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ABSTRACT Nowadays, many chip manufacturers offer various Trusted Execution Environment (TEE)
implementations to protect the critical data and the algorithms in hardware. One of Intel’s answers to the
TEE race is SGX (Software Guard Extensions), which enables the creation of hardware-encrypted memory
areas known as enclaves. Although it promises a high-security level, it still requires expertise, effort, and
time to convert a traditional application into an SGX-enabled one. This paper proposes a novel approach
to generate enclaves from existing C/C++ applications automatically. Our strategy involves annotating the
sensitive code to be protected, which is then statically analyzed and modified to comply with all the SGX
requirements. Our approach does not require the user’s prior knowledge of the SGX platform. The framework
automatically identifies and implements all the required modifications of the target application source code
to make it compatible with the SGX toolchain. In addition, it is fast and can port big applications containing
hundreds of functions in mere minutes, as we proved experimentally.

INDEX TERMS SGX, software security, static analysis, TEE, usable security.

I. INTRODUCTION
In today’s digital landscape, preserving the confidentiality
of sensitive data is an increasingly critical concern. Storing
critical information in the local memory without any
protection, even for a minimal time, can pose a significant
risk. This approach may be dangerous, with the pervasive
use of third-party services that have opened up new routes
for attackers to steal private data. To avoid such perils,
the processes that manipulate sensitive data should do so
in a TEE (Trusted Execution Environment), a shielded
memory area, usually safeguarded by some hardware pro-
tection technique. Many manufacturers ship TEE-enabled
processors using technologies such as ARM’s TrustZone12

or AMD’s SEV3 (Secure Encrypted Virtualization). One of
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1https://www.arm.com/technologies/trustzone-for-cortex-a
2https://www.arm.com/technologies/trustzone-for-cortex-m
3https://www.amd.com/en/developer/sev.html

Intel’s answers to the ‘‘TEE-race’’ is SGX (Software Guard
eXtensions).4

The SGX technology allows a process to create TEEs
named enclaves, which are AES-encrypted memory areas.
The access to the enclaves is entirely transparent to the
legitimate process, but any unauthorized access will only
be able to get the encrypted data. This technology pro-
tects sensitive code and data written in the C and C++
programming languages. Open source project extends SGX
support for other programming languages, including Go5 and
Rust.6 It not only requires a compatible processor but also
needs the code to be correctly organized and designed. Any
SGX-enabled application code can be divided into two parts.
The trusted part contains the sensitive data and algorithms
to be safeguarded, while the untrusted part contains the
unprotected code.

4https://www.intel.com/content/www/us/en/products/docs/accelerator-
engines/software-guard-extensions.html

5https://github.com/edgelesssys/ego
6https://github.com/apache/incubator-teaclave-sgx-sdk
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Developing an SGX-enabled application from scratch or
porting an existing one is not trivial. First, the developer
must know the SGX architecture and its internal mechanics.
Then, the trusted part must be identified, and the code must
be modified to comply with all the Intel SGX requirements.
These requirements include managing the communication
between the trusted and untrusted parts, handling the
errors, and performing the I/O without compromising the
confidentiality of the data. These operations are complex
and expensive to carry out manually, particularly for large
projects, so an automatic conversion tool for pre-existing
applications is desirable.

Our approach and Proof of Concept (PoC) implementation
allow us to effortlessly transform a traditional application
into an SGX-enabled one without requiring the developer
to know the internal workings of the Intel technology. The
developer only has to annotate the sensitive information, and
our frameworkwill do the rest. Our tool will statically analyze
the code, modify it to create an enclave, and perform various
sanity checks to ensure that the confidentiality of the data
is not compromised. The scientific literature provides other
approaches for automatically adapting applications to employ
Intel SGX. However, to the best of our knowledge, our work
is the first to adopt a function-driven approach, which is
particularly suited to safeguard the Intellectual Property of
algorithms contained in software. We elaborate more on this
in Section V.

In summary, our main contributions include:
• a system that allows non-experts to easily enable
the support for SGX enclaves in traditional C/C++
applications by simply annotating the code areas to be
protected;

• introducing an automatic system able to statically
analyze an application and verify its conformity to
all the SGX requirements to avoid security issues and
information leakage.

This paper is structured as follows. Section II contains a
brief background on SGX and the static analysis tools used
in our framework. Section III is the core of this document
and describes in detail the internal workings of our tool.
Section IV illustrates the experimental results of testing our
system on different applications. Section V contains the
related works, and Section VI concludes this paper.

II. BACKGROUND
This section introduces the Intel SGX technology, its
limitations, and its vulnerabilities. In addition, we also briefly
describe the static code analysis tools that our framework
leverages.

A. INTEL SGX
Software Guard Extensions [1] (SGX) is a code protection
solution introduced in 2015 by Intel Corporation in several
processors to protect critical data and algorithms. SGX
allows an application to allocate private regions of memory
called enclaves. These memory areas are protected from

FIGURE 1. Workflow of a typical SGX application.

access even by processes running at higher privilege levels
by an encryption mechanism performed in hardware. The
Intel SGX architecture allows the allocation of multi-
ple enclaves for a single application. Dividing sensitive
parts of an application into smaller enclaves reduces the
attack surface and makes the code more manageable and
reusable.

Data protection is ensured by an AES encryption/de-
cryption mechanism transparent to legitimate applications.
SGX supports two ways to encrypt data in the enclaves: a
unique key for each enclave or a shared key for multiple
enclaves. On the other hand, data integrity is guaranteed by
computing and checking a truncated Wegman-Carter MAC
for every enclave. Although the Memory Encryption Engine
(MEE) circuit [2] performs the encryption and integrity
checks directly in hardware, these security mechanisms
still introduce a non-negligible time overhead. For this
reason, enclaves are recommended only for manipulating
sensitive information such as account credentials, banking
data, or medical records.

1) DEVELOPMENT
The developer wanting to convert a traditional application
into an SGX-enabled one by hand has several tasks to
perform. First, the developer has to register on the Intel
website and request a certificate to sign the SGX binary
later. Then, he has to write an EDL (Enclave Description
Language) file [3]. This file describes not only the enclaves
but also the function calls used by the untrusted code to
enter into an enclave (called ECalls) and the function calls
used by an enclave to pass data to the untrusted code (called
OCalls). Then, the developer must edit the C/C++ source
code to fulfill all the SGX requirements. These requirements
include, for instance, replacing all the calls to various
standard C functions (e.g., malloc) with their SGX equivalent.
Some functions and operations are prohibited in an enclave
(e.g., strcat ), so theymust be appropriately replaced. Finally,
the developer must run the Intel SGX SDK toolchain to
compile everything, and the result will be a binary containing
the untrusted code and a compiled dynamic library containing
the encrypted and signed enclave code.
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2) EXECUTION
When an SGX-enable application is launched, the untrusted
part executes first. When the first ECall is encountered, the
dynamic library is loaded into the memory, and the secure
code inside the enclave is run. If the enclaves contain some
OCalls, they are executed, temporarily switching the run-time
to the untrusted part. This flow is executed until the enclave
ends. Then, the untrusted execution can resume until the
next ECall or the program termination. Figure 1 depicts this
workflow.

3) LIMITATIONS
The Intel SGX must be enabled in BIOS/UEFI of a
compatible processor and supported by the operating system.
Although promising, this technology has many limitations,
such as:
• Power events (e.g., system sleep and hibernation) can
cause data loss in an enclave. If the event occurs during
the execution of the untrusted part, the application can
manage it as it seems most suitable. On the contrary, the
data loss will be completely unrecoverable if the event
arises during an ECall or OCall.

• The use of enclaves slows down performance due to
function calls and encryption/decryption processes. The
performance loss is mainly due to the context change
procedures for transitioning between the code inside and
outside the enclave.

• Function calls in an enclave have several limitations.
The Intel SGX SDK provides several ad-hoc redefined
libraries, exposing only some standard functions and
removing the unsafe ones (which cannot be used). I/O
interfaces and specific OS calls are not allowed, but
this can circumvented by using OCalls to user-defined
functions as a bridge between the protected and
non-standard library functions.

4) ATTACKS
The Intel architecture SGX is susceptible to a variety of
attacks. On the other hand, attackers can also use enclaves to
distribute more robust malware. Some threats related to this
technology include:
• Enclave call ordering [4]: An attacker can change
the ECalls’ order in an application’s untrusted part.
By altering such ordering, he can indirectly change
the data injected inside an enclave without directly
tampering with it.

• Enclave replay attacks [4]: An attacker can intercept
the data exchanged with an enclave and execute another
unexpected ECall using old messages as its parameters.
This allows the potential reuse of an enclave many times
if no countermeasures are put in place (e.g., using nonces
to validate the freshness of the ECalls).

• Iago [5]: These attacks are not directly related to
enclaves but can still be mounted against the untrusted
part of an SGX-enabled application. In a Iago attack

scenario, the kernel is malicious and returns a corrupted
value when a victim application executes a system call.
Enclaves cannot directly use system calls, but they can
use them indirectly via OCalls, allowing a tampered
kernel to taint an enclave.

• Prime+Probe [6]: In 2019, Schwarz et al. developed the
Prime+Probe attack using Intel SGX to hide a malware
that can recover RSA keys stored in other enclaves.
The attack first locates the processor cache portion
of the victim enclave. Then, it uses high-resolution
time measurements to create a partially recovered RSA
key. Multiple executions of these attacks allow the
full recovery of a private key. The attack managed to
extract 96% of a 4096-bit RSA private key with only
11 executions.

• SGXPectre [7]: Chen et al. have found that Spectre
attacks, adapted for enclave execution, can exploit
branch prediction to reconstruct the content of the
encrypted memory areas of an enclave. Most of the SGX
libraries are vulnerable to these types of attacks. Devel-
opers are advised to follow the Intel SGX guidelines to
reduce such risks [8].

• SGX ROP [9]: This attack uses Return-Oriented Pro-
gramming (ROP) to create dangerous unauthorized code
into an enclave that is then inadvertently executed by
the SGX-enabled application. This attack is hard to
detect since it starts in an encrypted memory region
and also to avoid since it completely bypasses ASLR
(Address Space Layout Randomization), stack canaries,
and address sanitization techniques.

• Dark ROP [10]: This attack exploits a memory cor-
ruption vulnerability in enclaves via ROP techniques.
The researchers showed that they could exfiltrate the
enclave’s code and data into a shadow application,
emulating a proper enclave. The shadow application is
under the complete control of the attacker and uses only
an enclave to perform some SGX-related operations,
such as reading the SGX cryptographic keys.

• SGX Bomb [11]: RowHammer is a family of attacks
exploiting unwanted side effects in DRAM cells to
corrupt a memory cell. SGX Bomb is a variation of
RowHammer targeting an enclave. It involves numerous
attempts to access random addresses of an enclave to
cause some bit flipping. This intentionally causes the
processor to activate its drop-and-lock policy, causing
the system to ignore the interrupts, thus initiating a
denial-of-service.

• Plundervolt [12]: is an attack compromising the
integrity of Intel SGX enclave computations based
on an undocumented Intel Core voltage scaling
interface. Plundervolt manipulates the processor’s
supply voltage during an enclave computation, induc-
ing predictable faults within the processor package
that can be used to recover cryptographic keys or
create memory vulnerabilities in an enclave code.
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Intel addressed the vulnerability through a microcode
update.7

B. SOURCE CODE ANALYSIS
Static code analysis is an automated procedure to analyze
source code without running the program, thus relying only
on parsing and analyzing the code. Our approach uses two
static analysis tools to analyze the C/C++ code to convert:
Ctags and Frama-C.

C. CTAGS
Ctags8 is a command-line tool that creates a summary file of
a source code file. This summary contains information about
the functions, variables, methods, classes, macros, and other
definitions. It supports various programming languages like
C, C++, Java, and Python.

We used this tool to find the functions to move into
enclaves, their signature, and their location in the source files.

D. FRAMA-C
Frama-C9 is an extensible framework for static code analysis
of C applications, available as a command-line tool or with
its graphical user interface. It has a plugin architecture that
enables developers to create new modules and extend its
functionality. The plugins work together in a pipeline to
analyze and, if needed, modify code.

In particular, we used Frama-C to compute the call
graph between the functions. The analysis is performed
syntactically and semantically by analyzing pointers and
estimating their values without running the application. This
approach can significantly enhance the accuracy of the call
graph without resorting to debugging the application under
test.

III. OUR APPROACH
This section presents our PoC framework, implementing our
approach for automatically protecting existing applications
leveraging SGX. As previously stated, the framework pro-
tects sensitive parts of code by moving them to a protected
memory area called an enclave. Its current iteration supports
automatic modification of source code written in the C
language to make it compatible with Intel SGX. The user
should only annotate in the source code the sensitive areas
of code that must be executed in an SGX enclave. The
framework is entirely written in Python 3.8.1 and employs
various external libraries, e.g. the static code analyzers Ctags
and Frama-C. The framework is compatible with both Linux
and Windows.

Following, we describe the workflow of our approach,
from the test application source code to the generation of the
SGX-protected application binaries. Figure 2 shows the main
phases of the workflow.

7https://www.intel.com/content/www/us/en/support/articles/000094219/
processors.html

8https://github.com/universal-ctags/ctags
9https://frama-c.com/

FIGURE 2. Workflow of our approach.

1) CODE ANNOTATION
Before executing the framework, the user must annotate the
target application code in order to mark the functions that
must be executed in SGX enclaves. These annotations contain
the information the framework needs to generate an EDL file
properly.

In particular, the user should mark the functions containing
ECall or OCall calls, indicating in the annotations how
parameters are passed in such calls. If the call parameters
include buffers, their size should also be defined in the
annotation following the EDL syntax. The latter is required
by the SGX implementation: buffers passed as arguments in
ECall or OCall calls are copied by SGX libraries to limit
the attack surface, averting attacks based on invalid pointer
dereferencing. Furthermore, buffer copying is needed when
passing buffers in OCall calls since data contained in the
buffer should be copied in an unencrypted memory area to
allow the callee function to read it. Alternatively, pointers can
be passed without changes.

The EDL syntax requires specifying how parameters are
passed for single pointers and static size arrays. The syntax,
abided also by our annotations, defines the following passing
methods:
• i: when the callee execution starts, the caller’s external
buffer is copied in a new buffer allocated in the callee’s
region;

• o: when the execution returns to the caller function,
the internal buffer of the callee is copied to the caller’s
external buffer;

• b: the caller’s external buffer is copied to the callee’s
internal buffer call, and when the execution returns to
the caller function, the callee internal buffer is copied
into the caller’s external buffer;

• u: performs no operations and passes the pointer to the
call.

For the u option, the user should specify only the argument
name using the following notation: [argumentname,
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u]. The other options require the user to specify another func-
tion parameter containing the buffer size, following the syn-
tax [argumentname, copy_option, size]. The
size parameter takes on a different meaning depending on
the pointed data type:
• if the pointer is of a defined type with computable size,
the parameter specifies the number of elements of the
vector;

• if the pointer has no type (e.g. void *), the parameter
indicates the buffer size in bytes.

Furthermore, the user should also declare in each annota-
tion the name of the wrapper function that will be stated in
the EDL file and will be automatically generated by the Intel
SDK. The framework will automatically change the calls to
ECall and OCall target functions in order to redirect them to
the SDK-generated wrappers.

Listing 1: Example of annotated functions.

Listing 1 shows an example of an ECall and OCall
annotations. In the first case, the function calc is marked by
the user as an entry point for an SGX enclave, i.e. is a target of
an ECall call from unprotected code. The annotation contains
the name of the wrapper function that the Intel SDK must
generate, i.e. sgx_ecall_calc, and the passing method
for each of the parameters of the ECall call. In this case, the
user does not need to indicate the size for the n parameter
since it is an array of fixed size. The size is instead indicated
for thelist parameter since it is a buffer passed by reference
with the i passing mode. The parameter buf is also a buffer,
but since the user has indicated the passing method u, where
no buffer copying is performed by SGX, it is not necessary
to indicate the size of this buffer. In the second case, the user
marks the function print_text as a target for an OCall
call. Since the text parameter is passed by reference, the
annotation also states that the i passing method shall be used
when calling the function, and the other parameter size
indicates the size in byte of the text parameter.

2) PROTECTED CODE GENERATION
After annotating the source files of the target application,
the user may execute the framework, which will analyze
the files and modify them to ensure their compliance with
SGX. Furthermore, the framework will generate the EDL file
according to the information declared by the user in the code
annotations. As described at the end of this section, the EDL
file must be given as input to the Intel SDK compiler to build
the protected application from the modified source code files.

The framework starts by parsing all the source files using
CTags and a set of regular expressions in order to build a
model of the application source code that will be leveraged
in the subsequent phases of the workflow. In particular, the
source model comprises:
• header information: included external libraries, type
definitions, structures, unions, and enumerations;

• global variables;
• for each function: return type, name, arguments, local
variables, and source code;

• ECall and OCall annotations with the related data;
• the application call graph, obtained via Frama-C.
The framework then analyzes the model in order to infer

the required modifications to the application source files.
The analysis is performed in the following steps. First,
the framework verifies that, as SGX requires, all caller
and callee functions of ECall and OCall calls have unique
names. Then, it identifies the code that should be moved
inside the enclave to safeguard the annotated functions.
In particular, this analysis is needed to avoid information
leaks due to calls from enclaves to unprotected code that
have not been properly marked as OCall calls. For each
function marked as an ECall target, the framework identifies
the minimum subset of functions that must be mandatorily
moved to the enclave. Minimizing the amount of code moved
to enclaves is important since, as discussed in Section IV-B,
SGX introduces a non-negligible computational overhead.
Algorithm 1 is used to identify the functions that must be
moved to the enclaves.

Figure 3 shows an example call graph of a target
application, with the functions that must be moved to a
SGX enclave highlighted in green. The algorithm starts
navigating the call graph from the function f e0 , targeted by
an ECall call. This function will be marked to be moved
to an enclave. Then, the algorithm will traverse the rest
of the call graph, marking all the encountered functions
(f3,f4,f5) for movement to the enclave. The call graph traversal
will stop when a function targeted by an OCall call is
found, such as function f o6 . As said before, the algorithm
can also find incoherent situations in the code structure that
may cause information leakage. For example, looking again
at the example in Figure 3, if function f1, which is not
marked for safe execution in the enclave, is called by both
function f o6 (executed outside the enclave) and function f4
(executed inside the enclave), the algorithm will stop, since
the untrusted function f1 may access privileged information
inside the enclave through the trusted function f4. In such
cases, the framework will return a message to the user with an
explanation of the error so that it can fix the code accordingly
(e.g. annotating f1 as an ECall target or removing the call
from f1 to f4).
The framework will then identify the external library

headers that should be included in the enclave code. Since
SGX requires to include in enclave code only the ad-hoc
redefined libraries described in Section II-A, the framework
will analyze the external calls in the code to include only the
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Algorithm 1 Call Graph Scanner
Input: the set of ECalls E , the set of OCalls O, and

the set of all the functions F
Output: the set of functions X and libraries L to

move into an enclave
1 X ← ∅
2 L ← ∅
3 foreach e ∈ E do
4 R← set of functions that can be reached starting

from e
5 seen← ∅
6 todo← ∅
7 todo← todo ∪ {e}
8 while todo ̸= ∅ do
9 now← any element in todo
10 now← todo∖ {now}
11 seen← seen ∪ {now}
12 if edge.source = now then
13 foreach edge ∈ R do
14 todo← todo ∪ {edge.dest}
15 end
16 end
17 todo = todo∖ seen
18 todo = todo∖ O
19 end
20 X ← X ∪ seen
21 G = seen∖ F
22 L ← L ∪ libraries defining the functions G
23 X = X ∖ G
24 return (X ,L)
25 end

FIGURE 3. Call graph example.

required SGX libraries. The framework will also check if the
user has mistakenly included calls to external functions in the
enclave code that are not included in the SGX-redefined ones.

Finally, the framework will generate the SGX-compliant
application code. First, the code for all the functions marked
as trusted is moved to a separate source file containing all
the enclave code. Then, the framework will add a wrapper
function in the untrusted code for each trusted function
targeted by an ECall call. The ECall calls in the untrusted
code will be modified to target the corresponding wrapper

function. These wrappers are needed to automatically handle
the additional parameters needed for SGX ECalls, e.g. the
buffer parameters passing modes and sizes indicated by
the user in the ECall annotations, and the trusted function
return value. The latter is used by SGX to signal runtime
errors when creating enclaves and executing the related code
and is automatically checked by the wrapper, aborting the
application execution in case of SGX errors. The framework
will then generate the EDL file using the information
contained in user annotations and, as a final step, will include
additional untrusted code to manage the enclave lifecycle
and verify the compatibility of the hardware running the
application with SGX.

3) BINARY COMPILATION
The protected binary can be generated using GNU make or
Microsoft Visual Studio. Intel SGX supports different oper-
ating modes for application execution: debug, pre-release,
release, and simulated. Both GNU make and Visual Studio
support these modes. However, Visual Studio generates the
necessary files for signing the enclave, making it easier for
the user to compile the program.

a: VISUAL STUDIO
Intel created a plugin for Visual Studio that simplifies
building solutions with Intel SGX. It allows the user to
add enclave files and, depending on the selected application
execution mode, specify the private key to sign the enclave
code. The result is a protected solution that can be imported
into aVisual Studio project. The user will only need to include
in the project the source files containing the untrusted code
and build the solution to obtain the protected binaries.

b: GNU MAKE
SGX applications can be compiled on Linux OS machines
using GNU make. Libraries and tools included in the Intel
SGX SDK are needed to compile the project. The framework
includes a user-configurable GNU makefile to guide the
user in compiling the application. The user should edit the
makefile to specify the desired application execution mode,
and, if needed, the RSA keypair that must be used to sign
the enclave. The makefile includes the calls to the Intel SGX
SDK tools used to compile and sign the enclave code.

A. LIMITATIONS
Following, we describe some limitations of our PoC frame-
work, which we plan to address in its future iterations.

a: EXTERNAL FUNCTION SUPPORT
Functions within an enclave can only call other functions in
the enclave or functions in SGX libraries. Calls to external
libraries are prohibited unless redefined in SGX libraries. The
conversion process checks for this and stops execution if any
external calls are made. Data passed to external functions is
not evaluated for sensitivity.
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b: STATIC VARIABLES
Global variables cannot be shared between the enclave and
untrusted code in SGX. Indeed, data handled in the enclave
must be protected and not readable from the outside: sharing
data between the two environments would make enclave data
protection pointless. However, it could be possible, in theory,
to automatically adapt the ECall/OCall calls to pass the global
variable value when needed.

c: INTEGER RETURN TYPE
Enclave entry and exit functions must return an integer value
because they are encapsulated in wrapper functions that
handle related errors. The community prefers passing values,
including return values, as pointer parameters to functions
for more secure execution. More information is available in
Section 2.2.2.

d: PARAMETERS
Enclave functions should use simple or user-defined types for
arguments. This makes it easier to find the needed structures.
Currently, only basic types like int, float, char, and void* are
allowed for ECall and OCall function arguments. More types
can be added by specifying them in a configuration file to
import the correct SGX library. See Appendix A.1.6 for all
allowed types.

e: ERRORS
The framework automatically generates protected code and
adds error-handling code to ensure consistency. Errors related
to hardware compatibility, enclave allocation/destruction,
and call errors are handled by printing a console message and
calling the exit function. Errors within the protected code are
handledwith the abort function. Special functions can be used
to handle errors, such as retrying a call or writing a log to a
file. The framework could be improved by adding an option to
reallocate the enclave and retry the call in case of suspension
errors.

f: ENCLAVE ALLOCATION
Enclave allocation is done once during the first call. Allowing
users to specify the creation time can help anticipate this
operation and stop the program when incompatible with
SGX. The framework doesn’t directly call code to destroy
the enclave, so an option to specify when to destroy it would
release resources when no longer needed. Otherwise, enclave
resources are only released at the end of the program.

IV. EXPERIMENTAL RESULTS
This section discusses the tests we conducted to evaluate
the performance of our PoC implementation. Table 1
reports the computer’s specifications we used to perform the
tests.

We computed the time needed to convert an application and
its execution overhead using the SGX technology.

TABLE 1. Specifications of our test platform.

FIGURE 4. Conversion times.

A. CONVERSION TIMES
To test our framework’s speed, we developed an ad-hoc
Python script to generate fully working C applications
with a fixed number of functions. Figure 4 reports various
C applications’ conversion times (in seconds) in multiple
applications with an increasing function count.

The analysis and final code generation are quite efficient
and linear in the number of functions. Faster performance can
be achieved by disabling the semantic analysis by Frama-c
and using only its syntactical version at the expense of a
potentially less accurate code examination.

B. EXECUTION OVERHEAD
The enhanced security of an SGX-enabled application comes
at a price: increased overhead. This behavior is shown in
Figure 5, where we show the original and SGX version
execution times of four different applications varying the
input sizes. We picked four different programs to conduct our
tests:
• bubble is a trivial bubble sort implementation in C
working on integer arrays;

• bcd is part of Debian’s bsdgames package 10 and
converts a string in an ASCII art representation of a
punched card;

• morse, also part of Debian’s bsdgames package, convert
a string into its Morse code representation;

• banner11 reads a string and prints it as a large ASCII art
banner on the screen.

As expected, the usage of enclaves introduces a significant
slowdown in the applications. The bigger the data used (i.e.
the array and string sizes), the slower the application is since
the MEE will have to encrypt/decrypt more bits.

It is also interesting to note that the bubble sort algorithm
has a quadratic complexity, while all the other applications
have a linear complexity (depending on the input size). Note

10https://packages.debian.org/buster/bsdgames
11https://packages.debian.org/buster/sysvbanner
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FIGURE 5. Execution times.

that introducing SGX does not alter this behavior; it just
makes the overall execution times significantly slower.

V. RELATED WORKS
Although SGX has been around for almost ten years,
the scientific community has seen very few tools for
(semi-)automatically deploying enclaves. This section will
briefly discuss some of the most interesting and complete
frameworks to enable SGX in existing applications.

Glamdring [4] is a framework that aims to protect C
language applications using Intel SGX. First, the developer
specifies which data is sensitive by annotating the variables
in the source code. Then, a static code analysis phase is
executed (via a technique known as backward slicing) to find
the lines of code and functions affected by the annotated
variables. Finally, Glamdring moves the affected functions
into an enclave to protect them and, indirectly, the chosen
variables. In addition, Glamdring also adds some new code
by implementing cryptographic operations when the data is
received and returned by the enclave. This approach protects
the enclave against attacks such as call ordering, Iago,
and replay (see Section II-A). The Glamdring project and
our framework are designed to automate the modifications
necessary to protect source code with Intel SGX technology;
however, they differ in a critical aspect. Glamdring uses a

data-driven approach (the developer specifies the variables
to protect by moving them inside an enclave), while
our approach is function-driven (the developer specifies
the code regions to move inside an enclave). According
to the application to port in the SGX world, one approach
or the other can be the best choice. Glamdring is more
appropriate to safeguard sensitive data, while our framework
is better suited to protect critical algorithms.

Enarx12 is an open-source framework that enables an
application to leverage a variety of TEEs without modifying
the source code. It supports Intel SGX for securing functions
via enclaves and AMD SEV (Secure Encrypted Virtual-
ization) for safeguarding entire virtual machines. When a
developer wants to create a TEE, he must convert its code
into WebAssembly (via an automatic tool) and invoke the
Enarx framework. TheWebAssembly formatmakes the TEEs
independent of the CPU architecture, although the significant
drawback is increased execution overhead. In addition to
confidentiality, Enarx also allows the integrity of the TEEs
to be checked via a remote attestation procedure.

Occlum [13]13 is an open-source Library Operating
System that lets legacy applications leverage the security of

12https://enarx.dev/
13https://occlum.io/
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SGX’s enclaves. To convert a traditional application with
Occlum, the developer has to feed the application source code
to the Occlum toolchain, based on the LLVMcompiler, which
generates an ELF binary compatible with the Occlum Library
Operating System. This differs from our approach, which
modifies the source code to make it compatible with the
standard Intel SGX toolchain. Furthermore, using Occlum,
the whole target application must be executed inside the
enclave. Instead, using our approach, the software developer
may freely choose the functions that must executed inside
the enclave (e.g. security-sensitive functions), potentially
limiting computational overhead.

SAPPX [14] is a method for automatically partitioning
Commercial Off-the-Shelf binaries to ensure that sensitive
operations are protected within an enclave while maintaining
program semantics. Differently from our source-to-source
approach, SAPPX takes as input the target application binary,
performs binary analysis to determine the appropriate execu-
tion location for different parts of the application (i.e., in user
space or within an enclave), and outputs the user binary and
the enclave library. The method encompasses dependency
analysis, taint analysis, and boundary adjustment to optimize
the partitioning process. Additionally, it carefully manages
functions incompatible with SGX or those incurring high
overhead. The authors tested their approach on OpenSSL,
the thttpd web server, and the SPECCPU 2017 benchmarking
suite, introducing an average performance overhead of 19%.

Montsalvat [15] is a practical approach for partitioning
Java applications to enable secure execution within Intel
SGX enclaves. Through the use of annotations, Montsalvat
divides Java applications into trusted and untrusted compo-
nents, facilitating secure and efficient execution. It utilizes
GraalVM native-image for ahead-of-time compilation to
ensure the inclusion of only necessary methods in the secure
enclave, effectively reducing the Trusted Computing Base
(TCB). Montsalvat addresses challenges such as inter-object
communication and synchronized garbage collection by
implementing an RMI-like mechanism and a dedicated
Garbage Collector helper. This approach ensures consistent
object management across the trusted and untrusted runtimes.
The implementation has been tested on LinkedIn’s PalDB 14

and GraphChi [16], boosting the performance respectively up
to 6.6 and 2.2 times, compared to running such applications
entirely within an enclave.

The study by Dreissig et al. [17] delves into compiler-level
tools for partitioning programs into trusted and untrusted
enclaves using Rust. It introduces Cadote, a solution that
automates SGX enclave generation from Rust programs.
Developers can mark functions as trusted, and these functions
are then executed within an enclave. Cadote leverages LLVM
compiler passes and Rust’s memory safety to securely
transfer function parameters across enclave boundaries.
It also supports SGX-compatible standard and third-party
libraries and enables trusted functions to utilize most of the

14https://github.com/linkedin/PalDB

Rust standard library. The authors evaluated this approach
using a set of microbenchmarks, with a particular focus on
assessing the effect of alternating ECalls and OCalls. They
utilized a recursive implementation of Euclid’s algorithm to
calculate the greatest common divisor as a test case, with the
worst-case scenario tests reporting a performance overhead
factor of 1700 times.

VI. CONCLUSION
This paper presents a new automatic protection solution
for Intel SGX technology. The technology allows for
secure code execution using enclaves, ensuring data and
algorithm confidentiality. Enclaves prevent other processes
from reading or modifying the code stored within them.
However, the developer wanting to create an SGX-enable
application from a traditional one has to be familiar with this
technology and potentially rewrite a significant portion of the
code, define the interface functions with the enclaves, and
appropriately handle the errors.

Our approach alleviates the developer’s burden by autom-
atizing most code conversion procedures. The developer has
to appropriately annotate the code, marking the functions
that need to be moved into an enclave, and our framework
will do the rest. It will analyze the code statically to find
the function boundaries and their call graph and generate the
correct code and (encrypted) binaries to launch a protected
snippet into an SGX enclave. Our experimental results show
that the conversion time is highly dependent on the call graph
depth, and although it can be in the order of minutes, it is a
one-time operation only.

In the future, we plan to add support to our framework for
the local and remote attestation procedures. These techniques
allow the addition of strong security integrity checks to
enclaves, further strengthening the safety of the SGX’s
TEEs. Furthermore, we also intend to integrate this work
into the ESP (Expert system for Software Protection). The
ESP [18] is a system leveraging AI and formal models [19]
to automatically protect or suggest what software protections
should be placed on the assets to safeguard.
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