuous Pendulum running at various
concurrency levels and N-step returns (N=1 or 5). For robustness, the
depicted results are averaged over eight independent runs from scratch
with different initialization seeds and the same hyperparameters. The
shadow regions represent the error bars of eight independent runs.

respectively. In contrast, using only 10 environment replicas
resulted in insufficient convergence within such a short
timeframe. Notably, the convergence variance, as indicated
by the error bars over eight independent runs, noticeably
decreased with higher concurrency levels, suggesting signif-
icantly enhanced robustness with increased throughput.

For the Pendulum environment, which utilizes a continu-
ous action space, we applied the proposed on-policy HDDPG
algorithm without an experience buffer across various levels
of concurrency, ranging from 1 to 10,000 environment
replicas. As depicted in Fig. 4, with 10,000 environment
replicas and 5-step returns, the agent reached the global
optimum within 8 minutes. Conversely, lower throughput
resulted in insufficient convergence and increased variance.
It is worth noting that N-step returns, which incorporate
rewards from more future steps, tend to stabilize the training
process, as evidenced by the comparison of convergence
trends between 5-step and 1-step returns for the same number
of environment instances.

VII. CONCLUSION
We have introduced a massively high-throughput RL study
for classic control problems, harnessing highly efficient
concurrent computations through our proposed architecture
and algorithms executed on GPUs. Our findings demonstrate
that our methods can efficiently train RL agents across a
range of classic control problems, spanning both discrete and
continuous domains, achieving fast and stable performance.
Notably, our approach surpasses the current state-of-the-art
methods with significantly less training time and increased
robustness. Additionally, we observed that RL exploration
with a large scale of parallel instances has a remarkable
stabilizing effect on updating a shared model. For instance,
stable DDPG is achievable without the need for experience
replay, as demonstrated in this study.

Overall, our aim is to contribute to the democratization
of high-performance RL systems and drive advancements in
classic control problems. We hope that our study encourages
leveraging high-throughput GPU simulations and inspires
further efforts to extend and integrate our methods with other

VOLUME 12, 2024 117743



X. Sha, T. Lan: Massively High-Throughput RL for Classic Control on GPUs

tools for rapidly constructing simulations tailored for classic
control workflows on GPUs or other accelerators.

VIII. FUTURE WORK
As high-throughput RL continues to evolve, there are
several promising avenues for future research in the realm
of classic control. One direction is the exploration of
more complex and dynamic environments that better mimic
real-world scenarios, such as autonomous vehicle control.
These environments present unique challenges, including
high-dimensional state and action spaces, as well as intri-
cate dynamics that require sophisticated control strategies.
Furthermore, investigating the transferability of learned
policies across different environments and tasks could lead to
more versatile and generalizable control algorithms. Finally,
exploring the integration of domain knowledge and physical
principles into RL algorithms could provide valuable insights
into the design of more efficient and robust control strategies.
Overall, the future of high-throughput reinforcement learning
in classic control holds great promise for advancing our
understanding of intelligent control systems and accelerating
their practical applications.

REFERENCES
[1] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.

London, U.K.: Pearson, 2016.
[2] OpenAI. (2018). OpenAI Five. [Online]. Available: https://blog.

openai.com/openai-five/
[3] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,

J. Chung, D. H. Choi, R. Powell, T. Ewalds, and P. Georgiev, ‘‘Grandmaster
level in StarCraft II using multi-agent reinforcement learning,’’ Nature,
vol. 575, no. 7782, pp. 350–354, 2019.

[4] S. Gu, E. Holly, T. Lillicrap, and S. Levine, ‘‘Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 3389–3396.

[5] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine, ‘‘How
to train your robot with deep reinforcement learning: Lessons we have
learned,’’ Int. J. Robot. Res., vol. 40, nos. 4–5, pp. 698–721, Jan. 2021,
doi: 10.1177/0278364920987859.

[6] X. Wang, Y. Wang, X. Su, L. Wang, C. Lu, H. Peng, and J. Liu, ‘‘Deep
reinforcement learning-based air combat maneuver decision-making:
Literature review, implementation tutorial and future direction,’’ Artif.
Intell. Rev., vol. 57, no. 1, p. 1, Jan. 2024.

[7] S. Zheng, A. Trott, S. Srinivasa, D. C. Parkes, and R. Socher, ‘‘The
AI economist: Taxation policy design via two-level deep multiagent
reinforcement learning,’’ Sci. Adv., vol. 8, no. 18, p. eabk2607, May 2022.

[8] A. Trott, S. Srinivasa, D. van derWal, S. Haneuse, and S. Zheng, ‘‘Building
a foundation for data-driven, interpretable, and robust policy design using
the AI economist,’’ 2021, arXiv:2108.02904.

[9] T. Lan and Q. An, ‘‘Discovering catalytic reaction networks using
deep reinforcement learning from first-principles,’’ J. Amer. Chem. Soc.,
vol. 143, no. 40, pp. 16804–16812, Oct. 2021. [Online]. Available:
https://pubs.acs.org/doi/abs/10.1021/jacs.1c08794

[10] J. Nousiainen, C. Rajani, M. Kasper, T. Helin, S. Y. Haffert, C. Vérinaud,
J. R. Males, K. Van Gorkom, L. M. Close, J. D. Long, A. D. Hedglen,
O. Guyon, L. Schatz, M. Kautz, J. Lumbres, A. Rodack, J. M. Knight,
and K. Miller, ‘‘Toward on-sky adaptive optics control using reinforce-
ment learning-model-based policy optimization for adaptive optics,’’
Astron. Astrophys., vol. 664, p. A71, Aug. 2022, doi: 10.1051/0004-
6361/202243311.

[11] E. Todorov, T. Erez, and Y. Tassa, ‘‘MuJoCo: A physics engine for model-
based control,’’ inProc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012,
pp. 5026–5033.

[12] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
2015, arXiv:1509.02971.

[13] K. R. Williams, R. Schlossman, D. Whitten, J. Ingram, S. Musuvathy,
J. Pagan, K. A. Williams, S. Green, A. Patel, A. Mazumdar, and J. Parish,
‘‘Trajectory planning with deep reinforcement learning in high-level action
spaces,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 3, pp. 1–16,
Jun. 2023, doi: 10.1109/TAES.2022.3218496.

[14] J. Rabault, F. Ren, W. Zhang, H. Tang, and H. Xu, ‘‘Deep reinforcement
learning in fluid mechanics: A promising method for both active flow
control and shape optimization,’’ 2020, arXiv:2001.02464.

[15] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, ‘‘Asynchronous methods for deep
reinforcement learning,’’ 2016, arXiv:1602.01783.

[16] K. Zhang, A. Koppel, H. Zhu, and T. Başar, ‘‘Global convergence of
policy gradient methods to (almost) locally optimal policies,’’ 2019,
arXiv:1906.08383.

[17] T. Lan, S. Srinivasa, H. Wang, and S. Zheng, ‘‘WarpDrive: Fast
end-to-end deep multi-agent reinforcement learning on a GPU,’’
J. Mach. Learn. Res., vol. 23, no. 316, pp. 1–6, 2022. [Online]. Available:
http://jmlr.org/papers/v23/22-0185.html

[18] R. de Kock, O. Mahjoub, S. Abramowitz, W. Khlifi, C. R. Tilbury,
C. Formanek, A. Smit, and A. Pretorius, ‘‘Mava: A research library
for distributed multi-agent reinforcement learning in JAX,’’ 2021,
arXiv:2107.01460.

[19] M. W. Hoffman et al., ‘‘Acme: A research framework for distributed
reinforcement learning,’’ 2020, arXiv:2006.00979.

[20] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu,
‘‘IMPALA: Scalable distributed deep-RL with importance weighted actor-
learner architectures,’’ 2018, arXiv:1802.01561.

[21] Y. Tang, Y. Tian, and D. Ha. (2022). EvoJAX: Hardware-Accelerated
Neuroevolution. [Online]. Available: https://github.com/google/evojax

[22] M. Hessel, M. Kroiss, A. Clark, I. Kemaev, J. Quan, T. Keck, F. Viola,
and H. van Hasselt, ‘‘Podracer architectures for scalable reinforcement
learning,’’ 2021, arXiv:2104.06272.

[23] S. Dalton, I. Frosio, andM. Garland, ‘‘Accelerating reinforcement learning
through GPU Atari emulation,’’ 2019, arXiv:1907.08467.

[24] C. Daniel Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and
O. Bachem, ‘‘Brax—A differentiable physics engine for large scale rigid
body simulation,’’ 2021, arXiv:2106.13281.

[25] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, ‘‘Isaac gym:
High performance GPU-based physics simulation for robot learning,’’
2021, arXiv:2108.10470.

[26] T. Lan, S. Srinivasa, H. Wang, and S. Zheng, ‘‘WarpDrive: Extremely fast
end-to-end deep multi-agent reinforcement learning on a GPU,’’ 2021,
arXiv:2108.13976.

[27] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540.

[28] S. K. Lam, A. Pitrou, and S. Seibert, ‘‘Numba: A LLVM-based Python
JIT compiler,’’ in Proc. 2nd Workshop LLVM Compiler Infrastruct. HPC,
Nov. 2015, pp. 1–6.

XUAN SHA received the M.S. degree in architec-
ture and civil engineering from Jiangsu University,
Zhenjiang, China, in 2016. She is currently pursu-
ing the Ph.D. degree in mechanics with the College
of Mechanics and Engineering Science, Hohai
University, Nanjing, China. In 2016, she began
teaching with the School of Civil Engineering and
Transportation, Southeast University Chengxian
College, where she is a Lecturer. Her research
interests include dynamics and optimal controls.

TIAN LAN received the Ph.D. degree in applied
physics (electrical engineering) from California
Institute of Technology, Pasadena, USA, in 2014.
He is currently a Lead Research Scientist with
Salesforce AI Research. He has extensive experi-
ence building up large-scale andmassively parallel
computational simulation platforms for academia,
automated trading, and high-tech industry.

117744 VOLUME 12, 2024

http://dx.doi.org/10.1177/0278364920987859
http://dx.doi.org/10.1051/0004-6361/202243311
http://dx.doi.org/10.1051/0004-6361/202243311
http://dx.doi.org/10.1109/TAES.2022.3218496

