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ABSTRACT The automatic load frequency control (ALFC) is designed based on integral sliding mode
control (ISMC) without reaching time for a multi-time delay power system (MTDPS) with the system
disturbances and uncertainties. In contrast with a recent method, the time delay of an area control error (ACE)
signal and an interconnected signal are deliberated for the ALFC design in the MTDPS. The sliding mode
is proposed with a selection of an integral single-phase surface and control rules such that the sliding state
variables begin at the surface at the initial moment and converge to zero without reaching time. In addition,
Lyapunov-based new linearmatrix inequality (LMI) is applied to analyze the entire power system’s frequency
steadiness. Moreover, the integral single-phase surface is advanced to improve the performance of the
MTDPS. Using the proposed new integral single-phase surface approach, undershoot/overshoot and settling
time were reduced compared to the recent (ISMC) approach. The results show the new scheme is highly
robust in sliding variable’s fast convergence to zero asymptotical compared to the recently designed SMC.
It has no significant interruption in operation, making its application in real power systems possible.

INDEX TERMS Automatic load frequency control (ALFC), multi-area power system (MAPS), integral
sliding mode control (ISMC), multi-time delay power system (MTDPS).

I. INTRODUCTION
Automatic load frequency control (ALFC) has made a
multi-time delay power system (MTDPS) reliable. Load
frequency control (LFC) or automatic load frequency con-
trol plays the automatic generation control (AGC) role in
maintaining the generation load balance by keeping power
network area control error (ACE) stable. However, high fre-
quency transient caused by variousMTDPS problems such as
higher order systems, a large number of state variables, non-
linearities, system parametric uncertainties, communication
delays, random load disturbances, interconnection problems,
etc., can undermine the efficacy of LFC for the MTDPS.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Chen .

Over time, control engineers have developed different LFC
schemes to stabilize the MTDPS under transient and various
conditions. The common industrial one was the proportional-
integral-derivative (PID) technique discussed in [1]. Another
approach was decentralized LFC-based PID tuning to stabi-
lize the interconnected power system (PS) given in [2]. The
PID control scheme was also introduced to a stabilized PS
with nonlinearities [3], [4]. Once more, the PID-based LFC
has been applied for the PS with parametric uncertainties [5],
[6]. In studies, the PID tuning to determine appropriate gain
to stabilize PS transient is usually time-consuming and results
in high overshoots if not properly tuned. Therefore, intelli-
gent (fuzzy and neural network) control was established to
improve PID tuning. Fuzzy logic is widely applied to tune
the PID controller parameters [7]. Also, the fuzzy H-infinity
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iterative learning approach for LFC of the PS has been dis-
cussed in [8]. In intelligent control design, fuzzy set decisions
and neural network hidden layers should be accurate. How-
ever, these are difficult to formulate and applicable for the
ALFC of the MTDPS.

Meanwhile, a superior technique combined with an intel-
ligent control design based on the PID approach was
developed. Various optimal schemes in combination with
fuzzy and neural network based PID were applied to improve
optimal searching and tuning for ALFC of the PS [9], [10],
[11], [12], [13], [14], [15]. Optimal approaches combined
with PID for ALFC of the PS were given in [16], [17], [18],
[19], and [20]. The above traditional control methods can
be put into operation in the ALFC of a small-scale system
with nominal parameters. However, these methods cannot
effectively handle complex ALFC problems in the MTDPS.
To solve the above problem, variable structure control (VSC)
based ALFCs are used nowadays for more complex power
systems. The main mode of VSC is the sliding mode control
(SMC). The SMC is applied to have the advantages of its
insensitivity and robustness against numerous system prob-
lems, such as matched uncertainties and load disturbances.
The SMC has been applied for the ACE solution of ALFC in
the PS given in [21], [22], [23], and [24]. Adaptive approaches
were combined with SMC to achieve good PS transient
response [25], [26], [27], [28]. Also, some authors have
applied an SMC based disturbance observer to stabilize the
PS [21], [29], [30]. The SMC based state estimator for ALFC
of the PSwas given in [31] and [32]. However, the approaches
above acted under the first order SMC, but the first-order
SMC suffered from the chattering. This was due to neglected
un-modelled dynamics, which caused harmonics and low
control accuracies. Therefore, a higher-order SMC based
ALFC was developed to solve the above problems. Chatter-
ing was eliminated in the SMC by using the second order
given in [33]. An adaptive second-order SMC was applied
to eliminate chattering caused by parametric uncertainties in
the system state matrix discussed in [34]. The higher-order
SMC based disturbance observer was introduced for ALFC
of the PS [35]. The above approaches achieved the stability
of ACE in the PS. However, during the PS operation, there is
sometimes anACE time delay in the closed-loop communica-
tion link. This is a result of communication delay. Therefore,
the ALFC for the PS needs proper investigations under com-
munication delay. However, the above higher order-SMC
schemes are limited in practical application because of no
time delay consideration. Fractional proportional-integral
based ALFC was applied to stabilize the single area time
delay power system (SATDPS) [36]. The SATDPS were
similar to micro-grids [36] which had no interconnection
system and interconnection signal delay. In [37], frequency
control of micro-grid under power dynamic and communica-
tion uncertainty was advanced. In [38], the intelligent energy
management method is applied for the voltage/frequency
(V/F) control of micro-grids, regarding power uncertainties
and communication delay. In [39], the energy management

platform is used for controlling the V/F of micro-grids index
in the presence of renewable energy sources and battery
energy storage system. The V/F control is the main challenge
in microgrid operation and control. As stated in [36], the
SATDPS is simple, while the stability analysis of MTDPS
is complex because of interconnection problem and time
delay in the interconnection signal. In addition, with the
development of PS, interconnection system and interconnec-
tion signal delay cannot be discounted and may reduce the
PS performance. Different from the above approaches, the
H-infinity scheme was used to study ALFC in the multi
areas PS with communication delay given in [40], [41], and
[42]. However, the PS uncertainty was not considered which
may affect the PS performance. Recently, the SMC was used
for ALFC of the PS with communication delay discussed
in [43], [44], [45], [46], and [47]. In [43], the PI switching
surface is selected for designing ALFC of two area PS with-
out parameter uncertainty consideration. The ALFC of PS
with parameter uncertainty consideration using PI switching
surface can be seen in [44]. In [45] and [46], proportional
switching function is designated for ALFC of PS with model
matched andmismatched non-linear disturbances. In [47], the
fractional-order PI sliding surface is developed for ALFC of
the PS with load disturbance. The ALFC problems in PS with
communication delay can be solved by the above methods via
the SMC approach. However, two limitations were presented.
First, the time delay in the interconnection signals was not
considered [40], [41], [42] which may lead to PS instability.
Second, the integral sliding surface in the approaches above
depends on reaching time [43], [44], [45], [46], [47] which
may degrade the PS performance. Therefore, these problems
are solved with the proposed ISMC without reaching a time
approach for the ALFC of MTDPS. The main benefits of
the proposed ISMC without reaching time for the ALFC of
MTDPS are presented below:

- The time delay of an ACE signal and an interconnected
signal are considered for ALFC design in MTDPS which is a
benefit for themodern PSwithmulti areas and interconnected
systems.

- This is the first time the ISMC without reaching time is
developed for ALFC of the MTDPS intending to improve the
control performance.

- The MTDPS performance is improved because of system
state trajectories in the slidingmode at the beginning time and
avoiding undesirable switching law.

- Simulation results show better frequency deviation, better
control performance in terms of short setting time, and a
miniature overshoot compared to recent results.

II. MATHEMATICAL MODEL OF MULTI-TIME DELAYS
POWER SYSTEMS
A multi-time delay power system (MTDPS) is modeled in
this partition. Figure 1 shows the block illustration of the ith

area of the MTDPS. The ith area MTDPS model is based on
a non-linear governor, a non-reheat steam chest turbine, and
a generator rate constraint. The ALFC ensures tie-line power
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FIGURE 1. ALFC model of the ith area of the MTDPS.

fluctuation and frequency deviation within the limited ranges.
Moreover, the multi time delay of ACE and interconnection
signal are considered and denoted as e−st .

1ḟi(t) = −
1
Tpi

1fi(t) +
KPi
Tpi

1Pmi(t) −
KPi
Tpi

1Pdi(t)

−
KPi

2πTpi

N∑
j=1,j̸=i

Ts,ij[1δi(t) − 1δj(t − τj)] (1)

1Ṗmi(t) = −
1
Tti

1Pmi(t) +
1
Tti

1Xgi(t) (2)

1Ẋgi(t) = −
1

TgiRi
1fi(t) −

1
Tgi

1Xgi(t)

−
1
Tgi

1Ei(t − τi) +
1
Tgi

ui(t) (3)

1Ėi(t) = KBiKEi1fi(t)

+
KEi
2π

N∑
j=1,j̸=i

Ts,ij[1δi(t) − 1δj(t − τj)] (4)

1δ̇i(t) = 2π 1fi(t) (5)

where i = 1 to N, and N are represented by the number of
areas. Ts,ij (i ̸= j) describes the coefficient of interconnected
tie-line between ith area and jth area, ui means the control
signal, 1fi(t) implies the frequency deviation of the area
with (i = 1,2. . . ), 1Pmi(t) describes the mechanical power,
1Xgi(t) denotes the position change of the governor valve,
1δi(t) and 1δj(t) mean the changes of rotor angle, 1Pdi(t)
denotes the external load disturbances of each area, Tgi shows
time constant of the nonlinear governor, Tti describes the
steam turbine time constant, Tpi indicates time constant in the
power network, KEi describes speed regulation coefficient,
Kpi implies power network gain, KBi indicates frequency bias
factor and Ri shows speed droop coefficient of area ith.

- 1Ei(t − τi) represents area control error time delay.
Next, to design the highly robust SMCwithout reaching time,
we represent the dynamic relations of equations (1) to (5) in
the state variable space form.

żi(t) = Aizi + Aidizidi + Biui +
N∑

j=1;j̸=i

Hijzjdj + Fi1Pdi(t)

(6)

where zi(t) =
[
1fi(t) 1Pmi(t) 1Xgi(t) 1Ei(t) 1δi(t)

]T
is the state variable, ui(t) is the control input, and
Ai,Bi,Di,Fi,Hij are the state space matrixes given in the
following.

Ai =



−1
TPi

KPi
TPi

0 0 −
KPi

2πTPi

N∑
j=1,j̸=i

Ts,ij

0 −
1
TTi

1
TTi

0 0
−

1
RiTGi

0 −
1
TGi

0 0

KBiKEi 0 0 0 KEi
2π

N∑
j=1,j̸=i

Ts,ij

2π 0 0 0 0



Bi =


0
0
1
TGi
0
0

 ; Fi =


−
KPi
TPi
0
0
0
0

 ;

Di =


0 0 0 0 0
0 0 0 0 0
0 0 0 −

1
TGi

0
0 0 0 0 0
0 0 0 0 0

 ;

Hij =



0 0 0 0 −
KPi

2πTPi

N∑
j=1,j̸=i

Ts,ij

0 0 0 0 0
0 0 0 0 0

0 0 0 0 KEi
2π

N∑
j=1,j̸=i

Ts,ij

0 0 0 0 0


If we consider the uncertainty in the form of the position

change of the governor valve, then the equation (6) is further
rewritten as

żi
= [Ai + 1Ai(zi, t)]zi + [Aidi + 1Aidi (zi, t − τi)]zidi

+ Biui(t) +

N∑
j=1;j̸=i

[Hij + 1Hij(zj, t − τj)]zjdj + Fi1Pdi(t)

= Aizi + Aidizidi + Biui +
N∑

j=1;j̸=i

Hijzjdj + wi(zi, t) (7)

where Ai,Aidi ,Bi,Hij represent the system matrices with
nominal value, 1Ai(zi, t), 1Hij(zj, t − τj), 1Aidi (zi, t − τi)
denote the parameter uncertainties and wi(zi, t) shows the
lumped uncertainty defined as

wi(zi, t) = 1Ai(zi, t)zi(t) + 1Aidi (zi, t − τi)]zidi

+

N∑
j=1;j̸=i

1Hij(zj, t − τj)]zjdj + Fi1Pdi(t) (8)

Before we continue, some assumptions and lemmas are
given during the design.

110054 VOLUME 12, 2024



D. H. Tuan et al.: Sliding Mode Without Reaching Phase Design for ALFC

Assumption 1: The combine uncertainties wi(zi, t) and the
differential of ẇi(zi, t) are bounded so that ∥wi(zi, t)∥ ≤ γi
and ∥ẇi(zi, t)∥ ≤ ∂i, where ∥.∥ is the matrix norm.
Lemma 1 ([33]): Let Z and T be actual matrices of the

right size. Then, the matrix inequality achieves, for any scalar
γ > 0,

ZTT + TTZ ≤ µZTZ + µ−1TTT.

Lemma 2 ([48]): If the matrix:[
O(z) 5(z)

5T (z) 4(z)

]
> 0

then 4(z) > 0, and O(z) − 5(z)4−1(z)5T (z) > 0 where
O(z) = OT (z), 4(z) = 4T (z), and 5(z) are affinitively
dependent on z.
Remark 1: The uncertainty consideration in this approach

includes PS parameter uncertainty, load disturbance, themulti
time delay of ACE and interconnection signal. This is a
benefit for real applications of a complex modern PS.

III. SLIDING MODE WITHOUT REACHING PHASE DESIGN
In practice, automatic load frequency control (ALFC) has the
attractiveness of robustness against various forms of perturba-
tion. In this regard, ALFC based integral sliding mode control
(ISMC) without reaching time is designed. The ISMC design
generally involves an arbitrary selection of sliding surfaces
and control switching law. Here, we select a single-phase
sliding surface so that sliding variables begin at the surface
at a given moment and ensure the ISMC does not depend
on reaching time. Thus, the integral single-phase surface is
represented as:

σi[zi(t)] = Eizi(t) −

t∫
0

Ei(Ai − BiTi)zi(τ )dτ

− Eizi(0)e−αit (9)

where Ei is a constant matrix, and Ei is constructed to warrant
that EiBi is an invertible matrix. Ti is the design matrix,
and matrix Ti is preferred by polar assignment so that the
eigenvalues of the matrix (Ai − BiTi) are constantly nega-
tive. The term Eizi(0)e−αit has been added which makes the
ISMCwithout reaching time. Next, we design the control law.
To begin, we differentiate the sliding surface σi[zi(t)] with
respect to time hence, we arrive at the equation below.

σ̇i[zi] = Ei[Aizi + Aidizidi + Biui +
N∑

j=1;j̸=i

Hijzjdj

+ wi(zi, t)] − Ei(Ai − BiTi)zi + αiEizi(0)e−αit

(10)

So, making σi[zi(t)] = σ̇i[zi(t)] = 0.
From the equation (10), ueqi (t) is the equivalent control

input, which is given as

ueqi (t) = −(EiBi)−1[EiAizi + EiAidizidi +
N∑

j=1;j̸=i

EiHijzjdj

+ Eiwi(zi, t) − Ei(Ai − BiTi)zi(t) + αiEizi(0)e−αit ]

(11)

Before we design the control law, we investigate the
MTDPS asymptotic stability in the sliding surface. To do that,
we substitute the value of ueqi into (7) and simplify as below:

żi = (Ai − BiTi)zi + [I − Bi(EiBi)−1Ei]Aidizidi

+

N∑
j=1;j̸=i

[I − Bi(EiBi)−1Ei]Hijzjdj

+ [I − Bi(EiBi)−1Ei]wi(zi, t)

− Bi(EiBi)−1EiαiEizi(0)e−αit

= (Ai − BiTi)zi + 8iAidizidi +
N∑

j=1;j̸=i

8iHijzjdj

+ 8iwi(zi, t) + 2izi(0)e−αit (12)

where8i = [I−Bi(EiBi)−1Ei] and2i = −Bi(EiBi)−1EiαiEi.
Next, we examine theMTDPS stability theoretically.We start
by representing the system state matrix as linear matrix
inequality (LMI) accompanied by a basic theorem.
Theorem 1: The MTDPS (12) is asymptotically stable if

and only if it embraces a symmetric positive matrix Qi (i =

1, 2, .. .N ), and positive scalars q, ϕi and βj such that the next
LMIs satisfy:

4i ATidi8
T
i Qi8iQi2i

8iAidi −π−1ξiQ
−1
i 00

8T
i Qi 0 −χi0

2T
i Qi0 0 -ζi

 < 0 (13)

where

4i = [(Ai − BiTi)TQi + Qi(Ai − BiTi)

+ κiQi +
N∑

j=1;j̸=i

π̂βjHT
ji 8

T
j Qj8jHji].

Since the system with the LMI is a differential equation,
to investigate the stability of the MTDPS (12), we apply the
Lyapunov stability concept, where its function is given as

V =

N∑
i

zTi (t)Qizi(t) (14)

where Qi > 0 satisfies (13). If we acquire the first-time
derivative of (14) and simplify, we arrive at

V̇ =

N∑
i=1

{zTi (t)[(Ai − BiTi)TQi + Qi(Ai − BiTi)]zi(t)

+ zTidiA
T
idi8

T
i Qizi(t) + zTi (t)Qi8iAidizidi

+

N∑
j=1;j̸=i

zTjdjH
T
ij 8

T
i Qizi(t) +

N∑
j=1;j̸=i

zTi (t)Qi8iHijzjdj

+ wTi (zi, t)8
T
i Qizi(t) + zTi (t)Qi8iwi(zi, t)

+ e−αitzTi (0)2
T
i Qizi(t) + zTi (t)Qi2izi(0)e−αit } (15)
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When we apply Lemma 1 to the equation (15) and further
simplify, we obtain

V̇ ≤

N∑
i=1

{zTi (t)[(Ai − BiTi)TQi + Qi(Ai − BiTi)]zi(t)

+ zTidiA
T
idi8

T
i Qizi(t) + zTi (t)Qi8iAidizidi

+

N∑
j=1;j̸=i

zTjdjH
T
ij 8

T
i Qizi(t) +

N∑
j=1;j̸=i

zTi (t)Qi8iHijzjdj

+ χ−1
i zTi (t)Qi8i8

T
i Qizi(t) + χiwTi (zi, t)wi(zi, t)

+ ζ−1
i zTi (t)Qi2i2

T
i Qizi(t) + ζie−αitzTi (0)zi(0)e

−αit }

(16)

If we also apply Lemma 1 to the equation (16) and simplify,
we get

V̇

≤

N∑
i=1

{zTi (t)[(Ai − BiTi)TQi + Qi(Ai − BiTi)]zi(t)

+ ξ−1
i zTidiA

T
idi8

T
i Qi8iAidizidi + ξizTi (t)Qizi(t)

+

N∑
j=1;j̸=i

β−1
i zTi (t)Qizi(t) +

N∑
j=1;j̸=i

βizTjdjH
T
ij 8

T
i Qi8iHijzjdj

+ χ−1
i zTi (t)Qi8i8

T
i Qizi(t) + χiwTi (zi, t)wi(zi, t)

+ ζ−1
i zTi (t)Qi2i2

T
i Qizi(t) + ζie−αitzTi (0)zi(0)e

−αit }

(17)

Since
N∑
i=1

N∑
j=1,j̸=i

βizTjdjH
T
ij 8

T
i Qi8iHijzjdj

=

N∑
i=1

N∑
j=1,j̸=i

βjzTidiH
T
ji 8

T
j Qj8jHjizidi ,

then we rewrite (17) in the following

V̇ ≤

N∑
i=1

{zTi (t)[(Ai − BiTi)TQi + Qi(Ai − BiTi)]zi(t)

+ ξ−1
i zTidiA

T
idi8

T
i Qi8iAidizidi

+ ξizTi (t)Qizi(t) +

N∑
j=1;j̸=i

β−1
i zTi (t)Qizi(t)

+

N∑
j=1;j̸=i

βjzTidiH
T
ji 8

T
j Qj8jHjizidi

+ χ−1
i zTi (t)Qi8i8

T
i Qizi(t) + χiwTi (zi, t)wi(zi, t)

+ ζ−1
i zTi (t)Qi2i2

T
i Qizi(t) + ζie−αitzTi (0)zi(0)e

−αit }

(18)

The matrix ATidi8
T
i Qi8iAidi is semi-positive definite.

Since the state variable are zi(t) for i = 1, 2, . . . ,N
independent of each other.

Then, the following is true
V (z1d1 , z2d2 , z3d3 , . . . , zndn ) ≤ πV (z1, z2, z3, . . . , zn) (19)

for π > 1, is corresponding to

N∑
i=1

ξ−1
i zTidiA

T
idi8

T
i Qi8iAidizidi

≤ π

N∑
i=1

ξ−1
i zTi A

T
idi8

T
i Qi8iAidizi (20)

which implies that

N∑
i=1

N∑
j = 1
j ̸= i

βjzTidiH
T
ji 8

T
j Qj8jHjizidi

≤ π̂

N∑
i=1

N∑
j = 1
j ̸= i

βjzTi H
T
ji 8

T
j Qj8jHjizi (21)

where the scalar π̂ > 1 then, we can deduce the following
inequality.

V̇

≤

N∑
i=1

{zTi (t)[(Ai − BiTi)TQi + Qi(Ai − BiTi)]zi(t)

+ πξ−1
i zTi A

T
idi8

T
i Qi8iAidizi + ξizTi (t)Qizi(t)

+

N∑
j=1;j̸=i

β−1
i zTi (t)Qizi(t) +

N∑
j=1;j̸=i

π̂βjzTi H
T
ji 8

T
j Qj8jHjizi

+ χ−1
i zTi (t)Qi8i8

T
i Qizi(t) + χiwTi (zi, t)wi(zi, t)

+ ζ−1
i zTi (t)Qi2i2

T
i Qizi(t) + ζie−αitzTi (0)zi(0)e

−αit }

(22)

Based on Assumption 1, the next equation can be achieved

V̇ ≤

N∑
i=1

{zTi (t)[(Ai − BiTi)TQi + Qi(Ai − BiTi) + κiQi

+ χ−1
i Qi8i8

T
i Qi + πξ−1

i ATidi8
T
i Qi8iAidi

+ ζ−1
i Qi2i2

T
i Qi +

N∑
j=1;j̸=i

π̂βjHT
ji 8

T
j Qj8jHji]zi(t)

+ ϑi + ζie−αitzTi (0)zi(0)e
−αit } (23)

where ϑi = χiγ
2
i and κi = ξi +

N−1
βi

.
From Lemma 2 and LMI (13), we get

3i = −[(Ai − BiTi)TQi + Qi(Ai − BiTi) + κiQi

+ χ−1
i Qi8i8

T
i Qi + πξ−1

i ATidi8
T
i Qi8iAidi

+ ζ−1
i Qi2i2

T
i Qi +

N∑
j=1;j̸=i

π̂βjHT
ji 8

T
j Qj8jHji] > 0

(24)
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Based on equations (23) and (24), we can infer

V̇ [zi(t)] ≤

N∑
i=1

[−λmin(3i) ∥zi(t)∥2 + υi

+ ζie−αitzTi (0)zi(0)e
−αit ] (25)

where υi is the constant value and λmin(3i) > 0. The term
ζie−αitzTi (0)zi(0)e

−αit in equation (25) will converge to zero
as the time approaches infinity. So, V̇ < 0 is achieved with
∥zi(t)∥ >

√
υi

λmin(3i)
.

Consequently, the MTDPS (12) is asymptotically stable.
Remark 2: In the traditional SMC method, there are two

phases which are the reaching phase and sliding phase. First,
in the reaching phase, the switching control law is used to
force theMTDPS variables into the sliding surface σi[zi(t)] =

σ̇i[zi(t)] = 0 and remain on it thereafter. Second, the MTDPS
in the sliding mode dynamic has good performance with
the selection of the sliding surface. The integral sliding sur-

face σi[zi(t)] = Eizi(t)−
t∫
0
Ei(Ai − BiTi)zi(τ )dτ can be seen

in [43], [44], [45], [46], and [47]. The sliding surface is not
equal to zero at the beginning time so, it takes time to derive
the MTDPS variables into the sliding surface σi[zi(t)] =

σ̇i[zi(t)] = 0 . However, the proposed integral single-phase
surface given in equation (9) is equal to zero at the beginning
time so that all the system state variable of MTDPS is in the
sliding mode dynamic σi[zi(t)] = σ̇i[zi(t)] = 0 for all time
which improves the control performance.

IV. DECENTRALIZED SLIDING MODE WITHOUT
REACHING PHASE AUTOMATIC LOAD FREQUENCY
CONTROL DESIGN
Automatic load frequency control (ALFC) for local con-
trol areas of the MTDPS is usually done using two control
approaches: centralized and decentralized. Decentralized is
widely used due to its advantage i.e., each local area can
be controlled separately, and disturbance in one area will be
handled without affecting other areas. Therefore, the decen-
tralized sliding mode control using (9) and control law is
developed as

ui(t)

= −(EiBi)−1[∥Ei∥
∥∥Aidi∥∥ ∥∥zidi∥∥ +

N∑
j=1;j̸=i

∥∥Ej∥∥ ∥∥Hji∥∥ ∣∣zidi ∣∣
+ ∥Ei∥ γi + ∥Ei∥ ∥Bi∥ ∥Ti∥ ∥zi∥

+ αi ∥Ei∥ ∥zi(0)∥ e−αit + ε̄i]
σi[zi(t)]

∥σi[zi(t)]∥
(26)

The control law (26) ensures that all the state variables
are held in the all-time integral single phase sliding surface.
To justify this statement, we again theoretically analyze the
reachability of the sliding variables. We lay down a basic
theorem.
Theorem 2: We consider MTDPS (7) with the decentral-

ized ISMC in (26). Then, all solution orbits of the system state
are kept in the all-time integral single phase sliding surface.

We again apply Lyapunov theory, where the function
becomes

V̄ (t) =

N∑
i=1

∥σi[zi(t)]∥ (27)

Thus, by differentiating the equation V̄ (t) and simplifying
then, we arrive at

˙̄V

=

N∑
i=1

[
σ Ti [zi(t)]
∥σi[zi(t)]∥

σ̇i[zi(t)]] =

N∑
i=1

σ Ti [zi(t)]
∥σi[zi(t)]∥

× {Ei[Aizi + Aidizidi + Biui +
N∑

j=1;j̸=i

Hijzjdj

+ wi(zi, t)] − Ei(Ai − BiTi)zi + αiEizi(0)e−αit }

=

N∑
i=1

σ Ti [zi(t)]
∥σi[zi(t)]∥

{EiAidizidi + EiBiui +
N∑

j=1;j̸=i

EiHijzjdj

+ Eiwi(zi, t) + EiBiTizi + αiEizi(0)e−αit } (28)

From the equation (28) and inequality properties ∥AB∥ ≤

∥A∥ ∥B∥, one can infer

˙̄V ≤

N∑
i=1

[∥Ei∥
∥∥Aidi∥∥ ∥∥zidi∥∥ +

N∑
j=1;j̸=i

∥Ei∥
∥∥Hij∥∥ ∣∣zjdj ∣∣

+ ∥Ei∥ ∥wi(zi, t)∥ + ∥Ei∥ ∥Bi∥ ∥Ti∥ ∥zi∥

+ αi ∥Ei∥ ∥zi(0)∥ e−αit ] +

N∑
i=1

GTi [zi(t)]
∥Gi[zi(t)]∥

EiBiui(t)

(29)

Using Assumption 1 we achieve

˙̄V ≤

N∑
i=1

[∥Ei∥
∥∥Aidi∥∥ ∥∥zidi∥∥ +

N∑
j=1;j̸=i

∥∥Ej∥∥ ∥∥Hji∥∥ ∣∣zidi ∣∣
+ ∥Ei∥ γi + ∥Ei∥ ∥Bi∥ ∥Ti∥ ∥zi∥

+ αi ∥Ei∥ ∥zi(0)∥ e−αit ] +

N∑
i=1

σ Ti [zi(t)]
∥σi[zi(t)]∥

EiBiui(t)

(30)

Substituting the proposed control approach (26) into
equation (30)

˙̄V ≤

N∑
i=1

−ε̄i (31)

The above inequality conditions can infer that the system
state trajectories of the MTDPS (7) is in the single phase
sliding mode at the early time and remain in that mode
afterward.
Remark 3: The term Eizi(0)e−αit which is a function of

time indicates that the sliding variable’s reachability to the
surface does not depend on reaching time making it highly
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FIGURE 2. The system’s frequency deviation in Hertz.

robust in contradiction of other SMCs discussed in the liter-
ature.
Remark 4: The multi time delay may reduce the perfor-

mance of power systems or even worse lead to power system
instability. In contrast with the methods given in [44], [45],
[46], and [47], both the time delay of interconnection vari-
able and the time delay of the ACE signal are considered in
the proposed new ISMC without reaching time. This proved
that the proposed method can be applied for the more general
structure of the real MTDPS.

V. RESULTS AND DISCUSSIONS
This section, the proposed ISMC without reaching time is
applied for ALFC of a two areas multi time delay power
system (TAMTDPS). Four cases are given that examine
enhanced ALFC of the TAMTDPS under load change, uncer-
tainty, and parameter variation, and multi time delay. The
TAMTDPS parameters and bounded conditions used for all
four cases are shown in Tables 1 and 2 as given in [44].
All simulations are conducted in MATLAB® 8.3 (R2014a)
on a Laptop Dell, 2.20 GHz (2 CPUs) Intel® Core(TM)2
Duo CPU T6670, 4096 MB RAM and Windows
7 Home
Premium, 32-bit professional operating system.

Case 1: In case 1, the step load disturbances are provided as
1Pd1 = 0.01, and 1Pd2 = 0.02(p.u.MW). The multi time
delay is programmed for the ACE signal of the two areas as
τ1 = 3.8 (s) and τ2 = 3.8 (s) and the interconnected signal as
τ1 = 3.8 (s) and τ2 = 3.8 (s), following the same instructions
as [44], and the nominal TAMTDPS parameters are used.
Figure 2 displays the TAMTDPS ’s frequency deviations
(FDs) in Hertz, and Figure 3 shows the TAMTDPS ’s tie-line
power (TLP) per unit. In Figure 4, the TAMTDPS’s control
signal is also perceptible. The frequency overshoot deviation
(FOD) of area 1 and area 2 in Figure 2 are 0.00043 and
0.00062 in (Hz), respectively, which is a lesser value than the
one reported in [44].

FIGURE 3. Variation inTLP.

FIGURE 4. Control signal.

Remark 5: Based on the maximum frequency overshoots
(MFO), the proposed ISMC without reaching time is better in
improving the ALFC of the TAMTDPS.

Case 2: The TAMTDPS parameters and load conditions
are the same as case 1. The multi time delay is configured the
same for the ACE signal of the two areas, as τ1 = 5 (s) and
τ2 = 5 (s), and the interconnected signal as τ1 = 5 (s) and τ2 =

5 (s). The mismatches parameter is provided in the system
state matrix and the interconnectionmatrix as following1A1,
as shown at the bottom of the next page, and 1A2 = 1A3 =

1A1.
The mismatch between the subsystems is proposed below.

1H12 =


0 0 0 0 0.2cos(t)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −0.3 sin(t)
0 0 0 0 0
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TABLE 1. Parameters of TAMTDPS.

TABLE 2. Various bounded conditions.

FIGURE 5. The system’s frequency deviation in Hertz under mismatched
uncertainty.

and 1H12 = 1H23 = 1H31.
In Figure 5 and Figure 6, with the application of the

proposed ALFC based ISMC without reaching time, the
responses of FDs and the TLP come to a steady state after
small fluctuations, and the output signals of control scheme
in Figure 7 are close to usual operation state. In Figure 5, the
FOA is maintained at±0.0011Hz and damped to zero at 1.8s,
which denotes that the new approach performs better than the
one in [44].
Remark 6: Both Figure 5 and Figure 6 indicate that the

new approach is more robust in handling ALFC problems in
MTDPS.

Case 3: In this case, the various load disturbances are
presented in Figure 8, and the nominal system parameters
are varied to their lower bound, as indicated in Table 1. The
multi time delay is selected for the ACE signal of the two
areas as τ1 = 3 − 0.5 sin(t)(s) and τ2 = 4 + 0.5 cos(t)(s)

FIGURE 6. The TLP under mismatched uncertainty.

FIGURE 7. The system’s control signal when the uncertainty is
mismatched.

and the interconnected signal as τ1 = 3 − 0.5 sin(t)(s) and
τ2 = 4 + 0.5 cos(t)(s).

1A1 =


0 0.151f1 0 0 0

0.15 sin(t) 0 0 0 0
0 0 0.15 cos(t) 0.15 cos(t) 0
0 0 0 0 0.15 cos(t)

0.15 cos(t) 0 0 0 0
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FIGURE 8. Load variations.

FIGURE 9. Frequency deviation.

FIGURE 10. Deviation in tie-line power.

The results of the FD and the TLP, and control input are
shown in Figures 9, 10, and 11 respectively.
Remark 7: The TAMTDPS is considered under the multi

time delay, parameter uncertainty, random load disturbance.

FIGURE 11. Signal of control.

FIGURE 12. Frequency deviation.

Figure 9 and Figure 10 prove the new scheme is highly robust
and better performance in comparison with [44].

Case 4: In this case, the simulation load conditions are the
same as case 3with the upper bound parameter of TAMTDPS.

The dynamic responses of the FD, the TLP, and controller
of the TAMTDPS are illustrated in Figure 12, Figure 13,
and Figure 14 respectively. Compared with the LFC based
integral sliding mode control (ISMC) scheme with reaching
time [44], the proposed ALFC based ISMC without reaching
time scheme can actively compensate the perturbation caused
by multi time delay, parameter uncertainty in the state and
interconnection matrix, and load disturbance to ensure the
resilient and continuous operation of power system.
Remark 8: In the proposed ALFC based ISMC without

reaching time scheme, the FD, the TLP responses quickly con-
verge to stable state small steady-state control errors, which
shows the proposed ALFC based ISMCwithout reaching time
scheme can handle ALFC problems for the MTDPS more
effectively than other methods discussed in the literature.

Case 5: To show the effectiveness of the proposed method
in comparison with different control methodologies, the
proposed ALFC based integral single-phase sliding mode
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FIGURE 13. Deviation in tie-line power.

FIGURE 14. Signal of control.

FIGURE 15. Load variation.

control (ISPSMC) without reaching time scheme is applied
for MTDPS given in [47]. All the MTDPS parameters are
the same with [47]. The multi time delay is selected for the
ACE signal of the two areas as τ1 = 3 − 0.5 sin(t)(s) and
τ2 = 4 + 0.5 cos(t)(s) and the interconnected signal as τ1 =

FIGURE 16. Frequency deviation of the area 1.

FIGURE 17. Frequency deviation of the area 2.

3−0.5 sin(t)(s) and τ2 = 4+0.5 cos(t)(s). The load variation
and the FD are in Figure 15, Figure 16, and Figure 17, respec-
tively. From Figure 16 and Figure 17, it can be observed that
using the proposed ALFC based ISPSMC without reaching
time scheme for MTDPS, a smaller frequency overshoot than
the PID and ISMC approaches has been acquired.

The above simulations display that the proposed ALFC
based ISPSMC without reaching time scheme can not only
decrease the influence of load disturbances on the MTDPS,
but also guarantee fast response, smaller overshoot, and
stronger robustness of the MTDPS.

VI. CONCLUSION
In this paper, a decentralized ISMC without reaching time
approach has been proposed to stabilize the power system
with ACE time delay and interconnected time delay under
the ALFC scheme. Compared with the recent SMC based
AFLC, the proposed method is able to reduce the influence of
multi time delay, parameter uncertainty, and load disturbance.
Additionally, the MTDPS response has improved throughout
the simulation in terms of minor overshoots and quick settling
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times. This demonstrates that the new approach has strong
viability in the application. Hence, it can be concluded that
the proposed ISMC based ALFC scheme is not only robust
in the presence of mismatched uncertainties and load distur-
bances, but also can be successfully applied to the multi time
delay power system which will be beneficial to the electricity
market. Despite the multi-time delay, the cyber-attacks may
significantly influence the accuracy of the control system,
which drives us to investigate this topic in the future.
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