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ABSTRACT Many biological studies show that microRNAs (miRNAs) play an indispensable role in
the regulation of various biological processes. MiRNAs are significant biomakers in disease diagnosis,
aiding in the understanding of pathogenesis and facilitating the identification, diagnosis, and treatment
of various diseases. However, the exact mechanism by which miRNAs influence the development of
these diseases remains incompletely understood. Thus, it is crucial to develop a computational method to
identify unknown miRNA-disease associations. In this study, we designed a computational framework based
on singular value decomposition (SVD) and node2vec to predict unknown miRNA-disease associations
(SNMDA). We use SVD technique to extract the linear features of miRNAs and diseases. The node2vec
method is applied to learn the non-linear embeddings of miRNAs and diseases. We combine the linear
feature and non-linear feature to get a new feature vector and feed it into the Gradient Boosting (GB)
classifier for binary classification prediction. According to the experimental findings, SNMDAdemonstrated
an average area under the curve (AUC) of 0.9608 during five-fold cross-validation. Compared with the
other Cutting-edge methods, SNMDA achieved the highest AUC value. Furthermore, the case studies on
gastric cancer, malignant esophageal lesions, and lung tumors validate the effectiveness of SNMDA. The
comprehensive experimental results demonstrate that SNMDA is effective in identifying unknown miRNA-
disease associations.

INDEX TERMS Node2vec, singular value decomposition, miRNA-disease association prediction, linear
feature, non-linear feature.

I. INTRODUCTION
MicroRNAs (miRNAs) are a class of non-coding RNAs
(ncRNAs) that typically consist of 20-25 nucleotides in
length. Their function involves post-transcriptional suppres-
sion of gene expression by binding to the 3’ untranslated
regions (UTRs) of target messenger RNAs [1], [2]. Since
the discovery of the first miRNA, Lin-4, in C. elegans in
1993 [3], there has been extensive research demonstrating
the involvement of miRNAs in a multitude of biological
processes, such as cell proliferation [4], differentiation [5],
viral infection [6], aging [7], among others. In addition, both
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overexpression and downregulation of miRNA expression
in humans have been demonstrated to contribute to the
development of a wide range of complex diseases [8], [9].
MiR-15 and miR-16, for instance, have a more pronounced
impact on chronic lymphocytic leukemia (CLL) via con-
trolling the antiapoptotic B-cell lymphoma protein BCL-2
in B cells [10]. The upregulation of miR17-5p expression
has been shown to lead to increased pancreatic cancer cell
proliferation and a significant increase in the number of
invading cells [11]. When compared to normal oral tissue,
abnormal expression of miRNAs such as miR-34b, miR-
137, miR-193a, and miR-203 causes oral squamous cell
carcinomas (OSCC) [12]. According to the aforementioned
research, it has been demonstrated that miRNAs are strongly
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linked as the progression of numerous complex human
diseases. Therefore, it is imperative to uncover additional
associations between miRNAs and diseases to gain insight
into the pathogenesis of illnesses and significantly enhance
the accuracy of disease diagnosis.

Traditional biological wet experimental methods used
to investigate the potential miRNA-disease associations
primarily encompass anchored polymerase chain reaction
and reverse transcription polymerase chain reaction, etc [13].
In general, traditional biological wet experiments often
confront quite a few bottlenecks, such as complicated
experiments, time-consuming, pricey and the low recognition
rate [14]. However, to address the limitations of traditional
research methods, researchers have developed several trusted
bioinformatic databases that store experimentally validated
miRNA-disease associations. Simultaneously, with the rapid
development of computer technology, numerous advanced
computational methods have been proposed for predicting
potential miRNA-disease associations. Computational meth-
ods are not only economical and effective, but also provide
a new perspective for researchers to investigate the miRNAs
ranked at the top and conduct relevant experiments to validate
the potential associations predicted. According to previous
studies summarized in [15], the existing computational
methods can be broadly classified into traditional machine
learning-based prediction models, deep learning-based pre-
diction models, and matrix transformation-based prediction
models. These computational methods are based on the
assumption that functionally similar miRNAs are more likely
to be allied with the phenotypically same or similar diseases
and vice versa.

A. RELATED WORKS
Currently, some traditional traditional machine learning
algorithms are used for modeling to predict the relationships
between miRNA and diseases. These approaches used
experimentally verified miRNA-disease associations, and
unverified miRNA-disease pairs as training samples and
then generate the relative training models. These models
demonstrated good outcomes in predicting miRNA-disease
associations. For example, Zhou et al. [16] developed a com-
putational model, combining gradient boosting decision tree
and logistic regression (GBDT-LR), to prioritize potential
miRNAs involved in specific diseases. The model is capable
of capturing non-linear features, which are then subjected
to scoring through the implementation of logistic regression.
Liu et al. [17] proposed a novel model called SMALF, which
utilized stacked autoencoder to obtain latent feature from the
original miRNA-disease associationmatrix and employed the
XGBoost [18] algorithm to predict unknown relationships.
Zhao et al. [19] utilized k-means clustering in data processing
to balance the positive and negative sample and presented
ABMDA implemented by boosting algorithm that iterates the
weak classifier, decision tree, to improve the accuracy of clas-
sification to know the potential miRNA-disease interaction.

You et al. [20] presented a model of path-based association
prediction (PBMDA). They established a heterogeneous
graph consisting of three interrelated subgraphs and then
leveraged a Depth First Search algorithm (DFS) to predict
potential miRNA-disease associations.

Meanwhile, deep learning algorithms are gradually utilized
to observe potential relationships between miRNAs and
diseases. In instance, Li et al. [21] employed a graph attention
network to aggregate the neighbor information of nodes in
each layer, and then fed the representation of the hidden
layer into the structure-aware jumping knowledge network
to obtain the global features of nodes. The output features
of miRNAs and diseases are then concatenated and fed into
a fully connected layer to score the potential associations.
Li et al. [22] proposed a novel graph auto-encoder model
(GAEMDA) that took the similarity between miRNAs and
diseases as feature information, applied a graph neural
networks-based encoder to produce the reduced-dimensional
embeddings of miRNA and disease nodes. Finally, the
embeddings of miRNA and disease nodes are inputted into a
bilinear decoder, which is responsible for identifying poten-
tial links between miRNA and disease nodes. Wang et al. [15]
introduced a base model that utilizes a multi-layer collab-
orative unsupervised training approach. They concatenated
the low-dimensional representations learned by stacked graph
autoencoder with the association features to derive the
ultimate features for miRNA-disease pairs. Then, they used
a multilayer perceptron (MLP) to predict scores for unknown
miRNA-disease associations. Li et al. [23] proposed a
novel deep learning model based on a hierarchical graph
attention network for predicting miRNA-disease associations
(HGANMDA), which wielded semantic-layer and node-layer
attention to weight different importance of meta-paths for
excavating unobserved interactions.

Furthermore, in recent years, several miRNA-disease asso-
ciation prediction algorithms based on matrix transformation
have appeared. Zhong et al. [24] constructed a miRNA-
disease double-layer network based on miRNA similarity,
disease similarity and miRNA-disease association data, and
then used the method of non-negative matrix factorization
to rank the candidate miRNAs of diseases, so as to predict
disease-related miRNAs. Cui et al. [25] considered that
the lack of association information would have a negative
impact on the prediction results, and used the k-Nearest
Neighbor (KNN) method to preprocess the miRNA-disease
matrix. Then, Collective Matrix Factorization (CMF) is
used to infer potential miRNA-disease associations. The
method adopts L2,1 − norm to avoid over-fitting. The
linear prediction method uses matrix factorization to map
the miRNA-association matrix to a low-rank subspace to
obtain linear features. According to the linear correlation
between features, the miRNA-disease association is inferred.
However, linear prediction methods only focus on the
extraction of linear features, and cannot effectively extract
nonlinear high-dimensional features in miRNA and disease
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similarity data. It is difficult to make full use of the
valuable feature information in the similarity data, and the
prediction effect is not ideal for new diseases or diseases
with incomplete association information. Machine learning
methods can learn the rich intrinsic representation of data
through nonlinear functions and can make more efficient
use of the feature information of miRNA and diseases.
However, they only focus on the nonlinear feature learning
of miRNA and diseases, do not consider the linear features in
the associated data, and ignore the fusion of linear features
and nonlinear features. It is not conducive to potential
miRNA-disease association prediction. Ding et al. [26]
used NMF and variational graph autoencoder (VGAE) to
fuse linear and nonlinear features of miRNA and disease,
and predicted miRNA-disease association on the basis of
association matrix, and achieved good results.

B. METHOD OVERVIEW
In order to explore the complex potential factors hidden
under the miRNA-disease association matrix and make
full use of the similarity information between miRNA and
disease, we design an integrated feature extraction model that
combines SVD and node2vec to predict potential miRNA-
disease associations. Specifically, the main contributions of
our study included the following parts:

1) We integrated both linear features and non-linear
features to construct the final features and could better
learn the potential information inmiRNA-disease pairs.

2) We proposed an integrated feature extraction model
prediction framework that combined SVD and
Node2Vec. SVD method can obtain linear features by
mapping miRNA-disease association matrix to bottom
subspace, so as to dig deep correlation information
between miRNA and disease. Node2vec method can
obtain non-linear features by automatically learning
miRNA and disease similarity information and achieve
efficient prediction of miRNA-disease association.

3) We used Gradient Boosting (GB) for prediction of
the potential miRNA-disease associations eventually,
which demonstrates a high level of fault tolerance and
is capable of swiftly and efficiently learning feature
information from miRNA-disease pairs. As a result,
it significantly enhances the prediction performance of
the model.

We used five-fold cross validation to evaluate accuracy of
the SNMDA(Singular value decomposition and Node2vec
MiRNA-Disease Associations), which obtained AUC(Area
Under the Curve) of 0.9608. Case studies on gastric
cancer, lung cancer and esophageal neoplasms were also
carried out to prove the prediction ability of the model.
Consequently, most of the predicted miRNAs associated with
these diseases were verified by mir2disease database [27]
and dbDEMC v2.0 database [28]. In conclusion, SNMDA
can efficiently predict potential miRNA-disease associ-
ation. In addition, the source codes can be found at
https://github.com/xiaoyanzi1124/SNMDA.git.

II. MATERIALS AND METHODS
A. BENCHMARK DATASET
In the present investigation, we retrieved miRNA-disease
associations from the HMDD v2.0 database. Addition-
ally, we directly downloaded experimentally verified
miRNA-disease associations from https://www.cuilab.cn/
hmdd [29]. After eliminating duplications and inconsistent
entries, we obtained 5430 experimentally validated miRNA-
disease associations, covering 495miRNAs and 383 diseases.
On this basis, we created a binary matrix, A ∈ RI×J , where
I and J represent the number of miRNAs and diseases,
respectively. The matrix mapping the associations between
miRNAs and diseases can be mathematically defined as
follows:

A(i, j) =

{
1, if miRNA i is associated to disease j
0, otherwise

(1)

In addition, matrix A is a sparse matrix, with an associated
density of 0.0286. A miRNA is associated with a maximum
of 125 diseases and a minimum of 1 disease, and on average
one miRNA is associated with 11 diseases. A disease is
associated with a maximum of 213 miRNAs and a minimum
of 0 miRNAs, and on average a disease is associated
with 14 miRNAs. There were 495 miRNAs associated with
diseases and 384 diseases associated with miRNAs [30], [31].

B. SIMILARITY NETWORKS
1) DISEASE SEMANTIC SIMILARITY
According to earlier research [32], similarity in disease
semantics can be calculated via utilizing the arbores-
cence attribute of disease in MeSH database, which is
obtained from https://www.nlm.nih.gov/mesh. Based on the
MeSH database, we marked each disease node using the
Directed Acyclic Graph (DAG). Consequently, we can adopt
DAG(di) = (di,T (di),E(di)) to describe the given disease
di, where T (di) represents the ancestor nodes of di and E(di)
denotes all the edges that directly connect ancestor nodes
to descendant nodes. Later, based on the above information,
we can compute the semantic function of disease dk to di as
shown below:

D1di (dk)

=

{
1 if dk =di
max

{
1 ∗ D1di

(
d ′
k
)

| d ′
k ∈ children of dk

}
if dk ̸= di

(2)

where 1 is the semantic contribution factor, which is
assigned a value of 0.5 based on a earlier research [33].
The contribution score of disease di to itself is 1, and the
contribution score of disease dk to disease di will decrease as
the distance. Hence the contribution score of disease di can
be defined as below:

DS1 (di) =

∑
dk∈T (di)

D1di (dk) (3)

VOLUME 12, 2024 110565



Y. Liu et al.: Potential microRNA-Disease Association Prediction Using Node2vec and SVD

If two diseases share greater parts of their DAGs, two diseases
can be considered more similar. We constructed a 383×383
matrix SS1 to store the initial type of disease semantic
similarity. We can compute the similarity score for disease
di to dj as follows:

SS1
(
di, dj

)
=

∑
dt∈T (di)∩T(dj)

(
D1di (dt) + D1dj (dt)

)
DS1 (di) + DS1

(
dj
) (4)

However, the aforementioned calculation method has a
drawback, namely, it does not take into account the different
contributions of two diseases on the same layer of the DAG,
and diseases with low frequency should contribute more than
those with high frequency. We obtain the similarity between
two diseases by using another method of calculating the
semantic similarity of diseases [34]. Then, we can describe
the semantic impact of disease dk to di as follows:

D2di (dk) = − log
(
the number of DAGs including dk

the number of diseases

)
(5)

Correspondingly, the second kind of semantic significance of
disease di can be described using

DS2 (di) =

∑
dk∈T (di)

D2di (dk) (6)

and the similarity in disease semantics SS2(di, dj) between
disease di and dj can be computed as:

SS2
(
di, dj

)
=

∑
dt∈T (di)∩T(dj)

(
D2di (dt) + D2dj (dt)

)
DS2 (di) + DS2

(
dj
) (7)

where SS2 is a matrix with dimensions of 383×383 to store
the semantic similarity values for the second type of diseases.

In order to calculate the semantic similarity between
diseases, we combine the above two aspects of information
to compute the final disease semantic similarity based on
previous study [35]. The disease semantic similarity between
diseases di and dj can be computed using the following
formula:

SS
(
di, dj

)
=
SS1

(
di, dj

)
+ SS2

(
di, dj

)
2

(8)

2) MIRNA FUNCTIONAL SIMILARITY
According to the hypothesis of Wang et al. [33], the theo-
retical basis for miRNA functional similarity is that diseases
exhibiting similar phenotypes are more likely to be associated
with miRNAs that have similar functions, and conversely.
We can download miRNA functional similarity information
from https://www.cuilab.cn/files/images/cuilab/misim.zip
[33]. Then, we constructed the matrix FS to store the miRNA
functional similarity for the convenience and efficiency
of subsequent calculation, where the element FS(mi,mj)
denotes the miRNA functional similarity score between
miRNA mi and mj.The range of miRNA functional similarity
values is [0, 1]. The calculation process will involve the

semantic similarity of known associations and diseases. The
calculation formula is as follows:

S(dt,D T ) = max
1≤i≤k

(SS (dt, d ti)) (9)

where DT is a set of k diseases, and dt represents a single
disease. This formula can determine the maximum similarity
value between disease dt and the diseases in DT . The
functional similarity of miRNAs is calculated based on the
following formula:

FS (m1,m2)=

∑
1≤i≤m S (dt1i,D T2)+

∑
1≤j≤n S

(
dt2j,D T1

)
m+ n

(10)

where m1 and m2 represent two miRNAs, DT1 represents the
set of diseases associated withm1, andDT2 represents the set
of diseases associated with m2. DT1 contains m diseases, and
DT2 contains n diseases. After calculating the similarity of
each pair of miRNAs, the matrix representing the functional
similarity of miRNAs is denoted by FS.

3) GAUSSIAN INTERACTION PROFILE KERNEL SIMILARITY
FOR MIRNAS AND DISEASES
Matrix of miRNA functional similarity and matrix of
disease semantic similarity have a large number of sparse
values. To complement the similarity information pertaining
to miRNAs and diseases, we can compute the similarity
based on the Gaussian interaction profile (GIP) kernel to
represent miRNA similarity and disease similarity based
on a assumption that miRNAs with similar characteristics
are more likely to be associated with similar diseases [35].
Specifically, we use a binary vector IP(mi) to represent
associations between miRNA mi and each disease, which
is located in the ith column of matrix A. Specifically, the
Gaussian kernel similarity for miRNA KM (mi,mj) between
miRNA mi and mj can be defined as:

KM
(
mi,mj

)
= exp

(
−γm

∥∥IP (mi) − IP
(
mj
)∥∥2) (11)

where the adjustment parameter γm is utilized to regulate the
bandwidth of the kernel. Its value can be determined using
the formula provided below:

γm = γ ′
m/

(
1
nm

nm∑
i=1

∥IP (mi)∥2
)

(12)

where γ ′
m denotes the normalizing original kernel bandwidth

that is set to 1 referring to the prior research [35]. In addition,
nm nm denotes the total count of miRNAs, which is
equivalent to 495 in our study. In the same manner, the
Gaussian kernel similarity for disease KD(di, dj) between
disease di and dj can be calculated according to the following
two equations:

KD
(
di, dj

)
= exp

(
−rd

∥∥IP (di) − IP
(
dj
)∥∥2) (13)

rd = r ′
d/

(
1
nd

nd∑
i=1

∥IP (di)∥2
)

(14)
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where binary vector IP(di), located in the ith row of matrix
A, is constructed to describe the associations between disease
di and each individual miRNA. In our study, nd refers to the
general amount of diseases, which is 383. Moreover, we have
set the value of γ ′

d to 1.

4) INTEGRATED SIMILARITY FOR MIRNAS AND DISEASES
To obtain the comprehensive miRNA similarity network,
we combined the miRNA functional similarity FS and
the miRNA Gaussian interaction kernel similarity KM .
On account of the previous research [35], we describe
the aggregated similarity for miRNAs SM (mi,mj) between
miRNA mi and mj as follows:

SM
(
mi,mj

)
=

{
FS
(
mi,mj

)
if mi and mj have functional similarity

KM
(
mi,mj

)
otherwise

(15)

Similarly, the aggregated similarity for diseases SD(di, dj)
between disease di and dj can be defined as follows:

SD
(
di, dj

)
=

{
SS
(
di, dj

)
if di and dj have semantic similarity

KD
(
di, dj

)
otherwise

(16)

C. OVERVIEW OF SNMDA
To forecast the potential association between miRNAs and
diseases, we propose a prediction model that combines
the SVD method and the node2vec method (SNMDA).
We employ the SVD method to obtain linear features of
miRNA and disease and apply the node2vec method to obtain
non-linear features of miRNA and disease. By combining
different features of each node, we construct a comprehensive
feature vector that fuses linear features with interaction
information and non-linear features with similarity informa-
tion. The classifier is trained using these integrated feature
vectors, and subsequently, the corresponding prediction score
is generated. SNMDA can be outlined as a series of five steps
(see Figure 1):

Step 1: Data processing and construction of miRNA
similarity matrix SM , disease similarity matrix SD and
miRNA-disease association matrix A.
Step 2: Adopt the SVD method to obtain the linear

vectors of miRNA and disease entities on the miRNA-disease
interaction matrix A. The linear representations are only
based on the miRNA-disease association adjacency matrix A.
Step 3: Exploit the node2vec method to obtain the

non-linear vectors of miRNA and disease entities from
comprehensive similarity networks SM and SD, respectively.

Step 4: Combination of linear and non-linear features.
Step 5: Use GB classifier to predict miRNA-disease

associations that are currently unknown.

1) LINEAR REPRESENTATIONS BY SVD
SVD is a mathematical technique based on linear alge-
bra, used for processing and analyzing matrix data [36].
It achieves this by decomposing the original matrix into the
product of three specific matrices: the left singular vector
matrix, the diagonal singular value matrix, and the transpose
of the right singular vector matrix. In this process, the features
extracted by SVD are essentially linear transformations of
the original data, as they are represented by the product
of the original features with the left singular vectors, the
transpose of the right singular vectors, and the singular
values. These features are considered linear because they
adhere to the principles of linear algebra, where any feature
can be expressed as a weighted sum of other features.
SVD does not involve any nonlinear operations, so it does
not alter the linear properties of the data. Moreover, SVD
reduces the dimensionality of the data by retaining the feature
vectors corresponding to the largest singular values, which
represent the main directions of variation in the data, and
these directions are typically linear. Thus, we use the SVD
method for capturing linear features of miRNAs and diseases.
In SVD, themiRNA-disease associationmatrix is represented
as A ∈ Rm×n, and the matrix A is a factorization of three
matrices as follows:

A = U6V T (17)

where U ∈ Rm×m represent miRNA feature matrix,
6 ∈ Rm×n represent feature weight matrix, and V T

∈

Rn×n represent disease feature matrix. Among the obtained
matrices, U is a real matrix, 6 is a diagonal matrix with
non-negative square roots of the eigenvalues of the product
ATA on the diagonal, and V T a real matrix. The diagonal
elements λi are called singular values of matrix A.

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 (18)

In the singular value diagonal matrix 6, the singular
values are arranged from largest to smallest in terms of
importance. Typically, the singular values decrease rapidly as
their indices increase. Based on the distribution of singular
values, one can identify the point where they begin to
drop sharply. This point can serve as the threshold k . This
threshold is not fixed and varies depending on the dataset.
By retaining the k largest singular values, smaller singular
values can be disregarded, reducing the impact of noise
and thereby enhancing the quality of data representation.
Moreover, retaining the k largest singular values can reduce
the dimensionality of features, preserving the most important
features in the dataset, significantly reducing computational
load, and making the algorithm faster and easier to handle.
In summary, we only take the top k features with the largest
values in matrix 6, and A can be re-described as:

Am×n ≈ Um×k · 6k×k · V T
k×n (19)

Figure 2 shows an approximate SVD representation of the
interaction matrix A. According to the SVD principle, the Ui
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FIGURE 1. Overview of SNMDA (miR stands for miRNA and Dis stands for disease).

and V T
j represent linear features of miRNA i and disease j,

respectively.

2) NON-LINEAR REPRESENTATIONS BY NODE2VEC
Graph representation learning, also known as graph embed-
ding, aims to represent a graph as a specific vector by
mapping nodes or the entire graph into a low-dimensional
space [37]. The goal is to optimize this mapping so that
the vector relationships in the embedding space capture
the original structure of the graph. The learned embedding
vectors can be used as input feature values for various
machine learning tasks [38].

In our study, we applied the node2vec algorithm to
extract features from miRNA similarity network and disease
similarity network [39]. Node2vec is a random walk-based
graph embedding algorithm based on word2vec [40]. In the
process of learning the network topology, node2vec integrates
two neighborhood sampling strategies, Breadth First Search
(BFS) and Depth First Search (DFS).

Let the previous node be t . Consider a random walk that
just traversed edge (t, v) and is currently located at node v.
The transition probabilities πvx on edge (t, v) leading from
v should be evaluated. The transition probability, without
normalization, is πvx = αpq · (Wvx), where

αpq(t, x) =


1
p
if dtx = 0

1 if dtx = 1
1
q
if dtx = 2

(20)

Here dtx represents the shortest path distance between
nodes t and x. Wvx represents the edge weight between node
v and node x, and in this study, it signifies the degree of

similarity between two diseases or the degree of similarity
between two miRNAs.

As shown in Figure 3, the parameter p controls the
likelihood of immediately revisiting a node during the walk.
A higher value of p means that the random walk is more
inclined to retrace along short paths in the graph, that
is, it is more likely to return to nodes that have been
visited before. This setting helps the algorithm to deeply
explore local areas within the graph rather than broadly
exploring the entire network. A lower value of p means
that the random walk retraces less, that is, it returns less
frequently to previously visited nodes. This setup encourages
the random walk to explore new nodes and paths, which
helps to uncover the global structure and long-distance
relationships in the graph. A low p value contributes to
increasing the breadth of the walk, but it may lead to a
walk that is too random, lacking in-depth exploration of
local structures. The parameter q controls the likelihood of
searching ‘‘local’’ or ‘‘global’’ nodes during the random
walk. If q>1, the random walk has a greater probability
to sample nodes around the node v, which is a BFS based
sampling. In contrast, if q<1, the random walk has a greater
probability to sample nodes far away from v, which can
get more global features information. According to the
recommendations in the node2vec paper [39], the parameters
p and q usually take empirical values within a certain range,
such as {0.25, 0.50, 1, 2, 4}. However, in theory, parameters
p and q can take any positive real value, as long as they satisfy
the requirements of specific application scenarios.

3) FEATURE COMBINATION
So far, we have obtained the linear feature matrixes U , V T

based on the decomposition of AM×N , and the non-linear
feature representations of miRNA and disease nodes using
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FIGURE 2. The illustration of applying SVD on miRNA-disease association matrix.

FIGURE 3. Illustration of the random walk procedure in node2vec. After
transitioning from node t to node v , the random walk is currently
assessing its next step from node v . The edge labels denote search biases
represented by α.

Network Representation Learning (NRL) method node2vec.
The next question is how can we combine them into a compu-
tational framework in the prediction of miRNAs and diseases.
For each miRNA i and disease j, the feature integration
rules are as follows: The linear features corresponding to
miRNA i is the ith row of U , which is noted as LMi(Ui)
after being converted into a column vector. Similarly, the
linear features corresponding to disease j is the jth column
of V T , represented as LDj(V T

j ). The non-linear features
corresponding to miRNA i are noted as NMi as well as the
non-linear features corresponding to disease j are noted as
NDj. The final integrated features of i and j are expressed as:

miRNAnew = concatenating(LMi,NMi) (21)

Disnew = concatenating(LDj,NDj) (22)

where concatenating() represents the concatenation opera-
tion. Then, concatenate the two vectors to get a new vector
for model prediction.

Vecnew = concatenating(miRNAnew,Disnew) (23)

4) CLASSIFIER PREDICTION
Based on the experimental outcomes from classifier selec-
tion, we utilize the GB classifier for association predic-
tion. Our research objective is to predict the unknown
miRNA-disease associations in the adjacency matrix A. The
GB classifier is adept at addressing binary classification
issues. It employs an ensemble learning approach, progres-
sively assembling a strong learner by integrating multiple
weak learners. Within the gradient boosting algorithm,
each weak learner is trained to address residuals, implying
that each must compensate for the predictive errors made
by all preceding weak learners. Consequently, as training
progresses, the influence of each weak learner incrementally
intensifies, culminating in enhanced predictive accuracy.
In Python, theGradientBoostingClassifier class encapsulates
the gradient boosting algorithm and offers tunable parameters
such as the learning rate and the quantity of trees, enabling
control over the model’s complexity and efficacy. Typically,
the gradient boosting algorithm boasts high predictive
precision and robustness, which has led to its broad adoption
in practical applications. In the GB classifier, we set the
number of weak learners (n_estimators) to 100, and the
contribution of each weak learner (learning_rate) to 0.1. All
other parameters are set to their default values.

5) CASE STUDY
We selected all known miRNA-disease associations and ran-
domly chose an equal number of unknown miRNA-disease
associations as the training set to train the SNMDAmodel on
the HMDD v2.0 database. Then, the well-trained model was
used to identify all unknown associations. After obtaining all
predicted scores for each pair of unknown miRNA-disease
associations, for a specific disease, we ranked the predicted
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association scores for all related miRNAs. MiRNAs with
higher rankings are likely to be associated with that specific
disease. Besides, we performed a validation process for
the top 50 candidate miRNAs predicted results one by one
according to dbDEMC [28] and mir2disease [27] databases,
respectively.

D. EVALUATION METRICS
To ensure impartial comparisons, we adopt the 5-fold cross-
validation to evaluate the performance of SNMDA. More
precisely, we randomly divided all the samples (all known
miRNA-disease associations as positive samples and an equal
count of unknown miRNA-disease associations as negative
samples) into five equal parts, each part was used as a test
set and the other four parts in turn as a training set. The
receiver-operating characteristics (ROC) curves were plotted
based on the results of 5-fold cross-validation. The x axis and
y axis of the ROC curves represent false positives rate (FPR)
and true positives rate (TPR), respectively. FPR and TPR can
be calculated by the following formulas:

FPR =
FP

TN + FP
(24)

TPR =
TP

TP+ FN
(25)

where TP and TN are the numbers of miRNA-disease asso-
ciation pairs and non-association pairs which are correctly
identified, respectively; FP and FN are the numbers of
miRNA-disease association pairs and non-association pairs
which are incorrectly identified, respectively. The AUC
value is the area under the ROC curve, and its value is
between 0 and 1. In general, the higher the AUC value,
the better the performance of the model. In our study,
we mainly use the area under the curve (AUC) and the area
under precision-recall curve (AUPR) to evaluate the overall
performance of our models. In classification problems, AUC
is an important method to evaluate the model’s overall
performance, and for unbalanced data sets, AUPR is more
suitable for evaluation models than AUC. Moreover, for
a more comprehensive evaluation of model performance,
we also used four common performance measures to measure
the performance of SNMDA, such as Accuracy, Precision,
Recall, and F1 − score. Four metrics are calculated as
follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(26)

Precision =
TP

TP+ FP
(27)

Recall =
TP

TP+ FN
(28)

F1 − score =
2 × Pre× Rec
Pre+ Rec

(29)

where TP, TN , FP, FN denote true positive, true negative,
false positive and false negative, respectively.

III. RESULTS
In this section, we present all the research results from
our experiments, including parameter selection, model per-
formance, comparison with five state-of-the-art methods,
and case studies. These five state-of-the-art models are
GAEMDA, SMALF, HGANMDA, GBDT-LR, ABMDA,
and introductions to these models are shown in the related
work section. Additionally, we also display the results of the
ablation study: the results based solely on the SVD method
and the results based solely on the Node2vec method.

A. CLASSIFIER SELECTION AND PARAMETER TUNING
In our experiments, we implemented the SNMDA model
based on the Numpy library, node2vec library and the scikit-
learn framework. After gaining the linear feature matrixes U
and V T based on SVD, we found a huge decay gap from
10−2 to 10−15 between the 291rd and the 292rd dimensions
of the importance matrix 6. According to the SVD principle,
the linear characteristics of entities are mainly concentrated
in the first 291 dimensions. Therefore, the linear feature
vectors of miRNA and disease were fixed to 291 dimensions.
In the non-linear feature vectors section, we used the same
parameters as the node2vec paper [39].We set the dimensions
of feature vector as 16, 32, 64 and 128, respectively.
The optimal dimension is found as 128 in the following
experiment. Since p is small and q is large, a random
walk is formed in the BFS method to obtain an embedding
value containing local rather than global information. Since
miRNA similarity network and disease similarity network in
our study are small and dense networks, according to previous
study [41], in small and dense networks, it is recommended
to use a higher parameter q, in which case BFS is superior to
DFS. According to the open-source paper on node2vec [39],
the range of parameters p and q is {0.25, 0.50, 1, 2, 4}. In the
training process, the parameters p and q were set to 0.25 and
4 for efficient clustering.

In the selection process of machine learning classifiers,
XGBoost (XGB), Logistic regression (LR), Naive Bayes
(NB), Random forest (RF), AdaBoost (ADB), Gradient
Boosting(GB), and Multilayer perception (MLP) were tested
based on every integrated features, respectively. The results
of AUC values of all classifiers are shown in Table 1.
The ‘‘SVD’’ column represents the features extracted using
only the SVD method. Similarly, the ‘‘N2V16’’ column
represents the 16-dimensional features extracted using only
the node2vec method. ‘‘SN2V16’’ represents the integrated
features that combine SVD features with 16-dimensional
node2vec vectors, and so on. All of the above classifiers are
imported from the scikit-learn library and implemented in
Python with all internal classifier parameters set to default
values.

According to the data presented in Table 1, the prediction
outcomes based on the integrated feature are superior to
the single linear feature prediction results and the single
non-linear feature prediction results in most classifiers. And,
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TABLE 1. The AUC results of different features on classifiers.

FIGURE 4. The 5-fold cross-validated ROC curve and PR curve of SNMDA model with AUC of 96.08% and AUPR of
95.45%.

TABLE 2. 5-fold cross-validation results performed by SNMDA.

the combination of linear features and 128-dimensional
node2vec features obtained the optimal classification results
in the GB classifier. In addition, the best results for each
classifier are shown in bold. Therefore, in the subsequent
experiments, we choose to combine ‘‘SN2V128’’ with theGB
classifier to perform the experiments.

B. PREDICTION MIRNA-DISEASE ASSOCIATIONS BY
SNMDA
To obtain reliable experimental results of the model, we use
five-fold cross-validation based on ‘‘SN2V128’’ to evaluate
the performance of SNMDA. From Figure 4, we can see
that AUCs of SNMDA are 0.9594, 0.9527, 0.9659, 0.9635,
0.9622, respectively. The average AUC value is 0.9608.
From Figure 4(b), we can see that AUPRs of SNMDA
are 0.9504, 0.9473, 0.9462, 0.9644, 0.9618, respectively.
The average AUPR value is 0.9545. The results show that
SNMDA exhibits strong performance in revealing unknown
miRNA-disease associations.

Table 2 presents a detailed overview of the average results
of various evaluation metrics for our model, obtained through
5-fold cross-validation.We observe that the average accuracy,
recall, f1-score, and precision of SNMDA at 5-fold cross-
validation are 0.9009, 0.9122, 0.9020, 0.8922. It is further
proved that the SNMDA model is effective for association
prediction.

C. PERFORMANCE COMPARISON
To further demonstrate the predictive ability of SNMDA,
we compared SNMDA with seven state-of-the-art exist-
ing computational methods, which are GAEMDA [22],
SMALF [17], HGANMDA [23], GBDT-LR [16], ABMDA
[19], SVD-MDA and NODE2VEC-MDA. The parameters
involved in all comparison models are consistent with those
in the source paper. All the algorithms are implemented
and ensure to run in the same computer environment.
To ensure an impartial assessment, all the aforementioned
models were evaluated using five-fold cross-validation on
the HMDDv2.0 database. The contrast outcomes were
condensed and presented in Table 3. We can see that
SNMDA achieves the highest values on all evaluation metrics
in between these seven models. In addition, in terms of
AUC values, which can provide a more comprehensive
evaluation of the model’s performance, SNMDA yields
superior outcomes than the other models, and 1.05% higher
than the second highest SMALF model. The experimental
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TABLE 3. Comparison table of each evaluation metric for different models.

TABLE 4. The top 50 predicted miRNAs which may be associated with
gastric cancer.

TABLE 5. The top 50 predicted miRNAs which may be associated with
esophageal neoplasms.

results show that SNMDA model is effective in predicting
miRNA-disease association.

D. CASE STUDIES BY SNMDA
To further assess the practicality and effectiveness of
SNMDA in real-world scenarios, three case studies on gastric
cancer, esophageal neoplasms, and lung neoplasms were
provided.

Gastric cancer is the fourth most common cancer world-
wide, and it is one of the common malignant tumors. Its

TABLE 6. The top 50 predicted miRNAs which may be associated with
lung cancer.

incidence ranking is the first among all kinds of tumors
in China [42]. So in our initial case study, we devised
a methodology to prioritize miRNAs that may have a
potential association with gastric cancer. The results are
shown in Table 4. Among the top 50 miRNAs associated
with gastric cancer, 47 of them are confirmed by dbDEMC
or mir2disease. In summary, 98% of the top 50 predicted
novel miRNAs associated with gastric cancer were verified,
which further demonstrates the effectiveness of SNMDA in
predicting miRNA-disease associations.

Table 5 lists the top 50 esophageal neoplasms-associated
miRNAs. The esophageal tumor is a malignant growth that
develops in the tissues of the esophagus, and its etiology is
associated with chronic exposure to nitrosamines, inflamma-
tion, and the levels of trace elements found in common food
sources [43]. Here, we chose esophageal neoplasms as our
second case study. All 50 of the predicted miRNAs associated
with esophageal neoplasms are confirmed by dbDEMC
or mir2disease, with a prediction accuracy of 100%. This
indicates that the SNMDA model presented in this paper can
predict the potential associations between unknown diseases
and miRNAs without any known miRNA associations.

Lung cancer is the leading cause of cancer occurrence
globally [44]. It is a malignant tumor originating from the
bronchial mucosa or glands of the lung, which is one of
the malignant tumors with the fastest growing morbidity
and mortality and poses the greatest threat to human health
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and life. Hence, we conducted a case study focusing on the
identification of miRNAs associated with lung cancer. Based
on the information presented in Table 6, it is evident that our
model successfully confirms 46 out of the top 50 miRNAs
that are associated with the disease, as validated by dbDEMC
or mir2disease. This also demonstrates that the model we
proposed has good performance.

IV. CONCLUSION AND DISCUSSIONS
Previous research has demonstrated that dysregulated expres-
sion of miRNA is linked to numerous intricate human dis-
eases. Thus, predicting potential miRNA-disease associations
can help medical experts better study the pathology of
diseases and promote the development of clinical medicine.
In this study, we proposes a miRNA-disease association
(MDA) prediction model (SNMDA), which addresses the
difficulty of obtaining appropriate feature representations
for miRNAs and diseases that integrate all information
from similarity networks and association matrices. The
model combines Singular Value Decomposition (SVD)
and Node2vec methods to design a computational frame-
work (SNMDA) for predicting unknown miRNA-disease
associations. In the linear feature acquisition stage, the
model uses SVD technology to capture key information of
miRNA and disease nodes, and in the nonlinear feature
acquisition stage, the Node2vec method is used to obtain
the feature representations of miRNA and disease nodes.
Finally, the features obtained from both stages are merged,
with linear and nonlinear features complementing each
other and forming the final predictive vector. This merged
vector can more comprehensively reflect the features of
miRNA and disease nodes, providing richer and more
accurate information for subsequent analysis and prediction.
Through this feature fusion method, researchers can more
effectively identify potential associations between miRNAs
and diseases. To illustrate the predictive performance of
SNMDA, this study compares five computational methods
(GAEMDA, SMALF, HGANMDA, GBDT-LR, ABMDA).
The comparison results of five-fold cross-validation show
that SNMDA has improved performance in predicting
miRNA-disease associations. SNMDA achieved an AUC
value of 0.9608, and compared with the baseline methods, the
performance of the model in this paper has been enhanced.
To further evaluate the performance of SNMDA, three case
studies on gastric cancer, esophageal cancer, and lung cancer
were conducted, demonstrating that SNMDA can effectively
infer unknown miRNA-disease interactions.

However, SNMDA also has some limitations, which
require further investigation. Due to the lack of negative
samples, we chose unknown miRNA-disease associations
as negative samples. There may be false negatives in these
negative samples, which may also affect the results of the
experiment. Therefore, finding a reliable negative sample
will help to further enhance the model’s performance.
Meanwhile, the use of the associated data alone hardly fully
reflects the complex interactions between miRNAs and other

biomolecules. In future studies, it is necessary to improve the
extension of experimental data by combining supplementary
biological data, such as target gene information and RNA
sequence data. While the node2vec simple computing frame-
work performs well, we can further improve performance
by adopting other novel machine learning approaches in the
future. Since the node2vec method generates a fixed feature
vector for each node, it cannot capture the dynamic changes
of the graph. If the nodes of the graph are changed, such as
deleting or adding nodes, the model needs to be retrained to
update the feature vector of each node. On the other hand,
the acquisition of node feature vectors is affected by the
parameters p and q of the node2vec model, and appropriate
parameters need to be selected after several experiments.
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