
Received 1 July 2024, accepted 6 August 2024, date of publication 9 August 2024, date of current version 30 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3441330

Using DeepLabCut to Recognize Early Motor
Development Patterns Associated With
Neurodevelopmental Disorders
ANGELA CARUSO1, MARZENA OLIVEIRA RIBAS (MARZENA SZKODO) 1, MARTINA MICAI 1,
GIUSEPPE MASSIMO BERNAVA 2, GENNARO TARTARISCO3, DAVID LÓPEZ PÉREZ4,
MARIA FAZIO5, PRZEMYSLAW TOMALSKI 4, AND MARIA LUISA SCATTONI1
1Coordination and Promotion of Research, Istituto Superiore di Sanità, 00161 Rome, Italy
2Institute for Chemical-Physical Processes, National Research Council of Italy, 98158 Messina, Italy
3Institute for Biomedical Research and Innovation, National Research Council of Italy, 98164 Messina, Italy
4Institute of Psychology, Polish Academy of Sciences, 00-378 Warsaw, Poland
5Department of Mathematics, Computer Science, Physics and Earth Sciences, University of Messina, 98166 Messina, Italy

Corresponding author: Martina Micai (martina.micai@iss.it)

This work was supported in part by the Reading Early Autism Disorders Signs (READS) Project (Ministry of Enterprises and Made in
Italy, MIMIT) under Grant F/180026/04/X43; in part by the MSCA-ITN-2018—European Training Networks under Grant 814302
(Shaping the social brain through early interactions (SAPIENS); in part by Italian Ministry of Health Project through the ‘‘BABY@NET:
A Technology-Based National Surveillance Network for the Early Identification of Autism Spectrum Disorder and Other
Neurodevelopmental Disorders in At-Risk Populations’’ under Project PNRR-MAD-2022-12376472; and in part by the National Science
Centre, Poland, under Grant 2019/32/C/H6/00199.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols
was granted by the National Ethics Committee for Clinical Trials of Public Research Bodies (EPR) and other National Public
Institutions (CEN).

ABSTRACT Early identification of Neurodevelopmental Disorders (NDD) allows for faster intervention,
which in turn improves clinical outcomes and reduces the individual and societal costs associated with
the diagnosis. The aims of the study were to 1) investigate the use of the DeepLabCut (DLC) toolbox
to automatically analyze the motor patterns of infants at Low Risk (LR) and High Risk (HR) for Autism
Spectrum Disorder (ASD); and 2) define the critical time window in which atypical motor patterns
discriminate between typically developing infants and those diagnosed with ASD or NDD. The DLC toolbox
was used to train a model capable of tracking the movements of both LR and HR infants longitudinally at the
ages of 10 days, 6 weeks, 12 weeks, 18 weeks, and 24 weeks. 226 videos of 87 infants (45 females), collected
within the Italian Network for Early Detection of Autism Spectrum Disorder (NIDA), were analyzed. Using
the Percentage of Correct Key-points (PCKh) accuracy metric, the DLC’s tracking performance was verified
by comparing the obtained 2D hands and feet coordinates with those extracted by the Movidea software.
Furthermore, motor features were computed and fed to three classifiers: Fine Tree, RUSBoosted Trees, and
Narrow Neural Network to investigate their usefulness in terms of early NDD prediction. Satisfactory PCKh
results were obtained for both hands and feet (left foot: 96.6%, right foot: 96.2 %, left hand: 80.9%, right
hand: 82.8%). The best classification results were obtained with the RUSBoosted classifier at the ages of
10 days and 6 weeks. The 5-fold cross-validation accuracy was 81.4%, with a true negative rate of 80.0%
and true positive rate 87.5%. Our data confirm the usefulness of DLC as a low-cost approach to track infant
movements during the writhing period. Early motor behavior at the ages of 10 days and 6 weeks carries
valuable information that has the potential to be suitable in predicting the diagnosis of NDD.

INDEX TERMS Autism, DeepLabCut, high risk infants, early behavior, movement tracking, neurodevel-
opmental disorders.
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I. INTRODUCTION
Neurodevelopmental Disorders (NDD), including Autism
Spectrum Disorder (ASD), are early onset conditions,
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characterized by various deficits in one’s personal, academic,
social, or occupational functioning [1].

Early identification of NDD is critical but challenging due
to a long prodromal period through mid- to late infancy [2],
[3]. Thanks to the high degree of neuroplasticity in the first
years of human life [4], early intervention has the potential
not only to maximize individual outcomes and improve prog-
nosis [5], but also to reduce the societal and family costs
associated with the diagnosis [6]. Recently, there has been an
increased interest in the early detection of NDD, including
ASD, which is currently diagnosed, in the best-case scenario,
when a child is around 2-3 years of age [7], [8], [9], [10].
According to various studies, differences between children
later diagnosed with ASD and those typically developing
(TD) ones are already present in the first year of life [11],
[12]. Movement atypicality is one of the first signs that might
precede social or language abnormalities in ASD [13]. There-
fore, even though atypical motor development is not a core
symptom of ASD, it is often examined in the context of risk
assessment [14]. Indeed, early motor development has been
extensively explored in high-risk infants of developing ASD,
i.e., siblings of childrenwith a diagnosis of ASD, in whom the
prevalence of ASD is higher than that observed in the general
population [15].

Although motor problems are among the most impor-
tant co-occurring conditions in ASD [16], an autism-specific
atypical motor profile has not yet been defined. Both qualita-
tive and quantitative motor atypicalities may occur in autistic
individuals. Early motor markers of ASD include postural
asymmetries [17] and poor postural control [18]. Teitel-
baum and colleagues [19] retrospectively analyzed videos of
infants aged 4-6 months who were later diagnosed with ASD
and found difficulties with lying, righting, sitting, crawling,
and walking. Furthermore, some studies have shown that
from the age of 12 months, autistic individuals received
lower gross and fine motor scores compared to their undi-
agnosed peers [20], [21], [22], [23]. Additionally, Phagava
and co-authors [23] revealed differences between infants with
and without ASD in general movements (GMs). GMs are
present from early fetal life and are usually assessed until
20 weeks post-term, which is when intentional and antigrav-
ity movements appear and begin to dominate [24]. GMs are
part of the spontaneous movement repertoire and are easily
observable due to their frequent occurrence and extended
duration, which facilitates accurate assessment [25]. At term
age and during the first twomonths of life, the GMs are called
writhing [26]. They are characterized by an ellipsoid form,
and low to moderate speed and amplitude. Normal GMs are
perceived as fluid, elegant, and complex, including rotations
along the axis of the limbs. They involve the whole body
with a variable sequence of trunk, neck, arm, and leg move-
ments. By 6-9 weeks after birth, fidgety movements (FMs)
begin to emerge and slowly replace writhing. An awake and
alert infant expresses them continuously. They are character-
ized by small, circular movements of the limbs, neck, and
trunk. FMs are small in amplitude and moderate in speed.
Even though, according to Einspieler [27], the fidgety GMs

might still occur in infants until around 6 months of age,
due to the emergence of voluntary, goal-directed movements
between 15 and 20 weeks of age, the evaluation of FMs
after 15 weeks post-term might be difficult and not fully
reliable [24]. According to the study by Phagava and col-
leagues [23], autistic individuals more often presented a poor
repertoire during the writhing period and abnormal or absent
FMs. Some authors emphasize that infants later diagnosed
with ASD may achieve motor milestones at the same time
as their TD peers but might perform them in a qualitatively
abnormal manner [28], [29]. Therefore, both qualitative and
quantitative assessment of individual behaviors are needed,
rather than global measures of motor milestone achievement.

Motor behaviors are often studied by marking people with
physical, reflective markers, which are not only intrusive,
but whose number and location have to be determined a pri-
ori [30], potentially influencing the natural behavior of the
subject being studied. Therefore, markerless pose estimation,
using computer vision, is becoming increasingly popular in
the field of motion analysis. Noticeable improvements have
been triggered by advances in convolutional networks [31].
In 2021, Desmarais and colleagues [31] showed that, among
the leading human pose estimation methods, the most accu-
rate techniques used various architectures, such as 3D human
body models, learnable triangulation, or temporal convolu-
tional networks, and a consensus on the best approach has
not yet been reached. According to the authors [31], a well-
recognized interdisciplinary pose estimation framework is
DeepLabCut (DLC) [30], [32] – which aims to achieve
human-like tracking accuracy using Deep Neural Networks.
DLC is an open-source toolbox contained within a Python
package. It is based on transfer learning with deep neural net-
works. Thanks to the ability to take a network trained on one
task with a large, supervised dataset (in this case ImageNet),
and use it for another task with a small, supervised dataset,
DLC can use limited training data and accurately track user-
defined features [32]. The major advantages of this approach
are its powerful generalization ability and flexibility – the
labels are personalized, and the user can decide which key
points to track.

Recently, a software package calledMovidea [33], [34] has
been developed for the automatic analysis of movement of
infants at risk for NDD. It allows the operator to track the
infant’s end-effectors in free moving conditions and auto-
matically extract various motor features from a given video.
Movidea collects measurable and quantifiable information
not based on visual scoring of an infant’s motor performance,
completed by clinicians or trained operators during the well-
child visits.

In this study, we aim to 1) investigate the use of DLC to
automatically analyze the motor patterns of infants at low and
high risk for ASD; and 2) define the critical time window in
which atypical motor patterns discriminate between typically
developing infants and those diagnosed with ASD or NDD.
The present study represents a significant advancement from
traditional methods by employing DLC, which utilize state-
of-the-art computer vision and deep learning algorithms for
more accurate and less intrusive movement analysis, utilize
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markerless pose estimation to reduce biases from physical
markers, enable automatic and objective extraction of motor
features from video recordings compared to manual visual
scoring, and focus on defining critical time windows for
detecting atypical motor patterns, potentially offering earlier
and more precise indicators of ASD.

II. MATERIALS AND METHODS
A. PARTICIPANTS
The Italian Network for Early Detection of Autism Spec-
trum Disorder (NIDA Network) is the largest development
surveillance program for infants at risk of NDD in Italy,
coordinated by the National Institute of Health (Istituto
Superiore di Sanità, ISS). Infants were recruited between
2012 and 2020 in pediatric hospitals and clinical research
centers throughout the entire Italian territory. The study pro-
tocol was approved by the Ethics Committee of the ISS
(Approval Number: Pre 469/2016).Written informed consent
were obtained from parents/guardians before video record-
ing. The inclusion criteria for infants were 1) birth weight ≥
2500 g; 2) absence of known medical, genetic, or neu-
rological conditions associated with ASD; 3) gestational
age ≥ 36 weeks; 4) absence of major complications in preg-
nancy and/or delivery likely to affect brain development, and
5) Apgar index > 7 at the 5th minute.
A total of 226 videos of 87 infants (45 females), recorded

longitudinally at the age of 10 days, 6 weeks, 12 weeks,
18 weeks, and 24 weeks, were analyzed. Participants were
divided into groups with a high (HR, n = 50) or low (LR,
n = 37) risk of ASD. Individuals from the HR group had
an older autistic sibling, whereas those from the LR had no
family history of autism. At the age of 24 or 36 months,
participants’ clinical outcomes were assessed by blinded
expert clinicians from the NIDA Network using standard-
ized tools/tests and structured interviews with parents for
checking the presence/absence of an ASD or NDD diagno-
sis. The NIDA Network’s comprehensive clinical protocol
allows the characterization of a child’s developmental profile
in all domains, including motor, communication/language
and social domains [35]. 19 participants received an NDD
diagnosis, out of which 18 belonged to the HR group. In our
sample, NDD diagnosis included ASD, Communication Dis-
orders, Attention Deficit Hyperactivity Disorder, and Motor
Disorder.

A total of 126 videos of the HR group, and 100 of the
LR group were collected. 180 videos came from infants who
did not receive a diagnosis during the assessment stage of
the study, whereas 46 came from individuals diagnosed with
NDD.

B. VIDEO RECORDING AND PREPARATION
The recordings took place at participants’ homes to avoid any
infants’ and/or parents’ discomfort. The child was lying on
a green blanket. The camera was placed above the infant,
at chest height. The recording lasted at least 5 minutes and
aimed to acquire images of spontaneous movement of the
child’s full body [33]. The researchers (either a psycholo-
gist, neurobiologist, or therapist) placed the camera 50 cm

away from the child, recorded the infant in a well-lit room,
and did not interact with the infant during the process of
data collection. Parents were invited to leave the room to
avoid attracting the infant’s attention which could disturb the
expression of movement and to ensure a video recording of
an infant spontaneously moving, based on Prechtl’s General
Movement Assessment [18].
The preliminary evaluation of the recordings showed that

high-quality video without any interferences did not last
longer than 3 minutes [33]. Therefore, 3-minute video seg-
ments where the infant was in supine position, in a condition
of well-being, without crying episodes or accidental move-
ments of the camera were selected. If the video lasted
for longer than 3 minutes, then the first 3 minutes of the
high-quality frames were chosen. If the 3-minute video seg-
ments did not reach high quality, they were not included in
the analysis.

C. DLC MODEL TRAINING
To train the DLC model, the workflow used in Nath and col-
leagues [32] was followed. To track the infant’s movements,
we labeled the central points on the back of the hands and feet
(Fig.1).

FIGURE 1. The labeling Graphical User Interface (GUI) in DLC and the
tracked body parts.

To provide good generalization, the finalmodel was trained
using 3,597 labeled frames across 129 different videos.
Recordings of infants from each age group were used. The
algorithm was trained for 850,000 iterations using a laptop
with the NVIDIA GPU (RTX 3060). The networ’s perfor-
mance was measured as the mean average Euclidean error
between the labels predicted by DLC and the manual ones.
To help exclude occluded data, DLC returns not only the x and
y coordinates of the body part of interest but also their proba-
bility. The user can then determine the likelihood threshold of
data points. To choose the best value, the percentage of avail-
able data, as well as the train and test errors, were checked
for various likelihood thresholds (from 0% to 90%, by every
10 percentage points). Exceeding the likelihood threshold
of 10% did not provide a major drop in errors obtained.
Therefore, to preserve asmuch data as possible, the likelihood
threshold of 10% was chosen. The obtained train error was
then 3.16 pixels, and the test error was equal to 3.47 pixels,
less than 1% related to video resolution (640 × 480).
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We performed a stratified 5-fold cross-validation to ensure
that each fold is representative of the entire dataset in terms of
class distribution. This process was carried out as follows: the
dataset was randomly divided into five equal parts, maintain-
ing the proportion of HR and LR videos in each fold. For each
fold, four parts were used for training (80%), and one part
was used for testing (20%). This procedure was repeated five
times, ensuring that each part was used as a test set exactly
once. To prevent overfitting, we ensured that the training and
testing sets were completely independent for each fold. This
means that no video used for training in a given fold was
included in the testing set for that fold.

D. TRAJECTORIES’ PROCESSING
The trained DLCmodel was then utilized to perform tracking
of the children’s hands and feet in all videos within the
dataset. To get rid of outliers that could result from any
tracking errors, the data were filtered in two ways. First,
by using a 1-dimensional median filter with a window size
equal to 7 [36]. Second, by calculating a z-score of each data
point compared to the entire trajectory of the point in the
respective video and eliminating those data points that were
further away than 3 SDs from the mean. If the z-score of
one of the two coordinates exceeded this threshold, the whole
point was eliminated. After these steps, the percentages of
missing data were calculated for each tracked body part and
for each age group (Fig. 2). Infants tended to point the back
of their hands down to the floor during the recording resulting
in a high percentage of missing hand data (Fig. 2). Therefore,
the computation of motor features was conducted using only
the feet trajectories.

FIGURE 2. Mean percentage of missing data points for left/right
hands/feet by age group.

E. TRACKING DLC PERFORMANCE VS MOVIDEA
To further verify the performance of our model, we com-
pared the hands and feet coordinates obtained with DLC
with those extracted by Movidea software [33]. Movidea
is a semi-automatic software designed for tracking the
end-effectors of children in a video. It requires an opera-
tor to preselect a set of parameters, including the headline,
the central line of the infant’s body, and the central point
of the end effector. The Percentage of Correct Key-points
(PCKh) accuracy metric was calculated using 50% of the
head length as a distance threshold. This metric showed how

often the predicted key point and the true joint were within the
chosen distance limit. The Movidea-extracted trajectories
were treated as the ground truth. Unlike the computation of
motor features that were based on trajectories and would
have been influenced by a high percentage of missing data,
here the tracking comparison, not only for feet but also
for hands, was done using only those data points that were
available after the initial signal filtering and before any data
imputation was conducted. When the DLC detected the back
of the hand in a video, it was possible to check if the pro-
vided coordinates were compatible with those obtained by
Movidea.

F. MOTOR FEATURES’ COMPUTATION
The motor features of interest were computed in MATLAB
R2022b. The missing feet data were first imputed using
the default method of the inpaint_nans MATLAB func-
tion (Copyright (c) 2009, John D’Errico). Since the home
setting did not always allow for the camera to be placed
exactly 50 cm away from the baby, using pixels as a mea-
sure unit would not allow for comparison of some of the
motor features between videos. For instance, mean velocities
in pixels/second have different interpretations for various
recordings. To overcome this problem, we used head length
(measured in pixels, from chin to hairline) to normalize the
data and allow comparison between subjects and time.

The list of computed features over a 3-minute period
included: mean velocities and mean accelerations of the
left and right foot, cross-correlation between feet veloci-
ties, cross-correlation between feet accelerations, skewness
of speed distribution of each foot, periodicity in feet’s tra-
jectories, periodicity in feet’s velocities, as well as the area
differing from the moving average, and the area out of the
SD of the moving average. These features are meaningful for
the analysis of atypical motion patterns [37].

The magnitude of velocity, also referred to as speed was
computed as the Euclidean distance of the central point on
top of the foot between two subsequent frames, multiplied
by the number of frames per second (fps) recorded in a
specific video. In the dataset employed for this study, some
of the videos have a frame rate of 25 fps, while others have
30 fps. By multiplying the Euclidean distance between two
consecutive frames by the frame rate, we accounted for the
variability in frame rates across the input videos.

Acceleration was then calculated as the difference between
two subsequent speed values. Then, the mean speed andmean
acceleration were computed.

The cross-correlation (CC) is a measure of synchronicity
of the limbs’ movement [33]. The CC with zero lag was
calculated for velocity magnitude (and analogously for accel-
eration) between the left and right foot (Eq. (1)).

CCv1 v2 =
σv12√

σ 2
v1 · σ 2

v2

(1)

where σ v1v2 is the covariance of v1 and v2, σ2
v1 is the variance

of v1, and σ2
v2 is a variance of v2.
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The skewness (ν) was calculated to evaluate the speed
distribution (Eq. (2)):

v =

1
n−1

∑n−1
i=1 (vi − v̄)3

σ 3
v

(2)

where n is the number of recorded frames,

v̄ =
1

n− 1

∑n−1

i=1
vi

σv =

√
1

n− 1

∑n−1

i=1
(vi − v̄)2

To determine the periodicity parameter (Eq. (3)), the trajec-
tory (or velocity magnitude) signal of each video was divided
into three equal parts [37]. An arithmetic meanwas calculated
for each of these parts. Then, the signal values that intersected
with the mean were calculated. Further, the mean distance
between the intersections and their SD were calculated. Since
the videos in the dataset were recorded with various numbers
of frames per second, the distance between the intersections
was calculated in seconds, rather than in number of frames.

Periodicity:

Pl,n =
1

σl,n + dl,n

Pfeet =

∑
n
Pleftfoot,n +

∑
n
Prightfoot,n (3)

where Pl,n is the periodicity, n = [x,y], and l = [left_foot,
right_foot], σl,n is the SD and d l,n is the mean distance
between all consecutive intersections and Pfeet is the merged
periodicity parameter for the left and right foot.

The area differing from the moving average was calculated
using the windowing width k, that corresponded to averaging
over 2 s [37]. Therefore, a script was written, which first
checked how many frames per second were recorded in each
video, then doubles this value and rounds it up. Next, depend-
ing on whether the resulting number was even (Eq. (4) and
Eq. (5)) or odd (Eq. (6) and Eq. (7)), the appropriate equations
were used.

x̄i =
1
k

∑i+ k
2

j=i− k
2
xj (4)

Adiff =

∑l− k
2

i= k
2+1

|xi − x̄i| (5)

x̄i =
1
k

∑i+ k−1
2

j=i− k−1
2
xj (6)

Adiff =

∑l− k−1
2

i= k+1
2

|xi − x̄i| (7)

where xi is the moving average of the i-th frame, k is the
window width, xj is the detected position in the x direction
in the j-th frame, Adiff is the area differing from the moving
average, and l is the number of frames of the video. The same
equations were used for the movement in y direction.

Since the value of the area differing from moving average
depends on the length of a specific video, the parameter was
normalized (Eq. (8)).

Anorm =
Adiff
l − k

(8)

where Anorm is the normalized value of the area differing from
the moving average.

A merged parameter for both feet (Afeet ), which adds up
the calculated areas of both spatial axes to one parameter was
also calculated (Eq. (9)).

Afeet =

∑
n
Anorm,leftfoot ,n +

∑
n
Anorm,rightfoot ,n (9)

where n = [x,y].
As there is always some deviation of the trajectory from

the moving average, this parameter tends to be always greater
than 0 [37]. The calculation of the area out of SD of the
moving average provided information about higher devia-
tions from a smooth movement.

G. NDD RISK CLASSIFICATION AND MOTOR ASSESSMENT
BEST AGE
Except for the above-described motor features, gender and
the NDD risk status (HR/LR) of each infant were added to the
dataset. Then, three models were trained using the MATLAB
Classification Learner App: Fine Tree, RUSBoosted Trees,
and Narrow Neural Network.

To determine the best age for the assessment of motor
behavior, the classifiers were trained separately for each age
group but also, given a different movement characteristic
in different stage of development, for infant groups divided
based on the GM period: writhing (10 days and 6 weeks) and
fidgety (12 week, 18 weeks, and 24 weeks).

III. RESULTS
A. TRACKING DLC VS MOVIDEA PERFORMANCE
The comparison of the DLC-derived coordinates with the
ones extracted by Movidea (Fig. 3) showed that the average
feet tracking accuracy (left foot: 96.6%, right foot: 96.2 %)
was higher than the average hand tracking accuracy (left
hand: 80.9%, right hand: 82.8%), which might be the result of
more feet data available for the model training. The achieved
PCKh results are satisfactory and indicate a good perfor-
mance of the method investigated.

FIGURE 3. The PCKh value for each body part when comparing Movidea
and DLC coordinates.

B. CLASSIFICATION RESULTS
The classification results are presented in Table 1 for each
age group (10 days, 6 weeks, 12 weeks, 18 weeks, and
24weeks), and Table 2 for each GMperiod (writhing: 10 days
and 6 weeks, FMs: 12 weeks, 18 weeks, and 24 weeks).
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As described in the methods section, the collected data were
asymmetric in terms of the diagnostic status of the partici-
pants (there were more TD infants than those with NDD).
As shown in Tables 1 and 2, the RUSBoosted Trees classifier
handled this better than the Fine Tree and the Narrow Neural
Network, achieving more balanced results in terms of per-
centages of correctly identified cases and correctly detected
controls. For all three classifiers, the accuracy achieved was
higher for 10-day or 6-week-old infant videos than for the
older infants. The best results were obtained when data
from those two youngest groups were analyzed together. The
5-fold cross-validation accuracy was then 81.4%, with the
true negative rate reaching 80.0% and the true positive rate
equal to 87.5 % (Table 2).

TABLE 1. NDD vs TD classification.

TABLE 2. NDD vs TD classification during the writhing and fidgety period.

IV. DISCUSSION
The aim of this study was to investigate the usefulness of
DLC for the analysis of infant motor patterns in high-risk
infants for NDD, taking a step towards the development of
an early screening tool for the NDD detection. To evaluate the
DLC tracking performance, themean average Euclidean error
between the labels predicted by DLC and the manual ones
was verified, and the data obtained by DLC were compared
with the coordinates extracted from the same videos using
the semi-automatic Movidea software [33]. The investigated
approach provided reliable tracking of the infants’ hands and
feet in the analyzed videos.

Our data are in line with previous studies using similar
approaches with the aim of developing automated standard-
ized methods for the quantitative analysis of spontaneous
movements in infants at high-risk (i.e., siblings and preterm
infants) for NDD. The results showed that complexity indices
of infants’ hand and foot movements may be potential can-
didates for detecting developmental outcomes in high-risk
infants [38], [39], [40]. A variety of bodilymovement features
at 4 months of age may be used as predictors in classifying
infants with low and high autistic-like behaviors [41].

In the current study, the trajectory-based motor fea-
tures were computed and fed to Fine Tree, RUSBoosted
Trees, and Narrow Neural Network classifiers. Even though
only the feet data were complete enough to be used for
the analysis, promising results were obtained. The highest
5-fold cross-validation accuracy of 81.4% was obtained
when analyzing and combining the data of writhing period
(10 days and 6 weeks of age) using the RUSBoosted Trees.
The true positive and true negative rates were 87.5% and
80.0%, respectively. The RUSBoost algorithm was specifi-
cally designed to improve the performance of models trained
on skewed data. It applies the RUS technique, which ran-
domly removes examples from the overrepresented class [42]
and, despite its simplicity, has been proven to be very effec-
tive [43]. This classifier provided the most balanced results
in terms of correct identification of cases and controls. The
current work suggests that the RUSBoosted Trees classifier
trained on the two early groups of infants (10 days and
6weeks after birth) could be included in a system for the early
detection of NDD.

This study analyzed a large number of videos collected
early during the infants’ development within the NIDA Net-
work across the entire Italian territory. Moreover, the dataset
included five age groups. Thanks to the NIDA video col-
lections, we were able not only to train a classifier that is
capable of distinguishing between TD individuals and those
diagnosed with NDD at the age of 24/36 months, but also to
determine the valuable time point in development to perform
an early motor analysis. Our analysis shows that the motor
features computed at the age of 10 days and 6 weeks are
useful in terms of early identification of NDD and might
provide a better distinction between TD and NDD infants
than the same motor features analyzed at later stages of
development (12, 18, and 24 weeks). The intentional move-
ments observed later in the development may interfere with
the assessment of quantitative analysis of motor behaviors.
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Even though the older age might be non-optimal for early
screening using the presented approach, analysis of FMs may
provide valuable information on infant motor development.
Nevertheless, it seems that data recorded early in life aremore
suitable to be used for an automated screening tool, as they
do not include intentional movements that occur later in life.

A notable limitation of this study is the focus on extract-
ing parameters related to the magnitude of movement only,
without considering its direction. Addressing this aspect rep-
resents a significant avenue for future research. In the future,
other key points and body parts could be considered for
tracking with DLC to find out whether additional information
could further improve the classification results. Moreover,
in this study the selection of 3-minute segments, described in
the methods, was done manually, which is a time-consuming
task. For a fully automated tool that could be used in real-
world settings, software that would automatically choose
only the appropriate video parts should be developed.

This study provides an example of the application of DLC,
which holds significant promise for the early assessment
of neurodevelopmental delays in research and clinical set-
tings, in combination with gold standard tools. Infant motor
development can be objectively quantified and can predict
neurodevelopmental outcomes. Future research should aim
to promote the development of automated tools that can
detect potential neurodevelopmental deficits early enough to
provide timely intervention and improve clinical outcomes.
Automated tools may be extremely useful in clinical settings
where human and economic resources are often scarce. Addi-
tionally, future research should include longitudinal tracking
of these high-risk infants through grade 1 or 2 to establish a
correlation between early screening and later developmental
outcomes.

V. CONCLUSION
Although more data should be collected and software for
automatic video pre-processing should be developed to apply
the presented approach in real-world settings, the results are
very promising. The present study confirms the usefulness of
DLC as low-cost approach to track infant movements in the
writhing period. It has shown that the analysis of early motor
patterns can predict the diagnosis of NDD, including ASD,
with high accuracy. Furthermore, the very early stage of life
(10 days and 6weeks after birth) seems to be themost suitable
time for using the DLC approach.

REFERENCES
[1] Diagnostic and Statistical Manual of Mental Disorders: DSM-5, American

Psychiatric Association, Washington, DC, USA, 2013.
[2] C. Einspieler, J. Sigafoos, K. D. Bartl-Pokorny, R. Landa, P. B. Marschik,

and S. Bölte, ‘‘Highlighting the first 5 months of life: General move-
ments in infants later diagnosed with autism spectrum disorder or Rett
syndrome,’’ Res. Autism Spectr. Disorders, vol. 8, no. 3, pp. 286–291,
Mar. 2014.

[3] N. Deconinck, M. Soncarrieu, and B. Dan, ‘‘Toward better recognition of
early predictors for autism spectrum disorders,’’ Pediatric Neurol., vol. 49,
no. 4, pp. 225–231, Oct. 2013.

[4] F. Y. Ismail, A. Fatemi, andM. V. Johnston, ‘‘Cerebral plasticity: Windows
of opportunity in the developing brain,’’ Eur. J. Paediatric Neurol., vol. 21,
no. 1, pp. 23–48, Jan. 2017.

[5] C. Lord et al., ‘‘The Lancet commission on the future of care and clinical
research in autism,’’ Lancet, vol. 399, no. 10321, pp. 271–334, Jan. 2022.

[6] M. L. Ganz, ‘‘The lifetime distribution of the incremental societal costs
of autism,’’ Arch. Pediatrics Adolescent Med., vol. 161, no. 4, p. 343,
Apr. 2007.

[7] S. L. Hyman et al., ‘‘Identification, evaluation, andmanagement of children
with autism spectrum disorder,’’ Pediatrics, vol. 145, no. 1, Jan. 2020,
Art. no. e20193447.

[8] C. Okoye, C. M. Obialo-Ibeawuchi, O. A. Obajeun, S. Sarwar, C. Tawfik,
M. S. Waleed, A. U. Wasim, I. Mohamoud, A. Y. Afolayan, and
R. N. Mbaezue, ‘‘Early diagnosis of autism spectrum disorder: A review
and analysis of the risks and benefits,’’ Cureus, vol. 15, no. 8, Aug. 2023,
Art. no. e43226.

[9] M. Hadders-Algra, ‘‘Early diagnostics and early intervention in neurode-
velopmental disorders—Age-dependent challenges and opportunities,’’
J. Clin. Med., vol. 10, no. 4, p. 861, Feb. 2021.

[10] M. Micai, F. Fulceri, A. Caruso, A. Guzzetta, L. Gila, and M. L. Scattoni,
‘‘Early behavioral markers for neurodevelopmental disorders in the first 3
years of life: An overview of systematic reviews,’’Neurosci. Biobehavioral
Rev., vol. 116, pp. 183–201, Sep. 2020.

[11] G. Purpura, V. Costanzo, N. Chericoni, M. Puopolo, M. L. Scattoni,
F. Muratori, and F. Apicella, ‘‘Bilateral patterns of repetitive movements
in 6- to 12-month-old infants with autism spectrum disorders,’’ Frontiers
Psychol., vol. 8, p. 1168, Jul. 2017.

[12] S. J. Sheinkopf, J. M. Iverson, M. L. Rinaldi, and B. M. Lester, ‘‘Atypical
cry acoustics in 6-month-old infants at risk for autism spectrum disorder,’’
Autism Res., vol. 5, no. 5, pp. 331–339, Aug. 2012.

[13] J. M. Iverson, ‘‘Developing language in a developing body, revisited: The
cascading effects of motor development on the acquisition of language,’’
Wiley Interdiscip. Rev., Cogn. Sci., vol. 13, no. 6, p. e1626, Nov. 2022.

[14] L. Zwaigenbaum, S. Bryson, and N. Garon, ‘‘Early identification of autism
spectrum disorders,’’ Behavioural Brain Res., vol. 251, pp. 133–146,
Aug. 2013.

[15] S. Ozonoff, G. S. Young, A. Carter, D. Messinger, N. Yirmiya,
L. Zwaigenbaum, S. Bryson, L. J. Carver, J. N. Constantino, K. Dobkins,
T. Hutman, J. M. Iverson, R. Landa, S. J. Rogers, M. Sigman,
and W. L. Stone, ‘‘Recurrence risk for autism spectrum disorders:
A baby siblings research consortium study,’’ Pediatrics, vol. 128, no. 3,
pp. e488–e495, Sep. 2011.

[16] M. Micai, L. M. Fatta, L. Gila, A. Caruso, T. Salvitti, F. Fulceri,
A. Ciaramella, R. D’Amico, C. D. Giovane, M. Bertelli, G. Romano,
H. J. Schünemann, and M. L. Scattoni, ‘‘Prevalence of co-occurring
conditions in children and adults with autism spectrum disorder: A sys-
tematic review andmeta-analysis,’’Neurosci. Biobehavioral Rev., vol. 155,
Dec. 2023, Art. no. 105436.

[17] G. Esposito, P. Venuti, S. Maestro, and F. Muratori, ‘‘An exploration of
symmetry in early autism spectrum disorders: Analysis of lying,’’ Brain
Develop., vol. 31, no. 2, pp. 131–138, Feb. 2009.

[18] J. E. Flanagan, R. Landa, A. Bhat, and M. Bauman, ‘‘Head lag in infants
at risk for autism: A preliminary study,’’ Amer. J. Occupational Therapy,
vol. 66, no. 5, pp. 577–585, Sep./Oct. 2012.

[19] P. Teitelbaum, O. Teitelbaum, J. Nye, J. Fryman, and R. G. Maurer,
‘‘Movement analysis in infancy may be useful for early diagnosis of
autism,’’ Proc. Nat. Acad. Sci. USA, vol. 95, no. 23, pp. 13982–13987,
Nov. 1998.

[20] J. Brian, S. E. Bryson, N. Garon, W. Roberts, I. M. Smith, P. Szatmari, and
L. Zwaigenbaum, ‘‘Clinical assessment of autism in high-risk 18-month-
olds,’’ Autism, vol. 12, no. 5, pp. 433–456, Sep. 2008.

[21] R. Landa and E. Garrett-Mayer, ‘‘Development in infants with autism
spectrum disorders: A prospective study,’’ J. Child Psychol. Psychiatry,
vol. 47, no. 6, pp. 629–638, Jun. 2006.

[22] R. J. Landa, A. L. Gross, E. A. Stuart, and M. Bauman, ‘‘Latent class
analysis of early developmental trajectory in baby siblings of children
with autism,’’ J. Child Psychol. Psychiatry, vol. 53, no. 9, pp. 986–996,
Sep. 2012.

[23] H. Phagava, F. Muratori, C. Einspieler, S. Maestro, F. Apicella,
A. Guzzetta, H. F. R. Prechtl, and G. Cioni, ‘‘General movements in
infants with autism spectrum disorders,’’ Georgian Med. News, no. 156,
pp. 100–105, Mar. 2008.

[24] L. Zuk, ‘‘Fetal and infant spontaneous general movements as predictors of
developmental disabilities,’’ Develop. Disabilities Res. Rev., vol. 17, no. 2,
pp. 93–101, Nov. 2011.

116132 VOLUME 12, 2024



A. CARUSO et al.: Using DeepLabCut to Recognize Early Motor Development Patterns

[25] C. Einspieler and H. F. R. Prechtl, ‘‘Prechtl’s assessment of general move-
ments: A diagnostic tool for the functional assessment of the young nervous
system,’’Mental Retardation Develop. Disabilities Res. Rev., vol. 11, no. 1,
pp. 61–67, Feb. 2005.

[26] H. F. R. Prechtl, Ed., Continuity of Neural Functions From Prenatal to
Postnatal Life. Clinics in Develomental Medicine, vol. 94. Oxford, U.K.:
Blackwell, pp 179–197.

[27] C. Einspieler, ‘‘Abnormal spontaneous movements in infants with repeated
sleep apnoeas,’’ Early Hum. Develop., vol. 36, no. 1, pp. 31–48, Jan. 1994.

[28] R. J. Landa, A. L. Gross, E. A. Stuart, and A. Faherty, ‘‘Developmental
trajectories in children with and without autism spectrum disorders: The
first 3 years,’’ Child Develop., vol. 84, no. 2, pp. 429–442, Mar. 2013.

[29] S. Ozonoff, G. S. Young, S. Goldring, L. Greiss-Hess, A. M. Herrera,
J. Steele, S. Macari, S. Hepburn, and S. J. Rogers, ‘‘Gross motor devel-
opment, movement abnormalities, and early identification of autism,’’
J. Autism Develop. Disorders, vol. 38, no. 4, pp. 644–656, Apr. 2008.

[30] A.Mathis, P.Mamidanna, K.M. Cury, T. Abe, V. N.Murthy,M. W. Mathis,
and M. Bethge, ‘‘DeepLabCut: Markerless pose estimation of user-
defined body parts with deep learning,’’ Nature Neurosci., vol. 21, no. 9,
pp. 1281–1289, Sep. 2018.

[31] Y. Desmarais, D. Mottet, P. Slangen, and P. Montesinos, ‘‘A review of
3D human pose estimation algorithms for markerless motion capture,’’
Comput. Vis. Image Understand., vol. 212, Nov. 2021, Art. no. 103275.

[32] T. Nath, A. Mathis, A. C. Chen, A. Patel, M. Bethge, and M. W. Mathis,
‘‘Using DeepLabCut for 3D markerless pose estimation across species and
behaviors,’’ Nature Protocols, vol. 14, no. 7, pp. 2152–2176, Jun. 2019.

[33] W. Baccinelli, M. Bulgheroni, V. Simonetti, F. Fulceri, A. Caruso, L. Gila,
and M. L. Scattoni, ‘‘Movidea: A software package for automatic video
analysis of movements in infants at risk for neurodevelopmental disor-
ders,’’ Brain Sci., vol. 10, no. 4, p. 203, Mar. 2020.

[34] A. Caruso, L. Gila, F. Fulceri, T. Salvitti, M. Micai, W. Baccinelli,
M. Bulgheroni, and M. L. Scattoni, ‘‘Early motor development predicts
clinical outcomes of siblings at high-risk for autism: Insight from an
innovative motion-tracking technology,’’ Brain Sci., vol. 10, no. 6, p. 379,
Jun. 2020.

[35] A. Caruso, M. Micai, L. Gila, F. Fulceri, and M. L. Scattoni, ‘‘The
Italian network for early detection of autism spectrum disorder: Research
activities and national policies,’’ Psychiatria Danubina, vol. 33, no. 11,
pp. 65–68, Dec. 2021.

[36] D. L. Pérez, Z. Laudańska, A. Radkowska, K. Babis, A. Koziol, and
P. Tomalski, ‘‘Do we need expensive equipment to quantify infants’ move-
ment? A cross-validation study between computer vision methods and
sensor data,’’ in Proc. IEEE Int. Conf. Develop. Learn. (ICDL), Beijing,
China, Aug. 2021, pp. 1–6.

[37] L. Meinecke, N. Breitbach-Faller, C. Bartz, R. Damen, G. Rau, and
C. Disselhorst-Klug, ‘‘Movement analysis in the early detection of new-
borns at risk for developing spasticity due to infantile cerebral palsy,’’Hum.
Movement Sci., vol. 25, no. 2, pp. 125–144, Apr. 2006.

[38] H. I. Shin, H.-I. Shin, M. S. Bang, D.-K. Kim, S. H. Shin, E.-K. Kim,
Y.-J. Kim, E. S. Lee, S. G. Park, H. M. Ji, and W. H. Lee, ‘‘Deep
learning-based quantitative analyses of spontaneous movements and their
association with early neurological development in preterm infants,’’ Sci.
Rep., vol. 12, no. 1, p. 3138, Feb. 2022.

[39] H. Abbasi, S. R. Mollet, S. A. Williams, L. Lim, M. R. Battin,
T. F. Besier, and A. J. C. Mcmorland, ‘‘Deep-learning markerless tracking
of infant general movements using standard video recordings,’’ in Proc.
45th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2023,
pp. 1–4.

[40] M. W. Park, H.-I. Shin, M. S. Bang, D.-K. Kim, S. H. Shin, E.-K. Kim,
E. S. Lee, H. I. Shin, and W. H. Lee, ‘‘Reduction in limb-movement
complexity at term-equivalent age is associated with motor developmental
delay in very-preterm or very-low-birth-weight infants,’’ Sci. Rep., vol. 14,
no. 1, p. 8432, Apr. 2024.

[41] H. Doi, N. Iijima, A. Furui, Z. Soh, R. Yonei, K. Shinohara, M. Iriguchi,
K. Shimatani, and T. Tsuji, ‘‘Prediction of autistic tendencies at 18
months of age via markerless video analysis of spontaneous body move-
ments in 4-month-old infants,’’ Sci. Rep., vol. 12, no. 1, pp. 1–12,
Oct. 2022.

[42] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, ‘‘RUS-
Boost: A hybrid approach to alleviating class imbalance,’’ IEEE Trans.
Syst. Man, Cybern., A, Syst. Humans, vol. 40, no. 1, pp. 185–197, Jan. 2010.

[43] J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano, ‘‘Experimental
perspectives on learning from imbalanced data,’’ in Proc. 24th Int. Conf.
Mach. Learn., Jun. 2007, pp. 935–942.

ANGELA CARUSO received the Master of Sci-
ence degree in biology and the Ph.D. degree in
psychobiology and psychopharmacology from the
School of Behavioural Neuroscience, Sapienza
University of Rome, Italy, in 2017, and the Mas-
ter of Science degree in principles and practice
of systematic reviews and meta-analysis in the
biomedical field from the University of Padua,
Italy. She is currently a Permanent Researcher
with the National Observatory for Autism, Italian

National Institute of Health, Rome, Italy. Her research interests include
examine early markers of neurodevelopmental disorders in high-risk infants
through the implementation of novel technologies. Since 2015, she has been
collected motor, social, vocal, and clinical data of infants of Italian Network
for Early Detection of Autism Spectrum Disorder (NIDA) Network devoted
to identifying early markers of neurodevelopmental disorders. She has exten-
sive experience in designing and analyzing data from novel software for
infants’ movements and kinematics analysis.

MARZENA OLIVEIRA RIBAS (MARZENA
SZKODO) received the bachelor’s degree in
biomedical engineering and the Master of Science
degree in psychology with a specialization in
clinical psychology. As an Early-Stage Researcher
for the ITN Marie Curie Project SAPIENS with
the Istituto Superiore di Sanità, Rome, Italy, she
conducted experimental research focused on the
early recognition of neurodevelopmental disor-
ders, utilizing new technologies, and innovative
data analysis methodologies.

MARTINA MICAI was born in Ferrara, Italy,
in March 1988. She received the Bachelor of
Science degree in cognitive and psychobiologi-
cal sciences and the Master of Science degree in
neurosciences and neuropsychological rehabilita-
tion and in principles and practice of systematic
reviews and meta-analysis in the biomedical field
from the University of Padua, Italy, and the joint
Ph.D. degree in psychology from the University
of Seville, Spain, and in language and linguis-

tics from Norwegian University of Science and Technology, Trondheim,
Norway. From 2013 to 2016, she was a Marie Skłodowska-Curie Actions
Innovative Training Network (ITN) Early Career Researcher Fellow within
the EU-Funded Project Language and Perception (LanPercept). Following
her academic pursuits, she assumed a postdoctoral research position with
the University of Reading, U.K. Since 2018, she has been a Permanent
Researcher with the National Autism Observatory, National Institute of
Health, Rome, Italy. Within this role, she contributes to the investigation
of early biomarkers of neurodevelopmental disorders, utilizing advanced
technologies within Italian Network for Early Recognition of Autism Spec-
trum Disorders (NIDA). Her expertise encompasses experimental research
focused on the mental health, diagnosis, and treatment of individuals with
neurodevelopmental disorders and psychiatric conditions.

VOLUME 12, 2024 116133



A. CARUSO et al.: Using DeepLabCut to Recognize Early Motor Development Patterns

GIUSEPPE MASSIMO BERNAVA received the
degree in computer engineering from the Uni-
versity of Catania, Italy, in 2004, and the Ph.D.
degree in computer science from the University of
Milan, in 2009. His doctoral research focused on
the applications of machine learning for decision
support in the medical field. Currently, he is a
Technologist with Italian National Research Coun-
cil (CNR)—IPCF. His research interests include
the design and development of medical devices

using innovative software tools and approaches, particularly in leveraging
artificial intelligence for understanding biological phenomena. His expertise
includes image and video processing for feature identification and tracking
through deep learning techniques. He is also the author or co-author of
numerous scientific articles published in international journals.

GENNARO TARTARISCO received the M.Sc.
degree in biomedical engineering and the Ph.D.
degree in automatic, robotic and bioengineering
from the University of Pisa, in 2009 and 2013,
respectively. He was a Research Fellow with
the Institute of Clinical Physiology of National
Research Council of Italy, in collaboration with
the Interdepartmental Research Centre ‘‘E. Piag-
gio,’’ Faculty of Engineering, University of Pisa,
from 2013 to 2015. Since 2016, he has been a

Ph.D. Researcher with the Institute for Biomedical Research and Inno-
vation (IRIB) of National Research Council of Italy, Messina Unit. His
research interests include mobile health technology and computational sci-
ence in medicine, the recent advances of wearable healthcare systems and
telemedicine, coupling with signal processing, and data mining techniques,
such as machine learning and deep learning algorithms. One of the main
contributions of his research works is related to the monitoring of health
parameters, as physiological and cardiovascular clues, vital body signs and
the patients’ social and environmental context to understand biological phe-
nomena and assisting medical diagnosis, rehabilitation, and early detection
of diseases. He has published over 80 works in peer-reviewed international
journals.

DAVID LÓPEZ PÉREZ received the joint Ph.D.
degree from the Institute of Psychology, Polish
Academy of Science, and the University of War-
saw, Poland. He is currently a Dynamic Systems
Expert. He was a Postdoctoral Researcher with
the Institute of Psychology, Polish Academy of
Science, and the University of Warsaw, Poland.
He investigated the role of movement in the early
development of attention in infants, he specializes
in non-linear methods, interactions, movement

dynamics, eye-tracking, near-infrared spectroscopy, and magnetic resonance
imaging. His research interests include extend to parent-infant interactions,
examining how infants dynamically learn to synchronize their actions with
their parents through the use of state-of-the-art movement extraction algo-
rithms and dynamical system methods, with a focuses on the application of
non-linear dynamical system methods to study human and animal behavior.

MARIA FAZIO received the Ph.D. degree in
advanced technologies for information engineer-
ing from the University of Messina, Italy. She
is currently an Associate Professor in computer
science with the University of Messina. In her
carrier, she was involved in several national and
international research projects and scientific col-
laborations. She is a member of the editorial board
of several international journals and has been a
guest editor of several special Issues published in

international journals. She was the chair and an organizer of international
conferences and workshops. Currently, she is responsible of the CINI ‘‘HPC:
Key Technologies and Tools’’ (HPC-KTT) National Laboratory and the
Vice-Chair of the Master’s Degree International Course in Data Science with
the University of Messina. She is the author of more than 200 articles in the
field of distributed systems and computing technologies. Her research inter-
ests include computing continuum, with a particular reference to intelligent
microservice orchestration, auto-configuring mesh networks at the edge, and
the security in IoT-edge ecosystems. She is also the Co-Founder of Alma
Digit, which is a SME and academic spin-off with the University of Messina
aimed at implementing automation of processes in the cloud.

PRZEMYSLAW (PRZEMEK) TOMALSKI recei-
ved the M.A. degree in psychology from the Uni-
versity of Warsaw, in 2005. For the Ph.D. degree,
he investigated subcortical face processing under
the supervision of Mark H. Johnson and Gergely
Csibra with Birkbeck, University of London, U.K.
Then, he studied the effects of poverty on infant
neurocognitive development in multi-ethnic and
multi-lingual population of East London (U.K.),
conducting the first resting EEG study of infants

from families differing in socio-economic status. Later projects (funded by
the Nuffield Foundation) involved predicting language development using
mobile eye-tracking tasks and testing the effectiveness of early attention
training in infants from low-SES families. Between 2012 and 2019, his
Babylab with the University of Warsaw, Poland, investigated the effects of
SES and household chaos on early attention and dyadic social interaction and
neural mechanisms of audiovisual speech processing in infancy (using EEG
and fNIRS neuroimaging). He coordinated the Marie Skłodowska-Curie
Innovative Training Network (SAPIENS, EU Horizon2020) for training
young scientists in methods for studying social interactions and functional
brain development. His current research interests include the mechanisms
through which infant-parent interactions shape early attention and commu-
nicative development. This work is funded by the National Science Centre,
the National Agency for Academic Exchange, and European Commission.

MARIA LUISA SCATTONI received the Ph.D.
degree in pharmacology and toxicology from the
Sapienza University of Rome, in 2005.

She holds the position of the Research Director
of Italian National Institute of Health, Rome, Italy.
She has been the Research Director and a Coordi-
nator of Italian National Autism Observatory and
Italian Network for the Early Recognition of ASD
(NIDA), since 2010. In this role, she facilitates
collaboration and clinical networks between pae-

diatricians, child neuropsychiatrists, and neonatologists throughout Italy.
MLS responsibilities also encompass the development of standardized pro-
tocols and the creation and validation of innovative tests and technologies
for early ASD recognition. Her work extends to monitoring the develop-
mental trajectories of high-risk populations, such as siblings of children
with ASD, children born preterm, and infants born small for gestational
age. Additionally, since 2018, she has been coordinated the development of
the national guidelines and organization of services for people with Autism
Spectrum Disorder and their families. She has published more than 140 arti-
cles in the field. Her contributions have been recognized through various
research grants and awards, including the prestigious Mention of Honor in
the Research Sector as part of the 100 Italian Excellences Award, in 2018.

116134 VOLUME 12, 2024


